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1 Introduction

Let G be a finite group of order n and U1, . . , Uq; a maximal non-conjugating set
of cyclic subgroups of G. If ψ1, . . . , ψq; are the characters of G induced from the
trivial representations of U1, . . . , Uq; respectively, then for any rational character
χ of G, there exist integers a1, . . . , aq; such that

nχ =
q∑
i=1

aiψi (∗)

This is the statement of the well known Artin induction theorem. It is already known
that in most cases smaller multiples of χ satisfy (*). So to make this induction
theorem more precise, the smallest natural number k such that the equation kχ =
q∑
i=1

aiψi is solvable — for integral unknowns ai — for any given rational character χ of

G is called an Artin exponent for G (see [5]). All Artin exponents form an ideal in the
integers and clearly |G| is in this ideal. The unique positive generator for this ideal is
called the Artin exponent of G. Now let G(QG) denote the Grothendieck ring of all
rational representations of G and GC(QG) the ideal in G(QG) generated by rational
representations of G induced from cyclic subgroups. The Artin exponent of G has
been computed by finding the characteristic of the quotient ring G(QG)/GC(QG)
(see [5]). The purpose of this paper is to compute the same invariant (the Artin
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exponent) using the Burnside ring theoretic approach. This arises in the following
context:

Let U be a family of cyclic subgroups of a finite group G, closed with respect
to conjugation. Let B(G) and B̃(G) denote the Burnside ring and Ghost ring (see
section 2) of G respectively. For U ≤ G, define eU ∈ B̃(G) by

eU :=

1 if U ∈ U
0 otherwise

The integer A(G) := min(n ∈ N | n · eU ∈ B(G)) is called the Artin exponent of
G (see section 3). For a finite p-group G of order pα,— a power of a prime,— one
has that A(G) = 1 if and only if G is cyclic; A(G) = pα−1 when G is noncyclic
(p 6= 2). This statement remains valid for 2-groups except in the case where G is
one of the special class of groups considered in 5.1.

As was pointed out in [5], the above results seem to suggest that the invariant
A(G) is a blunt measure of the deviation of G from being a cyclic group.

There are various reasons why such invariants are studied. Apart from the fact
that these ideas are natural generalizations of number theoretic notions, — which
in themselves have aesthetic values, — there are applications in other branches of
mathematics. For example, a full knowledge of these invariants may sometimes yield
nontrivial information about the induction theorems for various functors K on the
category of finite groups (see [8]). Finally and above all the procedure used here for
the computation of the Artin exponent affirms the utility of the Burnside ring in
the representation theory of finite groups.

The structure of this paper is as follows. In section 2 we recollect some of the
well known facts about the Burnside ring, — most of which are due to A. Dress
(see [1], [3], [2]); in section 3 we reformulate the definition of the Artin exponent
in terms of the Burnside ring; in section 4, we collect some necessary useful results
about p-groups and finally in section 5 we compute the Artin exponent for finite
p-groups.

For the reader’s convenience we list here some of the notation used in this paper.
For a finite group G we denote by;
Z: the ring of integers,
S: a G-set,
Gs := {g ∈ G | gs = s} for an element s ∈ S,
{1G} : the trivial subgroup of G,
p : a prime number,
|G| : the order of G,
Z(G) : the centre of G,
CG(N) := {g ∈ G | gn = ng, ∀n ∈ N} — the centralizer of N in G,
< T >: subgroup of G generated by T,
< T >N : the normal subgroup of G generated by T,
[g , h] := g−1h−1gh – commutator of g and h,
[S , T ] := < [s , t] | s ∈ S, t ∈ T > .
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2 The Burnside ring and its ghost ring

Consider U , sets of cyclic subgroups of a finite group G which is closed with respect to
conjugation. We define a (G , U)-set to be a finite left G-set S such that Gs ∈ U for
all s in S. Our conditions on U imply that for any U ∈ U the set G/U = {gU | g ∈ G}
of left cosets of U in G is a (G , U)-set, the G-action on G/U is defined by left
multiplication G × G/U −→ G/U : (h , gU) −→ hgU, and that for any two
(G , U)-sets S1 and S2 the G-sets S1 × S2 and S1 ∪ S2 are (G , U)-sets. We
observe that the isomorphism classes of (G , U)-sets form a commutative semiring
B+(G , U). Furthermore 1 ∈ B+(G , U) exists, namely G/G. Thus a map from the
set B+(G , U) of isomorphism classes of (G , U)-sets into a ring R which commutes
with sums and products and sends 1 ∈ B+(G , U) onto 1R is nothing other than
a homomorphism from the semiring B+(G , U) into R and this factors uniquely
through the universal ring associated to B+(G , U), the Burnside rings B(G , U) of
G with respect to U . We note that if we assume U to be the set S(G) of all subgroups
of G then B(G , U) coincides with the usual Burnside ring B(G) of G, constructed
from the semiring B+(G) of isomorphism classes of all finite G-sets. The following
facts are more or less obvious:

Theorem 2.1. (a) B(G , U) is generated freely as an additive group by the isomor-
phism classes of transitive (G , U)-sets, i.e. of G-sets of the form G/U with U ∈ U :
so its rank equals the number k = kU of G-conjugacy classes of subgroups in U .
(b) For any subgroup V ≤ G of G, whether in U or not, the mapping

χV : S 7−→ #{s ∈ S | V ≤ Gs}

which associates with any (G , U)-set S the number of elements in

SV := {s ∈ S | V ≤ Gs},

the set of V -invariant elements in S – induces a homomorphism also denoted by χV
or more precisely χUV – from B(G , U) into Z.
(c) Any homomorphism from B(G , U) into Z takes the form given in (b).

We shall briefly observe and show the following not so obvious facts.

Theorem 2.2. For V, W ≤ G one has χUV = χUW if and only if V := ∩
V ≤U∈U

U is

conjugate to W := ∩
W≤U∈U

U. So, in view of the fact that V ∈ U for all V ∈ S(G)

and V ∈ U if and only if V = V , one has k = kU different homomorphisms from
B(G , U) into Z which – after choosing a system U ′ = {U1, U2, . . . . , Uk} of
representatives of conjugacy classes of subgroups of U with |U1| ≥ |U2| ≥ . . . . ≥
|Uk| – may be denoted by χ1 = χU1, χ2 = χU2, . . . , χk = χUk .

Proof : Note first of all that χUV = χU
V

for all V ∈ S(G) because for any (G , U)-
set S one has

χUV (S) = χV (S) = #{s ∈ S | V ≤ Gs} = #{s ∈ S | V ≤ Gs} = χV (S) = χU
V

(S),

since for V ∈ S(G) and U ∈ U one has V ≤ U if and only if V ≤ U.
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Now suppose that χUV = χUW . Then V ≤ V ∈ U implies

0 6= χV (G/V ) = χUV (G/V ) = χUW (G/V ) = χW (G/V )

and hence W � V (where the symbol ”W � V ” denotes that W is subconjugate
to V in G that is, there exists g ∈ G with gWg−1 ⊆ V ). By symmetry we have
V �W. So V ∼W .

Conversely assume that V ∼ W. Then χV = χW and therefore χUV = χU
V

=

χU
W

= χUW . �

Definition 2.3. Let k be the number of G-conjugacy classes of subgroups in U . The

product
k

Π
i=1

Z (some copies of the integer ring), is called the Ghost ring of G.

Theorem 2.4. The product map χ :=
k

Π
i=1

χi : B(G , U) −→
k

Π
i=1

Z of k different

homomorphisms from B(G , U) into Z is injective and maps B(G , U) onto a

subring of finite index
k

Π
i=1

(NG(Ui) : Ui) of
k

Π
i=1

Z – this way identifying
k

Π
i=1

Z with the

integral closure B̃(G , U) of B(G , U) in its total quotient ring

B̃(G , U) ∼= Q⊗Z B(G , U) ∼=
k

Π
i=1

Q([3][chapter5]).

Proof : For the proof we need the following:

Lemma 2.5. For S, S
′

(G , U)-sets, we have S ∼= S ′ if and only if χU(S) = χU(S ′)
for all U ∈ U .

Proof : Let S =
∑
U∈U ′

nU · G/U and S
′

=
∑
U∈U ′

n′U · G/U for nonnegative inte-

gers nU , n
′
U . Then it suffices to show that nU = n′U for all U ∈ U ′ ⇐⇒ χU(S) =

χU(S ′) for all U ∈ U ′.
The direction ′′ =⇒′′ is trivial.
Now assume χU (S) = χU(S ′) but nU 6= n′U for some U ∈ U ′ . Then

0 = χU(S)− χU(S
′
)

=
∑
U∈U ′

nUχU(G/U) −
∑
U∈U ′

n
′

UχU(G/U)

=
∑
U∈U ′

(nU − n′U )χU(G/U).

Now consider a maximal subgroup U
′ ∈ U ′ with nU ′ 6= n

′

U
′ . Because of the maxi-

mality of U
′ ∈ U we have χU ′(G/U) = 0 for all U ∈ U ′ with nU 6= n′U and U 6= U ′.

But this implies∑
U∈U ′

(nU − n′U) · χU ′ (G/U) = (nU ′ − n
′

U
′ )χU ′(G/U

′
) 6= 0,

a contradiction.

Proof of 2.4: We observe that any x ∈ B(G , U) can be written in the form
x = [S]− [S ′] with S and S

′
(G , U)-sets. If χi(x) = 0 for all i = 1, . . . , k then
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χi(S) = χi(S
′) for all i = 1, . . . . , k; hence from the lemma S ∼= S

′
. It follows

that x = [S]− [S
′
] = 0, which shows injectivity. It remains to show that the map

χ maps B(G , U) onto a subring of finite index Πk
i=1(NG(Ui) : Ui) of

k

Π
i=1

Z. For this

we invoke the following.

Lemma 2.6. The automorphism group NG(U)/U of G/U acts freely on G/U and
also on the set (G/U)V of V -invariant elements in G/U for any V ≤ G. In partic-
ular |NG(U)/U | = |(G/U)U | divides |(G/U)V | for any V ≤ G.

Proof : (see [3] [chapter 2]) �

We note from above that for B(G , U) = B(G) and for every subgroup U of G
there exists a canonical homomorphism χU : B(G) −→ Z, which maps every finite
G-set S onto the cardinality χU(S) := #SU of its subset

SU = {s ∈ S | us = s for all u ∈ U}

of U invariant elements – in particular χ1(S) = #S if 1 = {1G} denotes the trivial

subgroup of G. One also has that χU = χV if and only if U
G∼V for U, V ≤ G (where

U
G∼V denotes that U and V are conjugate in G) and χU(x) = χU(x

′
) for all U ≤

G if and only if x = x
′

for x, x
′ ∈ B(G). So identifying each x ∈ B(G) with the

associated map U → χU(x) from the set S(G) of all subgroups of G into Z also
denoted by x, we can consider B(G) in a canonical way as a subring of the ghost ring
B̃(G) = Π

U≤G

′
Z of G, consisting of all maps from S(G) into Z which are constant

on each conjugacy class of subgroups. Now consider the isomorphism classes of the
transitive G-sets of the form G/U := {gU | g ∈ G}. These isomorphism classes
form a Z basis of B(G) and for U, V ≤ G we have G/U ∼= G/V if and only if

U
G∼V. This then implies that every x ∈ B(G) can be expressed uniquely in the

form x =
∑′
U≤G

µU (x) · G/U where “
∑′” indicates that the sum extends over just

one subgroup out of every G-conjugacy class of subgroups. That is, every x ∈ B(G)
can be expressed as a linear combination of the isomorphism classes of transitive G-
sets of type G/U with uniquely determined integral coefficients µU (x) ∈ Z subject

to the relation µU(x) = µV (x) if U
G∼V. Now recall that for U, V ≤ G one has

chiV (G/U) 6= 0 if and only if V�U in which case one has

χV (G/U) = #{gU ∈ G/U | V gU = gU}

=
1

|U | .#{g ∈ G | V gU = gU}

=
1

|U | ·#{g ∈ G | V ≤ gUg
−1}

= (NG(U) : U) ·#{U ′ ≤ G | V ≤ U ′
G∼U},

where as usual

NG(U) = {g ∈ G | g−1Ug = U}
= {g ∈ G | UgU = gU}
= {g ∈ G | gU ∈ (G/U)U}
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is the normalizer of U in G. We note that given any x ∈ B(G), a subgroup U ≤ G is
a maximal subgroup (relative to “�”) with µU (x) 6= 0 if and only if it is a maximal
subgroup with χU(x) 6= 0 because if U ≤ G is maximal with µV (x) 6= 0 then

χU(x) =
∑

U�V⊆G

′
µV (x)χU(G/V ) = µU (x)χU(G/U).

By assumption µU (x) 6= 0 and we know that χU(G/U) 6= 0. Therefore χU(x) 6= 0.
In addition, for any U ′ ∈ S(G) with U � U ′ but U 6∼ U ′ we have χU ′(x) = 0 because
µV (x).χU ′(G/V ) = 0 for all V ≤ G in view of the fact that χU ′(G/V ) 6= 0 implies
U ′ � V and therefore µV (x) = 0.

The converse is proved by reversing the argument.

Note that in the foregone case one has

χU(x) = µU(x).χU(G/U) = µU (x) · (NG(U) : U).

Because as observed earlier, every x ∈ B(G) can be expressed uniquely in the form

x =

′∑
U≤G

µU (x) · (G/U),

it follows that in the case where G is a p-group one has

χ1(x) =
∑
U≤G

µU (x) · (G : U) ≡ µG(x) = χG(x)(modp).

Hence, if V is a p-subgroup of an arbitrary finite group G and if U is a subgroup of
G with its index (G : U) prime to p then

χV (G/U) ≡ χ1(G/U) = (G : U) 6≡ 0(mod p),

and therefore V � U .

Lemma 2.7. For every x ∈ B(G) one has∑
g∈G

χ<g>(x) ≡ 0(mod |G|)

where < g > denotes the cyclic group generated by g. (This relation is sometimes
called the Cauchy-Frobenius- Burnside relation).

Proof : It is enough to check this only for x = G/U in which case one easily gets∑
g∈G

χ<g>(G/U) =
∑
g∈G

#{hU ∈ G/U | ghU = hU}

=
∑

hU∈G/U
#{g ∈ G | ghU = hU}

=
∑

hU∈G/U
|hUh−1| = (G : U)|U |

= |G| ≡ 0(mod |G|).

�



Applications of the Burnside and Ghost Rings 107

Note that if U � V ≤ G and if S is a G -set, then the above lemma applied
with respect to the V/U-set SU implies

∑
vU∈V/U

χ<v,U>(S) ≡ 0(mod (V : U)), where

< v , U > denotes the subgroup generated by v and U. As a consequence one has:

Corollary 2.8. Let x ∈ B̃(G). Then x ∈ B(G) if and only if for every U � V ≤ G
with (V : U) a power of a prime one has

∑
vU∈V/U

x(< v , U >) ≡ 0(mod (V : U)).

For more details on the Burnside ring (see [3], [9]).

3 The Artin exponent

We shall now give a definition of the Artin exponent in terms of the Burnside ring.
Elaborating on what has been explained so far, one can actually characterize the
elements in B̃(G) which are in B(G) as follows.

Definition 3.1. For U a family of subgroups of G closed with respect to conjugation,
define eU ∈ B̃(G) by

eU :=

1 if U ∈ U
0 if U 6∈ U .

Then for any U one has that

|G| · eU ∈ B(G) (∗∗)

Furthermore define A(G , U) := min(n ∈ N | n · eU ∈ B(G)). The integer
A(G , U) is said to be an exponent for G.

Theorem 3.2. One has that (**) implies that |G| ≥ A(G , U) – more precisely
it implies that A(G , U) divides |G|.

Proof : Put a := A(G , U) and write |G| = qa+ r with 0 ≤ r < a. Now

r · eU = (|G| − qa) · eU = |G| · eU − (qa) · eU ∈ B(G).

Hence r = 0 in view of the minimality of a. �

Observe from 2.8, that n · eU ∈ B(G) if and only if for every U � V ≤ G with
(V : U) a prime power one has

∑
vU∈V/U

n · eU(< v , U >) ≡ 0(mod(V : U)) where

eU(< v , U >) := #{vU ∈ V/U | < v , U >∈ U}.

In the case where U denotes the set of all cyclic subgroups of G, the quantity – which
we shall henceforth denote by A(G) – is called the Artin exponent of G. Compare
Lam [5]. So in order to compute the Artin exponent, we shall be interested in the
number
c(U , V ) := #{vU ∈ V/U | < v , U > is cyclic }. But this number is always equal
to 0 unless U is cyclic. So assume U is cyclic.

Now for U � V ≤ G, assume that U is cyclic and (V : U) = pα for some prime
p. Consider the decomposition U = Up×Up′ where |Up| = pβ , a power of p and |Up′ |
is prime to p. Let Vp denote a Sylow p-subgroup of V. We have the following;
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Proposition 3.3. (a) (V : U) = pα implies that V = Vp ∝ Up′ and V = Vp × Up′
if and only if U ≤ Z(V ), the center of V. (Here ∝, resp. × denotes the semidirect
product, resp. direct product with Up′ � V in the semidirect product).

(b) (V : U) = (Vp : Up).

(c) If c(U , V ) := #{vU ∈ V/U | < v , U > is cyclic } and

c(Up , Vp) := #{vUp ∈ Vp/Up | < v , Up > is cyclic } then

c(U , V ) = c(Up , Vp) if V = Vp ⊗ Up′ , that is U ≤ Z(V ).

Proof : Since Vp is p-Sylow subgroup of V then Up ≤ Vp and (|Up′ | , p) = 1 ⇒
Vp ∩ Up′ = {1}. Because (V : U) = pα, the factor of |U | relatively prime to p
coincides with the factor of |V | relatively prime to p and so |V | = |Vp|.|Up′ |. We

therefore conclude that V = Vp ∝ Up′ . Now if V = Vp × Up, then for v, v
′ ∈ Vp and

u, u
′ ∈ Up′ , one has (v , u)(v

′
, u

′
) = (v · v′ , uv

′
· u′) and uv

′
:= v

′−1
uv
′
= u ⇐⇒

uv
′
= v

′
u, i.e.⇐⇒ U ≤ Z(V ).

(b) From (a) one has, (V : U) = ((Vp.Up′ ) : (Up.Up′)) = (Vp : Up).

(c) Define a map f : Vp/Up → V/U by f(vUp) = vU, (v ∈ Vp), and observe that
Up ∩ U = Up = ker f. The rest follows from the isomorphism theorem. �

Let CV (U) := {w ∈ V | wu = uw for all u ∈ U} denote the centralizer of U in
V. Observe that for vU ∈ V/U the group < v , U > is cyclic only if v ∈ CV (U).

Hence c(U , V ) = c(U , CV (U)). But since c(U , CV (U)) ≤ (CV (U) : U), we
have that the number ”n” must always be divisible by (V : CV (U)) to have that
(V : U) divides n · c(U , V ). We thus have the following strategy for computing the
Artin exponent. For each p - subgroup V of G, consider the set of all cyclic normal
subgroups U of V with U contained in the centre of V and compute the minimum
of those positive integers n for which (V : U) divides n · c(U , V ). Finally, it is
easy to see that if U ≤ Z(V ) for a p-group V such that U is cyclic one has that
c(U , V ) = c(U/Up , V/Up), where Up denotes the unique subgroup of U of index
p. So we can restrict ourselves to the case where |U | = p. In the next section we
include some results concerning p-groups.

4 Some useful facts concerning p-groups

Recall (see [4][chapter 1]) that for elements g, g1, g2, h, h1, h2, . . . . . , a finite
group G that the following remarks hold.

Remark 4.1. (1) [g , h]−1 = [h , g] = g[g−1,h].

(2) [g1g2 , h] = g1[g2 , h]g−1
1 · [g1 , h] = g1[g2,h] · [g1, h].

(3) (gh)2 = g[h,g] · g2 · h2

(4) (gh)n = g[h,g] · g2
[h2,g] · · · ·gn−1

[hn−1,g] · gn · hn.
(5) [g , G] = {1} ⇐⇒ g ∈ Z(G) := {g ∈ G | gh = hg for all h ∈ G}
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(6) U ≤ G =⇒ (U �G⇐⇒ [U , G] ⊆ U).

(7) In particular if [G , G] ⊆ Z(G) then [g1g2 , h] = [g1 , h].[g2 , h] and

(gh)n = [h , g](
n
2)gnhn for all g, g1, g2, h ∈ G, and if in addition [g, h]k = 1 for

s ome k ∈ N and all g, h ∈ G, then gk ∈ Z(G) for all g ∈ G and with

N :=< {[g , h](
k
2) | g, h ∈ G} >

 = 1 if k ≡ 1(2)

⊆< {z ∈ Z(G) | z2 = 1} >, if k ≡ 0(2)

the map G −→ Z(G)/N : g → gk ·N is a group homomorphism.
Other consequences of the above commutator formulae are as follows;

(8) If T ⊆ G then [< T > , < T >] ⊆ < {g[h1,h2] | g ∈< T >, h1, h2 ∈ T} >
⊆ < [T , T ] >N .

(9) If T ⊆ G then < T > �G, that is < T >N=< T > if and only if [T , G]
⊆ < T >; more generally, for S, T ⊆ G and T ⊆ U ≤ G we have

[< T > , S] ⊆ U ⇔ [T , S] ⊆ U.

We also state the following results (see [4][chapter 3]).

Proposition 4.2. (a) If N �G is a maximal abelian normal subgroup of G, so that
in particular

N ⊆ CG(N) := {g ∈ G | [g , N ] = 1},

then

CG(N) ∩ {g ∈ G | [g , G] ⊆ < N ∪ {g} >} = N.

In particular if G/N is nilpotent then CG(N) = N and therefore

ker(G −→ Aut(N) : g → (N → N : x→ gx)) = N.

So we may consider G/N as a subgroup of Aut(N), the full automorphism group of
N.

(b) For a finite p-group G and an element g ∈ G we have
< g > � G⇐⇒ [g , G] ⊆ < gp > .

(c) Let G be a noncyclic finite p-group. If for some h ∈ G the cyclic subgroup
H :=< h > is a maximal abelian normal subgroup of G then |H| ≥ p2 and either
p = 2 and (G : H) = 2 or there exists some g ∈ G−H such that < H ∪{g} > � G
and [g , H] ⊆ {y ∈ H | yp = 1}.

Some Notation:
Let G be a finite p-group and let U and H be subgroups of G such that U is a cyclic
normal subgroup with U ⊆ H.
Let C(H) denote the set of all cyclic subgroups V of H with U ≤ V and
(V : U) = p, and let C′(H) = C′U (H) denote the subset of C(H), consisting of
those V ∈ C(H) which are normal in H. One has the following lemmata.
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Lemma 4.3. (a.) |C(H)| ≡ |C′(H)| ( mod p).

(b.) H
′

= H
′
U := {h ∈ H | [h , H] ⊆ U} is a normal subgroup of H.

(c.) C ′(H) = C(H ′).
(d.) If G

′ ⊆ H �G, then |C(H)| = |C(G′)|(mod p).

Lemma 4.4. If |U | = p 6= 2 and [G , G] ⊆ U, then the following are equivalent:
(i) |C(G)| = 1
(ii) |C(G)| 6≡ 0(mod p)
(iii) G is cyclic.

Proof : (iii) ⇒ (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): Obviously, if U =< u > then, p · |Z(G)| = |{v ∈ G | vp = u}|, and
{z ∈ Z(G) | zp = 1} acts freely on {v ∈ G | vp = u} via multiplication. Hence (ii)
implies that Z(G) must be cyclic. Now U ⊆ Z(G), hence for g, h ∈ U, one has by

(4.1) remark 7 that [gp , h] = [g , h]p = 1 and (g1g2)p = [g1 , g2](
p
2)gp1g

p
2 = gp1g

p
2 ,

the map G→ Z(G) : g → gp is a group homomorphism from G into Z(G) (by (4.1)
remark 7 again). So we have |{v ∈ G | vp = u}| is either 0 in contradiction to our
assu mption or coincides with the order of the kernel of this homomorphism. So this
kernel, containing U, must have order p, so it must coincide with U. Since one now
has U ⊆ Z(G), G/U ↪→ Z(G) and Z(G) is cycli c, this implies that G = Z(G), so
G must be cyclic.

�

Lemma 4.5. If G is abelian, then the following are equivalent:
(i) |C(G)| = 1
(ii) |C(G)| 6≡ 0(mod p)
(iii) G is cyclic.

Proof : (iii) ⇒ (i) ⇒ (ii) is again trivial. And (ii) ⇒ (iii) follows from (4.4) by
noting that here Z(G) = G. �

Lemma 4.6. If |U | = p 6= 2, then the following are equivalent;
(i) |CU(G)| = 1
(ii) |CU(G)| 6≡ 0(mod p)
(iii) G is cyclic.

Proof : Again (iii)⇒ (i) ⇒ (ii) is obvious.
So we assume (ii) and consider G

′
= { g ∈ G | [g , U ] ⊆ U} � G.

Since, |C(G′)| ≡ |C(G)| 6≡ 0(mod p) by (4.4) and [G
′
, G

′
] ⊆ U, G′ must be cyclic.

Now let H � G denote a maximal abelian normal subgroup of G, containing G′.
Since |C(H)| ≡ |C(G)| 6≡ 0(mod p), H must be cyclic. For any g ∈ G−H with
gp ∈ H we therefo re have, [g , H] ⊆ U and H1 :=< g , H > �G. Hence by (4.4)
again [H1 , H1] ⊆ U and |C(H1)| ≡ |C(G)| 6≡ 0(mod p), so H1 must be cyclic, a
contradiction. �

Next we collect the following results (see [4][chapter 3]).
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Lemma 4.7. (a) If G is a 2-group, one has that |C(H)| ≡ 1(mod 2) =⇒ Z(G) is
cyclic.

(b) Let G be a finite 2-group. If [G , G] ⊆ U and |C(H)| is odd, then G is cyclic
or nonabelian of order 8.

(c) Let G denote a finite 2-group. If H ≤ G with [H , H] ⊆ U ⊆ H and
|{V ∈ C(H) | V ⊆ H}| ≡ 1(mod 2) then H is cyclic or nonabelian of order 8.

(d) If |C(H)| ≡ 1(mod 2) then either H ′ is cyclic or G is nonabelian of order 8.

(e) If |C(H)| ≡ 1(mod 2) then G contains a cyclic normal subgroup of index 2.

Proposition 4.8. Let G be a noncyclic p-group (p 6= 2) and U �G, |U | = p. Then
there exists a normal subgroup V �G of G of order p2, containing U and isomorphic
to Zp × Zp.

Proof : (see [4][satz 14.9]).

5 Applications

Here, using our setup, we give the proofs of the existing results concerning the Artin
exponent of finite p-groups (see [5]). The global calculation will be discussed in a
separate publication (see [7]). We first recall;

Lemma 5.1. Let G be a p-group of order pn, If there exists a g ∈ G of order pn−1

then G has one of the following presentations for some h in G.
(A) If G abelian:

(i) n ≥ 1, Zpn: hp
n

= 1, or

(ii) n ≥ 2 , gp
n−1

= 1 , hp = 1, gh = hg.

(B) If G is non-abelian and p odd, n ≥ 3 :

(iii) gp
n−1

= 1, hp = 1 , hgh−1 = g1+pn−2
.

(C) If G nonabelian and p = 2 , n ≥ 3 :

(iv) g2n−1
= 1, h2 = g2n−2

, hgh−1 = g−1, i.e. the generalized quaternion group:
(Q),

(v) g2n−1
= 1, h2 = 1, hgh−1 = g−1, i.e. the dihedral group: (D).

(D) If G is non-abelian and p = 2, n ≥ 4 :

(vi) g2n−1
= 1, h2 = 1, hgh−1 = g1+2n−2

,

(vii) g2n−1
= 1, h2 = 1, hgh−1 = g−1+2n−2

, i.e. the semi- dihedral group:
(SD).

Proof : easy.
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Proposition 5.2. Let G be a p-group of order pα and choose U to be the family
of all cyclic subgroups of G. For n ∈ N and a subgroup U ≤ G, let xn ∈ B̃(G) be
defined by

xn =

n if U is cyclic

0 otherwise

Then A(G) := min{n | xn ∈ B(G)} = 1 if and only if G is cyclic.

Proof : Assume U � V ≤ G, U cyclic, |V | = pα (p a prime). Then xn ∈ B(G)
implies ∑

vU∈V/U
x(< v , U >) = n ·#{ vU ∈ V/U | < v , U > cyclic }

≡ 0(mod (V : U)).

Since G is not assumed cyclic and n is arbitrary, we get our A(G) by making the
following assumptions. Assume |U | = p, V = G, that is |G| = pα. Then if n = 1,
then one has that #{gU ∈ G/U | < g , U > cyclic } ≡ 0(mod (G : U)). That is
(G : U) | #{gU ∈ G/U | < g , U > is cyclic }. This implies that
|G| | #{g ∈ G | < g , U > is cyclic }. So for all g ∈ G, < g , U > is cyclic. This
means that G is cyclic since if G is not cyclic then from (4.8) there exists a normal
subgroup V � G such that V contains U and V ∼= Zp×Zp ∼= U×Zp = U× < g >
for some g ∈ G. That is < g , U > = V for some g ∈ G.
The converse is clear. �

Proposition 5.3. Keeping the assumptions of (5.2), one has that if G is a noncyclic
p-group of order pα and p 6= 2 then A(G) = pα−1.

Proof : Because G is noncyclic, |G| does not divide
x(< g , U >) = #{gU ∈ G/U | < g , U > cyclic }. But

x(< g , U >) = #{gU ∈ G/U | < g , U > is cyclic }
= #{gU ∈ G/U | < g , U > is cyclic of order p}

+
∑
β≥2

#{gU ∈ G/U | < g , U > is cyclic of order pβ}

= 1 +
∑
β≥2

(pβ−1 − pβ−2) ·#{C ≤ G|C is cyclic of order pβ , C ⊇ U}

= = 1 + (p− 1) ·#{C ≤ G | C is cyclic of order p2, C ⊇ U}
+

∑
β≥3

(pβ−1 − pβ−2) ·#{C ≤ G| C is cyclic of order pβ , C ⊇ U}.

It suffices to look at the number #{C ≤ G | C is cyclic of order p2, C ⊇ U}.
But since G is noncyclic one has from (4.5) that this number is divisible by p. This
means A(G) = (G : U) = pα−1.

�
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Proposition 5.4. With the assumptions of (5.2) one has that if G is noncyclic
2-group of order 2α then A(G) = 2α−1, unless G = Q, D or SD (as defined in
Lemma 5.1), in which cases we have A(G) = 2.

Proof : Following (5.3) one has that if

#{C ≤ G | C is cyclic of order 4, C ⊇ U} ≡ 0(mod 2),

then A(G) = 2α−1. On the other hand if

#{C ≤ G | C is cyclic of order 4, C ⊇ U} 6≡ 0(mod 2)}

then by (4.7) G is cyclic or nonabelian group of order 8. Since G is noncyclic it must
be nonabelian of order 8 and so must correspond to one the groups Q,D and SD
as presented in (5.1) and it is easy to see by direct computation that in any of these
cases that A(G) = 2. �



114 K. K. Nwabueze

References

[1] A. Dress; A Characterization of Solvable Groups, Math. Z. 110, pp. 213- 217,
(1969).

[2] A. Dress; Congruence Relations characterizing the Representation Ring of the
Symmetric Group J. Algebra 2, pp. 350-363, (1986).

[3] A. Dress; Notes on the Theory of Representations of Finite Groups, Lecture
Note, Bielefeld, (1971).

[4] B. Huppert; Endliche Gruppen 1, Springer Verlag, NewYork, (1968).

[5] T.Y. Lam; Artin exponent for finite groups, J. Algebra 9, pp. 94-119, (1963).

[6] K.K. Nwabueze; A Burnside ring theoretic proof of T.Y. Lam’s results concerning
the Artin exponent of finite groups Maths. report, The Royal Society of Canada,
pp. 17-21, Feb., (1996).

[7] K.K. Nwabueze & F. Van Oystaeyen; Certain applications of the Burnside rings
and Ghost rings in the Representation theory of finite groups (II), (to appear).

[8] R. Swan; Induced Representation and Projective Modules, Ann. Math. 71,
(1960).

[9] T. Tom - Dieck; Transformation groups and representation theory, Lecture Notes
in Maths 766, Springer, (1979).

Dept of Mathematics & Computer Science,
University of Antwerpen (U.I.A),
2610 Wilrijk,
BELGIUM.

Current Address:
Mathematical Sciences Research Institute,
1000 Centennial Drive,
University of California,
Berkeley, Calif. 94720,
U.S.A.


