Domains of analytic existence in inductive limits
of real separable normed spaces

Murielle Mauer

Abstract

Every non void, open and convex subset of a countable inductive limit of
real separable normed spaces is a domain of analytic existence

1 Introduction and statement of the result

Definitions

Let €2 be an open subset of a real locally convex space E. Let us denote by
Co(€2) the set of the Cw-functions on Q for the strong Fréchet-differentiation (cf.
[5])-

A function f defined on 2 is analytic on €1 if the following two conditions are
fulfilled
1) [ € Cu(©),

2) for every zo € €0, the equality f(z) = 372 #./® (20)(z — 20)* holds on a neigh-
bourhood of xg.

Let us denote by A(Q2) the set of the analytic functions on €.

A domain of analyticity in E is a non void domain €2 of E such that, for every
domain € of E verifying Oy ¢ Q ¢ E \ ©; and for every connected component
of QN Qy, there is f € A(Q) such that f|g, has no analytic extension onto €.

A domain of analytic existence in E is a non void domain €2 of E for which there
is f € A(Q) such that, for every domain €, of E verifying ; ¢ Q ¢ E\ ; and
every connected component €y of Q Ny, f|o, has no analytic extension onto €.
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Of course, every domain of analytic existence is a domain of analyticity.
Results

Let us recall that, in [4], J. Schmets and M. Valdivia have obtained the following
three results. The first one extends a result of [3]; the last two make use of [1] and

2].

Theorem 1.1. For every non void domain €2 of a separable real normed space E,
there is a Cuo-function f on E which is analytic on €2 and has ) as domain of
analytic existence.

In particular, every non void domain of a separable real normed space is a domain
of analytic existence.

Proposition 1.2. FEvery non void, open and convex subset 2 of the real locally
convex space E is a domain of analyticity.

Example 1.3. If A is an uncountable set, then the open unit ball of cor(A) is a
domain of analyticity but not a domain of analytic existence.

In this paper, we are going to extend partially the Theorem 1.1 to the case of
the countable inductive limits of separable real normed spaces. Our result reads as
follows.

Proposition 1.4. Every non void, open and convex subset ) of the inductive limait
E = indE,,, where all the E,,’s are separable real normed spaces is a domain of
analytic existence.

In fact, if Q is a non void, open and conver subset of E such that 0 € §, there
is a Coo-function f on E for the semi-norm pon—q) which is analytic on S for the
semi-norm pon(—q) and has € as domain of analytic existence.

2 Construction of a dense subset of 02

Lemma 2.1. Let €2 be a proper open subset of the inductive limit E = indE,,, where
all the E,,’s are separable normed spaces.

For every m € N such that QN E,, # (0 and QN E,, # E,,, there is a countable
subset {Tn; : j € N} of Og,, (2N Ey,) C 0pQ) with the following property: if (4
is a domain of E = indFE,, such that Q1 ¢ Q ¢ E\ Q1 and if Qo is a connected
component of Oy N, then there is m € N such that Q1 N Og,, (% N Ey) contains
one of the T, ;’s.

Proof. The proof goes in two steps.

a) Construction of {z,,; : j € N}.

Let us fix m € N such that QN E,,, # () and QN E,, # E,, and let {y,,,, : n € N}
be a countable dense subset of 2N E,,,. For every n € N and k € N, there is a point
Ak Of B\ € such that

Hym,n - am,n,kHEm < dEm (ym,na Em \ Q) + %
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There is then a point by, ,x of g, (2 N E,,) which belongs to the segment joining
Ym.n £0 @ pnk and such that

{Ymmn + t(bmnk — Ymn) 1 t € [0,1[} C Q.

Then {z,,; : j € N} is just an ordering of the set {b,, 1 : n € N,k € N}.

b) Proof of the property.

Of course, (0€2) N Q is not void and contained in J€2. Let = be a point of
(020) N Q. Belonging to €2y, there is a semi-ball V' centered at x and contained
in ;. Let us then consider z € V N §)y and an integer m such that x and =z
belong to E,,. Since V N E,, is a convex hence connected subset of FE,, such that
(VNE)N(QWNE,) #0and (VNE,)\(QNE,) # 0, one gets (VNE,,)Ndg,, (2N
E,) # 0 and therefore (4 N E,,) N 9g,, (0 N E,) # 0. Let now y be a point of
(1 NE,)NIE, (2N Ey,). There are then a ball b,,(y, ) contained in Oy N E,, and a
point Y, » such that ||ymn —y||e, < 5. Since y ¢ €, one has dg,, (Ymn, Em \ Q) < 3,
therefore ||Ymn — @munille, < § for k large enough. In conclusion, one verifies
directly that the corresponding by, x belongs to Q3 N Jg, (20 N E,,). As a matter
of fact, on one hand, the segment joining ¢y, n t0 @mnk is contained in b,,(y,r) and
bm.ni belongs to €. On the other hand, since S = {ymn + t(bmnk — Ymn) : t €
[0, 1]} € QN contains the point Yy, , of Q, one gets S C QyN E,,. Consequently,
bin.n i belongs to Q. N Og,, (Qo N Epy,). n

3 Proof of the proposition 1.4

To prove that every non void, open and convex subset (2 of F is a domain of analytic
existence, we can of course assume to have 0 € 2 # E. By the use of the lemma
2.1, we get for every m € N a particular subset {z,,; : j € N} of the boundary of
2. By a new enumeration, we let {z; : j € N} and {y, : n € N} denote respectively
the sets of the x,, ;’s and of the y,,,’s. Let us now introduce a special sequence of
functions ;.

1) Construction of the functions ¢;

If Q is an open and convex subset of E containing 0 then w = () N (=Q)
is an open and absolutely convex subset of E and its Minkowski gauge p, is a
continuous semi-norm on £. Let us fix j, n € N. As z; € 0 and y, € (2, one gets
Pw(z; —yn) > 0. In fact, the map

p:E—R e—inf{r >0:e € rQ2}

is such that
p(re) =rp(e) for every e € E and r € [0, +o0],
oler +e2) < pler) + ¢(es) for every ey, es € E
and one has Q2 = {e € E: p(e) < 1}. Therefore one gets

po(tj—yn) = inf{r>0:a; -y, €rw)
> inf{r>0:z; —y, € rQ} = p(z; — yn)
> ¢(x;) = ¢(yn) > 0.
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There is then w;, € E’ such that

(Tj = Yn, Win) = PulTj — Yn)

and
(e, win)| < pu(e) foreverye € E.

Now, for every 7 € N, we introduce the function

1 X (o —x, win)?
i E—=R T — ’
J pw(avj)g::1 k!

For every j € N, ; is an analytic function on E for the semi-norm p,, and takes its
values in [0, 400[. Moreover, one has goﬁ»k) =0 for every k > 3.

2) Properties of the functions 1/(p; + ¢)

For every j € N and ¢ > 0, 1/(¢; + ¢) is an analytic function on F for the
semi-norm p,,.

a) The sequence (ky)nen

Following the method used in [4], for every n € N, we set
bp={x € E:p,(xr —yn) < %dpw(ynaE\Q>}

(let us notice that dp, (yn, £ \ §2) is strictly positive for every n € N)

1
fo = sup sup [0\ (@),
JjeN zeBy,
2
g = sup sup ||\ (@)]],..
JjeN zeFE

h, = inf inf ¢;(x).
jeN zeB,
One can prove very easily that for every n € N, f, < 2e(1 + sup,ep, po(z)) and
g < 2e. Moreover, for every n € N, h,, is a strictly positive real number. Indeed, we
have

1 - A2
h, > inf inf inf ((z; — 2, wi)
jeNI=1,...nzeb PulT;) !

and to establish that h, > 0, we have just to note that for every 7 € N and
I € {1,...,n} such that p,(z;) < 2(pu () + dp, (1, £\ )) = 2A, one has

inf (<xj -, wj,l>)2 > d?;w(ylaE\Q>
€ l'pw(xj) - S8A I

and for every j € N and [ € {1,...,n} such that p,(x;) > 2A, one has
1
1

R V)2 _ 2 _ 2
@iz @) AP AR 1

zeb, l!pw(:cj) r>2A llr r>24 U2 41
r>1 r>1

Finally, we set k, = sup{/;—z, -, 1} for every n € N. The sequence (ky)nen is of
course increasing.
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b) The functions ;. m
For every 7 € N, ¢ > 0 and m € N, let us set

1
Vjem = ————
’ (pj +e)m
One gets
U (2) = =M e i (2) @ 1 (2)
and

PP (@) = —msym(@?, 1 (2) @ @D (@) + pu () © o (2)

for every p € N.
One can also prove by induction on p that for every j e Nye >0, m e N, pe N
and z € B,
m(m+1)...( m+p—1)
hy

In particular, for m = 1, that statement implies that

H <%1+8>(p) )

forevery j € N, e >0, p € Ny and = € B,,.
c¢) By use of a similar argument, one gets the uniform boundedness of (

152 (@) ], < (2h)".

p!
< —(2k, )P
< 2 (o)

Pw

)(p)

wjte
on {x € E : py(x) < n} forevery j € N e >0, pe€ Nyand n € N. In fact, by
setting

1
foo= swp suwp (@)
JEN pw(l‘)<”

g = supsup 165 @)l

JeN ze

k, = sup{f,,g.¢},

one gets

1452 (@)l <

em IS

m(m+1)...(m+p—1) <%>p

forevery j e N, e >0, m e N, peN.
Therefore, by taking the value m = 1, one gets

1 \? W <P (Y
x JES—
pjt+¢ €\ ge
p
for every 7 € N, e > 0, p € Ny and z such that p,(z) < n.
d) Value of the functions 1/(¢; + ¢) and of its differentials at z;
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One proves by induction on p that for every p € N,

P V() =0

+p(Qp—l (2p — 3). 1®g0

1 (2]7—1)
(so’ﬂ‘) (rj) =0
J

( 1 >(2p)(:cj)=(5 2 é

Y (1) = (~1Pm(m+ 1)+ p — 1)

For m = 1, one gets

and

wj T e

for every p € N.
e) Let us finally prove that for every j € N, there is an integer m; such that for
every € > 0, p € N and m > mj, one has

m) (2p) @)

with A;,, = [[(¢5]5,)® (25) || LeE,. 2 > 0 and 25 € Ip,, (2N By).
Since the function 1/(p; +¢) is Cx on E for the semi-norm p,,, one gets

~ 1(2p)!
g pep

(Ajm)”

H vitelp L(2PEp R)

1
€ Coo(Em,R), Vm €N,
Yitelg
and
1 k
(gO‘—l—{;‘ ) (:co)(el,...,ek)
j jom
1 (k)
— (SO‘ —|—5> (xo)(e1, ..., ex) Vk € No,xo, €1, ..., € Ep,.
j

Then the statement here above follows immediately if one proves that for every
J € N, there is an integer m; such that z; € E,,, and A;,,, > 0.

If it is not the case, for every m such that z; € E,,, one has g0j2 |, (x;) =0

therefore 90(‘2)

7 (zj) = 0 and consequently gog ) = 0. That leads to ©; M — 0 and thus
©; has to be constant which is contradictory.

Then for every m > my, one of course has z; € E, and Aj,, > Aj,, > 0.
Finally, since Q is convex, x; € E,, and z; € 0g{ imply z; € 0g,, (2N E,,) (one
proves that last fact by using the equality 0pQ2 = {e € E : p(e) = 1}).

3) The space ACx (2, E)

Let Coo p,, (E) be the space of the functions which are C, on E for the semi-norm

D and A, (€2) the space of the functions which are analytic on € for the semi-norm
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Dw. A function f belongs to ACs, (2, E) if f € Cxp,(E) N A, () and is such
that

< +00

i Hf(j H {z€E:py,(z)<n} + i sup M
i=0 P ek T 2ky)!

for every n € N.

One verifies directly that, for P = {p, : n € N}, (AC, (2, E), P) is a Fréchet
space hence a Baire space.

In addition, ﬁ € ACx . (Q, E) for every j € N and ¢ > 0.

4) The closed subsets Aj gk
For every j,q,r, k € N, we set

Aj gk

1CF 120, )0 @), (0B sy o<
{f € ACx,, (L, E) : sup i i<4q

pat 17 sk

These sets Aj ., are countably many, closed in ACw,, (€2, E) and have empty
interior in ACw (Q E) (because Aj;, .k is absolutely convex and may not contain
any multiple of - for £ small enough).

5) The functzon f

Since ACw p,, (§2, E) is a Fréchet space thus a Baire space and since the sets A, ;. x
are countably many, closed and have empty interior, the Baire category theorem
provides a function f € AC (£, E) which does not belong to any of the A;,,x's.
That function f is Cy on E for the semi-norm p,. Let us prove that f has 2
as domain of analytic existence. Let {2; be a domain of F = indFE,, such that
O ¢ Qg E\Q and let © be a connected component of Q2N €. By use of the
lemma 2.1, €; N (0€)) contains one of the z;’s and we know that there is m € N
such that x; € 0g,,(Q N E,,) N . First of all, since z; € Ey; Ny, then for ¢
large enough, {z € QN E,,, : ||z — zj]|m, < %} is contained in Q2N Qy N E,,, thus
in 9. Let us now prove by contradiction that f|g, has no analytic extension onto
);. Suppose that g is an analytic extension of f|g, onto €. The restriction of g to
the open subset 2} N E,,. of E,,; is of course analytic on € N E,,,. Then, there is
a ball by, (x;,r) contained in £ N E,,, and a constant C' > 0 such that

(910105, ) (@)l 1, (5.0
m; 5,9m i\ g,

<
et el e

However f ¢ A, for any ¢,k € N and this finally leads to a contradiction
because one gets at the same time

1(f 1520, ) P (@)l b1, 25,000

<
Sup IC oo
and z
11y )2 @) iy e B oy, <23
sup = 400
1eNp l'kl

for every k,q € N. Hence the conclusion.
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