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Abstract

For q = 2e, e ≥ 4, the Subiaco construction introduced in [2] provides
one q–clan, one flock, and for e 6≡ 2 (mod 4), one oval in PG(2, q). When
e ≡ 2 (mod 4), there are two inequivalent ovals. The associated generalised
quadrangle of order (q2, q) has a complete automorphism group G of order
2e(q2 − 1)q5. For each Subiaco oval O there is a group of collineations of
PG(2, q) induced by a subgroup of G and stabilising O. When e ≡ 2 (mod 4),
for both ovals the complete stabiliser is just that induced by a subgroup of G.

1 Introduction

In [2] a new family of Subiaco q–clans, q = 2e, were introduced. Associated with
a q–clan C is a generalised quadrangle GQ(C) of order (q2, q), subquadrangles of
order q and their accompanying ovals in PG(2, q), a flock F(C) of a quadratic cone

in PG(3, q), a line spread in PG(3, q), and a whole variety of related translation
planes. These various geometries derived from a Subiaco q–clan are all referred
to as Subiaco geometries. In the present work we concentrate on the generalised
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quadrangles and their related ovals. For example, when q is a square the Subiaco
ovals provide the only known hyperovals in PG(2, q) not containing a translation

oval with the exception of the hyperoval in PG(2, 64) with full collineation stabiliser
of order 12 [12] and the hyperoval in PG(2, 256) [13]. Prior to the discovery of these
new ovals, the only such example known was the Lunelli-Sce [6] oval in PG(2, 16).

In [1] and [9] a general theory was worked out for studying the collineation groups
of the GQ(C) and the induced stabilisers of the associated ovals. In [9] this theory
was applied in detail only in the special case q = 2e with e odd, and there only for
a particular form of the Subiaco q–clan. In [1] the general theory was developed

in greater depth and applied in detail to a particular Subiaco q–clan with q = 2e,
e ≡ 2 (mod 4). In the present work we obtain a great deal of information about
the general case. Since this paper is a direct continuation of [9] and [1], we assume
without much comment all the notation and results of those two papers.

The authors of [2] originally gave three separate constructions, one for q = 2e, e
odd, one for e ≡ 2 (mod 4), and one that worked for all e. Here we give in Section
2 one general construction and show that it yields exactly the same set of q–clans

as the three original ones combined. Our emphasis is primarily on the collineation
group of GQ(C). In Section 3 we show that for each line [A(s)] through the point
(∞) there is a unique involution Is of GQ(C) fixing the line [A(s)], and derive
as a consequence that the stabiliser G0 of the points (0, 0, 0) and (∞) is transitive

on the lines through (∞). This material is used in Section 4 to show that up to
isomorphism, for each q = 2e, there is just one Subiaco GQ of order (q2, q), and
hence just one Subiaco flock. The proof of this somewhat surprising result is used
in Section 5 to completely determine the group G0.

In Section 6 we begin a study of the Subiaco ovals. For e 6≡ 2 (mod 4) there is,
up to isomorphism, just one Subiaco oval. Clearly we know the order of the induced
stabiliser of the oval, but a detailed study of its action on the oval is postponed to

a later work [10]. For e ≡ 2 (mod 4) there are two Subiaco ovals. Their complete
stabilisers are just those induced by G0. They are well understood and are given
in detail. When 5 | e, there are some technical difficulties remaining, but even in
that case our general theory gives a satisfactory understanding of the ovals and their

stabilisers.

2 A Canonical Form for the Subiaco q-clan

For q = 2e, e ≥ 4, F = GF (q), let δ ∈ F be chosen so that x2 + δx+ 1 is irreducible
over F , that is, tr (δ−2) = tr (δ−1) = 1. Then define the following functions on F :

(i) f(t) = δ2t4 + δ3t3 + (δ2 + δ4)t2, (1)

(ii) g(t) = (δ2 + δ4)t3 + δ3t2 + δ2t,

(iii) k(t) = (v(t))2 = t4 + δ2t2 + 1,

(iv) F (t) =
f(t)

k(t)
,
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(v) G(t) =
g(t)

k(t)
.

Then the canonical Subiaco q–clan is the set C(δ) = C = {At | t ∈ F}, where

At =

(
F (t) + ( t

δ
)1/2 t1/2

0 G(t) + ( t
δ
)1/2

)
, t ∈ F. (2)

2.1 Theorem The matrices At given in Eq.(2) really do form a q–clan.

Proof: Since our proof is really that of [2] modified to avoid the restriction δ2 +δ+

1 6= 0 necessitated by the form used in [2], we merely sketch the steps with enough
detail for a routine reconstruction of a complete proof.

We need to show that for t, u ∈ F , t 6= u, the matrix At + Au is anisotropic.
This is equivalent to showing that

1 = tr

{
[F (t) + F (u) + ((t+ u)/δ)1/2][G(t) +G(u) + ((t + u)/δ)1/2]

t+ u

}
(3)

= tr

{
(F (t) + F (u))(G(t) +G(u))

t + u

+
(F (t) +G(t) + F (u) +G(u))

(δ(t+ u))1/2
+ δ−1

}
.

Since tr (δ−1) = 1, and using tr (a + b) = tr (a + b2), this is equivalent to showing
that tr (A +B + C) = 0, where

(i) A =
f(t)2 + δf(t)g(t) + g(t)2

δ(t+ u)k(t)2
, (4)

(ii) B =
f(u)2 + δf(u)g(u) + g(u)2

δ(t+ u)k(u)2
,

(iii) C =
f(t)g(u) + f(u)g(t)

(t + u)k(t)k(u)
.

The next trick is to notice upon writing out A that k(t) divides the numerator of A.
So also k(u) divides the numerator of B. Then the numerator of A+B is symmetric
in t and u, so t + u may be factored out. After simplifying,

A +B = δ3
(
(1 + δ2)(t3u2 + t2u3) + t3 + t2u+ tu2 + u3+ (5)

+ (δ + δ3)t3u3 + (δ3 + δ5)t2u2 + t + u

+ (δ + δ3)(t2 + tu+ u2)
) /

(k(t)k(u)).

After expansion, factoring out t + u, and a little simplification,

C =
(
(δ4 + δ6)t3u3 + δ5(t3u2 + t2u3) + δ4(t3u+ tu3) (6)

+ (δ6 + δ8)t2u2 + δ5(t2u+ tu2) + (δ4 + δ6)tu
) /

(k(t)k(u)).
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Then in a few more steps,

A+B + C = δ3(t+ u)
(
t2u2 + δ(t2u+ tu2) + δ2tu

+ t2 + u2 + (δ + δ3)(t+ u) + 1
) /

k(t)k(u)

=
δ3(t+ u)(v(t)v(u) + δ3(t + u))

v(t)2v(u)2

= X +X2, where X =
δ3(t+ u)

v(t)v(u)
.

So tr (A +B + C) = 0, as desired. 2

It is, of course, of interest to see that the canonical description given in Theo-
rem 2.1 includes the examples given in [2] and studied in [9].

2.2 Theorem (i) If q = 2e with e odd, put δ = 1 in Eqs.(1) and (2) and replace

At with PAtP , P =

(
0 1
1 0

)
(and write the resulting matrices in upper triangular

form) to get the original construction studied in [2].
(ii) If q = 2e with e ≡ 2 (mod 4), put δ = ω where ω2 + ω + 1 = 0, and replace At

with

(
ω2 0
0 ω

)
At

(
ω2 0
0 ω

)
to get the construction in [2].

(iii) For q = 2e, and assuming that δ2 + δ+ 1 6= 0, put a = (δ/(1 + δ+ δ2))1/2. Then

replace At with

(
1 1

a a + 1

)
At

(
1 a

1 a+ 1

)
to get the original general Subiaco

form given in [2]. 2

3 Involutions

From now on C denotes a Subiaco q–clan in canonical form, and GQ(C) is the
associated generalised quadrangle of order (q2, q) (cf. [11], [1]). The full collineation

group G of GQ(C) must fix the point (∞) whenever GQ(C) is not classical, which
is certainly the case when e ≥ 4, for reasons given in [1]. Clearly to determine G
and its actions on the lines of GQ(C) through the point (∞) it suffices to study the
subgroup G0 fixing the point (0, 0, 0) (and, of course, fixing the point (∞)). Let H
be the subgroup of G0 fixing the line [A(∞)], and letM be the subgroup of H fixing
the line [A(0)]. Also, let L = GF (2)(δ) ⊆ F , and put r = [F : L]. Since x2 + δx+ 1
is irreducible over F , clearly r must be odd.

3.1 Proposition |M| = r(q − 1), and

M =
{
θ(a2, aI, σ): (α, c, β) 7→ (aασ, acσ, aβσ) | (7)

0 6= a ∈ F, σ ∈ Gal (F/L)} .
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Proof: This is an immediate corollary of Theorem 6.4 of [1], but we prefer to
use the notation θ(µ,B, σ, π) (or just θ(µ,B, σ)) to denote the collineation given in

Eq.(10) of [1]. 2

Note: For 0 6= µ ∈ F , B ∈ GL(2, q), σ ∈ Aut (F ), put ∆ = det(B) and define

π:F → F : t 7→ t̄ by t̄ = (µ∆−1)2tσ + 0̄ for a fixed 0̄ ∈ F . Then

θ(µ,B, σ): (α, c, β) 7→ (ασB, µ1/2cσ +
√
ασBA0̄BT (ασ)T , (µ∆−1βσ + 0̄1/2ασ)B),

induces a collineation of GQ(C) provided At̄ ≡ µB−1Aσ
tB
−T + A0̄ for all t ∈ F .

3.2 Proposition The unique involution in G0 fixing [A(1)] is

I1 : (α, c, β) 7→ (βP, c+ α ◦ β, αP ) (8)

[A(t)] 7→ [A(t−1)], t ∈ F̃ = F ∪ {∞}.

Proof: Using the notation of Eqs.(1) and (2), t−1F (t) = G(t−1). This makes it

easy to check directly that I1 is a collineation mapping [A(t)] to [A(t−1)]. Clearly I1

is an involution, and uniqueness follows from Theorem 6.3 of [1] applied to GQ(Cis).
2

3.3 Proposition There is a unique involution I∞ in H, that is, fixing [A(∞)].

Proof: Put B∞( = DT
∞ in the notation of [1]) =

(
a b
c d

)
, where a = d = 1+δ+δ2,

b = δ3/2, c = δ1/2 + δ5/2. Then a straightforward check using Theorem 5.2 and 6.3

of [1] shows that there is a unique involution in H given by

I∞ : (α, c, β) 7→ (αB∞, gδ(α) + c, (β + δ1/2α)B∞) (9)

[A(t)] 7→ [A(t+ δ)].

Here Aδ =

(
1 + δ4 + δ6 δ1/2

0 1 + δ3 + δ7

)
, gδ(α) =

√
αAδαT , B∞AδB

T
∞ = Aδ, and

B∞ = B−1
∞ . 2

The major goal of this section is to prove the following theorem.

3.4 Theorem For each s ∈ F̃ , there is a unique involution Is ∈ G0 fixing the line
[A(s)].

Proof: To find Is for the generic s ∈ F , we must first compute the q–clan Cis

obtained from C by using the shift-flip is (cf. [1]). Recall that is replaces At with
Ais

(t+s)−1 = (t+ s)−1(At +As). However, we may use Eq.(39) of [1] to obtain the new

q–clan Cis .
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ais4 = δ3s2

k(s)
bis4 = (δ2+δ4)s2+δ2

k(s)

ais3 = δ3s5+δ2s4+δ3s+δ2+δ4

k(s)2 bis3 = (δ2+δ4)s5+δ3s4+δ2s+δ3

k(s)2

ais2 = δ3

k(s)
bis2 = δ2+δ4

k(s)

ais1 = δ3s3+δ2s2+δ2

k(s)2 bis1 = (δ2+δ4)s3+δ3s2+δ2s
k(s)2

cis0 = 1
k(s)

cis2 = δ2

k(s)

∆is
13 = δ5

v(s)5 ∆is
24 = δ5

v(s)4

H = δ−1/2 K = δ−1/2.

(10)

The next step is the routine but onerous task of using Lemma 6.2 and Theorem 6.3
of [1] to verify that the unique involution θs of GQ(Cis) fixing [Ais(∞)] really does

exist and is given by θs = θ(1, Bs, id, πs: t 7→ t+δ/v(s)), where Bs =

(
a(s) b(s)
c(s) a(s)

)
is given by

(i) a(s) =
(s5 + 1)(1 + δ + δ2) + (s4 + s)(1 + δ)

v(s)5/2
(11)

(ii) b(s) =
δ3/2s5 + δ1/2s4 + δ3/2s+ δ1/2 + δ5/2

v(s)5/2

(iii) c(s) =
(δ1/2 + δ5/2)s5 + δ3/2s4 + δ1/2s+ δ3/2

v(s)5/2.

Condition (i) of Theorem 6.1 of [1] implies that

(i) b(s) + c(s) = δ1/2a(s) (12)

(ii) (a(s))2 + b(s)c(s) = 1.

With 0̄ = δ/v(s), write gis0̄ (γ) =
√
γAis

0̄ γ
T . Then θs and is are computed using

Eqs.(10), (17) and (18) of [1] to be

(i) θs: (α, c, β) 7→ (αBs, c+ gis0̄ (αBs), (β + 0̄1/2α)Bs), t 7→ t̄ = t+ 0̄, (13)

(ii) is: (α, c, β) 7→ (β + s1/2α, c+ gs(α) + α ◦ β, α), t 7→ t̄ = (s+ t)−1.

The next step is to compute Is = is ◦ θs ◦ i−1
s . A straightforward computation yields

Is: (α, c, β) 7→ (((1 + 0̄s)1/2α+ 0̄1/2β)Bs, (14)

c+ gs(α) + α ◦ β + gis0̄ (βBs + s1/2αBs) + gs(((1 + 0̄s)1/2α + 0̄1/2β)Bs)

+ ((β + s1/2α)Bs) ◦ (((1 + 0̄s)1/2α + 0̄1/2β)Bs),

(s0̄1/2α+ (1 + 0̄s)1/2β)Bs), t 7→ t̄ =
t(s2 + 1) + δs2

δt+ s2 + 1
.

The first and third coordinates of the image of (α, c, β) under Is are written in as
simple a form as possible, but the middle coordinate can be simplified considerably.
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Upon inspection of Eq.(14), it is seen that the middle term can be written in the
form c + (αCαT + αDβT + βEβT)1/2, where we may take C and E to be upper

triangular. Using steps identical to those of the proof of 10.5.2 of [11] we find that
D = 0̄sP . We could use the same approach to find information about C and E,
but in the present case we can do better. From Eq.(14), 0 7→ 0̄ = δs2/(s2 + 1). By
considering the image of (α, 0, 0) ∈ A(0), which must be in A(0̄) = A( δs2

s2+1
), we see

that C ≡ ( s2+1
s2+δs+1

)BsA δs2

s2+1

BT
s . Similarly ∞ 7→ ∞ = (s2 + 1)/δ, and the fact that

the image of (0, 0, β) must be in A( s
2+1
δ

) determines E. Specifically

Is: (α, c, β) 7→ (− , c+
√
αCαT + αDβT + βEβT , − ) (15)

where

(i) C ≡
(

s2 + 1

s2 + δs+ 1

)
BsA δs2

s2+1

BT
s

(ii) D = 0̄sP =

(
δs2

s2 + δs+ 1

)
P

(iii) E ≡
(

δ

s2 + δs+ 1

)
BsA s2+1

δ

BT
s .

This completes the proof of Theorem 3.4. 2

3.5 Corollary G0 is transitive on the lines through (∞). Hence there arises only
one Subiaco flock for each Subiaco q–clan.

Proof: Since Is: [A(∞)] 7→ [A( s
2+1
δ

)], by letting s vary over all elements of F

transitivity is assured. Then by Theorem 2.5 of [1], only one flock arises. 2

4 Isomorphisms between Subiaco GQ

Let δ1, δ2 be any two (not necessarily distinct) elements of F for which tr (δ−1
1 ) =

tr (δ−1
2 ) = 1. For i = 1, 2, let Ci = C(δi) be the canonical Subiaco q–clan constructed

using δi in Eqs.(1) and (2), but with the following notation: C1 = {At =

(
xt yt
0 zt

)
|

t ∈ F}, xt = F (t) + (t/δ1)
1/2, where F (t) is defined using δ1, etc. and C2 = {A′t =(

x′t y′t
0 z′t

)
| t ∈ F}, x′t = F ′(t) + (t/δ2)1/2, etc. Of course A0 = A′0 =

(
0 0
0 0

)
and yt = y′t = t1/2 for all t ∈ F . The general goal of this section is to determine all

isomorphisms θ:GQ(δ1) = GQ(C1)→ GQ(δ2) = GQ(C2). One major corollary will
be that there is always such an isomorphism. A second major corollary, worked out
in Section 5, will be a complete determination of the group G0.
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4.1 Lemma If δ2 = δσ1 for some σ ∈ AutF , then

θ(1, I, σ, π) : GQ(C1)→ GQ(C2) (16)

(α, c, β) 7→ (ασ, cσ, βσ), t̄ = tσ,

is an isomorphism.

Proof: Clear from Proposition 2.2 with Eq.(10) from [1], since Aσ
t = A′tσ . 2

4.2 Lemma GQ(C1) and GQ(C2) are isomorphic if and only if there is an iso-
morphism θ:GQ(C1)→ GQ(C2) of the following type (put ∆ = detB).

(i) θ(µ,B, σ, π):GQ(C1)→ GQ(C2) (17)

(α, c, β) 7→
(
ασB, µ1/2cσ+

√
ασBA′0̄B

T (ασ)T ,

(µ∆−1βσ + 0̄1/2ασ)B
)

where

(ii) A′t̄ ≡ µB−1Aσ
tB
−T + A′0̄

and

(iii) π: t 7→ t̄ = (µ/∆)2tσ + 0̄.

Proof: Use Corollary 3.5 and the Fundamental Theorem with Eq.(10) of [1]. 2

4.3 Lemma For δi ∈ F with tr (δ−1
i ) = 1, i = 1, 2, 3, suppose

θi = θ(µi, Bi, σi, πi):GQ(δi)→ GQ(δi+1),

i = 1, 2, with the notation of Eq.(17). Then

θ1 ◦ θ2 = θ(µ,B, σ, π):GQ(C1)→ GQ(C2),

where

(i) µ = µσ2
1 µ2, (18)

(ii) B = Bσ2
1 B2,

(iii) σ = σ1 ◦ σ2,

(iv) π: t 7→ t̄ =

(
µσ2

1 µ2

∆σ2
1 ∆2

)2

tσ1◦σ2 +
(
µ2

∆2

)2

0π1◦σ2 + 0π2 .

Proof: Easy exercise. 2

Follow θ = θ(µ,B, σ, π):GQ(δ1) → GQ(δ2) with θ′ = θ(1, I, σ−1, π′: t 7→ tσ
−1

):
GQ(δ2) → GQ(δσ

−1

2 ). Then θ ◦ θ′:GQ(δ1) → GQ(δσ
−1

2 ) is an isomorphism of the

type given in Eq.(17) with σ = id. So replace δ2 with δσ
−1

2 (or equally satisfactory,
replace δ1 with δσ1 ) and from now on suppose that σ = id. An isomorphism of
the type θ(µ,B, σ, π):GQ(C1) → GQ(C2) is said to be semilinear and to have
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companion automorphism σ, and to be linear provided σ = id. Note that the
composition of linear isomorphisms is linear.

Recall that for any normalised q–clan C there is a group N of automorphisms
of GQ(C) of the type

N =
{
θa = θ(a2, aI, id, π = id): (α, c, β) 7→ (aα, ac, aβ) | 0 6= a ∈ F

}
. (19)

N is the kernel of GQ(C), and by 2.4 of [1], for q = 2e and C not classical, N
consists of all collineations of GQ(C) fixing (∞) and (0, 0, 0) linewise. If we follow
θ by θa with a = ∆−1/2, then θ ◦ θa = θ(µ/∆,∆−1/2B, id, π) and det(∆−1/2B) = 1.
Hence without loss of generality, from now on we may suppose that θ is a special
linear isomorphism, that is,

θ = θ(µ,B, id, π):GQ(δ1)→ GQ(δ2) (20)

(α, c, β) 7→
(
αB, µ−1/2c+

√
αBA′0̄B

TαT , (µβ + 0̄1/2α)B
)

where detB = 1, and π: t 7→ t̄ = µ2t+ 0̄, for all t ∈ F.

We write B =

(
a b
c d

)
, so B−1 =

(
d b
c a

)
.

For each s ∈ F̃ , the unique involution Is of GQ(δ1) fixing the line [A(s)] permutes
the lines [A(t)], t ∈ F̃ , according to the Möbius transformation (cf. Eq.(14)),

Is: t 7→
t(s2 + 1) + δ1s

2

δ1t + s2 + 1
. (21)

Similarly, the unique involution I ′s̄ of GQ(δ2) fixing the line [A′(s̄)] permutes the
lines [A′(t̄)], t ∈ F̃ , according to

I ′s̄: t̄ 7→
t̄(s̄2 + 1) + δ2s̄

2

δ2t̄ + s̄2 + 1
, t ∈ F̃ . (22)

Moreover, θ−1 ◦ Is ◦ θ is clearly an involution of GQ(δ2) fixing s̄, that is,

I ′s̄ = θ−1 ◦ Is ◦ θ, for all s ∈ F̃ . (23)

Put t̄ = µ2t + 0̄ and s̄ = µ2s+ 0̄ for all t, s ∈ F̃ into Eq.(22).

I ′s̄: t̄ 7→
(µ2t + 0̄)(µ4s2 + 0̄2 + 1) + δ2(µ

4s2 + 0̄2)

δ2(µ2t+ 0̄) + (µ4s2 + 0̄2) + 1
(24)

=
t(µ6s2 + µ20̄2 + µ2) + 0̄(µ4s2 + 0̄2 + 1) + δ2(µ

4s2 + 0̄2)

t(µ2δ2) + 0̄2 + δ20̄ + µ4s2 + 1

for all s, t ∈ F̃ .
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Now compute the effect of θ−1 ◦ Is ◦ θ on t̄. Here

t̄
θ−1

7→ t
Is7→ t(s2 + 1) + δ1s

2

δ1t+ s2 + 1
θ7→ µ2 (t(s2 + 1) + δ1s

2)

δ1t + s2 + 1
+ 0̄

=
t(µ2(s2 + 1) + 0̄δ1) + δ1µ

2s2 + 0̄(s2 + 1)

δ1t + s2 + 1
.

Using this with Eqs(23) and (24), we obtain

t(µ6s2 + µ20̄2 + µ2) + 0̄(0̄2 + δ20̄ + µ4s2 + 1) + δ2µ
4s2

t(µ4δ2) + 0̄2 + δ20̄ + µ4s2 + 1
(25)

=
t(µ2(s2 + 1) + 0̄δ1) + δ1µ

2s2 + 0̄(s2 + 1)

δ1t+ s2 + 1
, for all t, s ∈ F̃ .

Put t = 0 in Eq.(25) and write the resulting equality as a polynomial in s. After a
little simplification we obtain

µ4(δ2 + δ1µ
2)s4 +

(
δ2µ

4 + δ1µ
2(0̄2 + δ20̄ + 1)

)
s2 = 0. (26)

Even if we ignore a few values of s ∈ F̃ (say s =∞, s = 0 and s = 1), there are more
than enough values of s ∈ F for which Eq.(26) must hold to force the coefficients

on s4 and s2 to be zero. Hence we obtain

(i) δ2 = µ2δ1 (27)

(ii) 0̄2 + µ2δ10̄ + µ4 + 1 = 0.

And conversely, if Eq.(27)(i) and (ii) both hold, then Eq.(25) holds. This means that
Eq.(27) contains all the information to be obtained from Eq.(23) by considering only

the effect of I ′s̄ on F̃ ∼= PG(1, q).

Recall Eq.(17) with the notation of Eq.(20) for our special linear θ.

A′t̄ + A′0̄ ≡ µ

(
d b
c a

)(
xt t1/2

0 zt

)(
d c
b a

)
(28)

≡ µ

(
d2xt + dbt1/2 + b2zt t1/2

0 c2xt + cat1/2 + a2zt

)
.

Here

(i) xt =
δ2

1t
4 + δ3

1t
3 + (δ2

1 + δ4
1)t2

t4 + δ2
1t

2 + 1
+ (t/δ1)1/2, (29)

(ii) zt =
(δ2

1 + δ4
1)t3 + δ3

1t
2 + δ2

1t

t4 + δ2
1t

2 + 1
+ (t/δ1)

1/2,

with analogous expressions obtained for x′t and z′t by replacing δ1 with δ2.
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We want to express in detail the calculation that (for t̄ = µ2t+ 0̄)

x′t̄ + x′0̄ = µ(d2xt + dbt1/2 + b2zt). (30)

Use Eq.(27) and several routine steps to compute

x′t̄ + x′0̄ = (t/δ1)
1/2 +

δ2
1 (t4(µ4 + 0̄2(1 + δ2

1)) + t3(µ4δ1))

t4 + δ2
1t

2 + 1
(31)

+
δ2

1 (t2(µ2δ10̄ + 1 + µ4δ2
1 + 0̄2(δ2

1 + δ4
1)) + t(0̄2δ1))

t4 + δ2
1t

2 + 1
.

Next compute

µ(d2xt + dbt1/2 + b2zt) = µ(d2 + dbδ
1/2
1 + b2)(t/δ1)

1/2 + (32)

µδ2
1 (t4d2 + t3(d2δ1 + b2(1 + δ2

1)) + t2(d2(1 + δ2
1) + b2δ1) + tb2)

t4 + δ2
1t

2 + 1
.

Now equate coefficients on like powers of t on both sides of Eq.(30) using Eqs.(31)

and (32).

(i) Coeff. on t4 ⇒ µd2 = µ4 + 0̄2(1 + δ2
1) (33)

= 0̄(µ2δ1 + µ2δ3
1) + 1 + δ2

1 + µ4δ2
1 .

(ii) Coeff. on t⇒ µb2 = δ10̄ = 0̄(µ2δ2
1) + δ1 + µ4δ1.

The conditions in Eq.(33) completely determine d and b as functions of 0̄. The
surprising thing is that the conditions of Eq.(33) are sufficient to show (with much
use of Eq.(27)(ii)) that the coefficients on t3, t2 and t1/2, respectively, on both sides
of Eq.(30) are equal.

Next we want to express in detail the condition that

z′t̄ + z′0̄ = µ(c2xt + cat1/2 + a2zt). (34)

With routine computation using Eq.(27) we find

z′t̄ + z′0̄ = (t/δ1)1/2 +
δ2

1(t4(0̄ + δ2
10̄3) + t3(µ2 + µ6δ2

1))

t4 + δ2
1t

2 + 1
(35)

+
δ2

1(t2(µ2δ1 + 0̄(1 + µ4δ2
1) + δ4

10̄3 + δ2
1 0̄))

t4 + δ2
1t

2 + 1

+
δ2

1(t(δ10̄(1 + µ4δ2
1) + µ2δ2

1 + µ2 + µ6δ2
1))

t4 + δ2
1t

2 + 1
,

and

µ(c2xt + cat1/2 + a2zt) = µ(c2 + caδ
1/2
1 + a2)(t/δ1)

1/2 (36)

+
µδ2

1(c2t4 + t3(c2δ1 + a2(1 + δ2
1)) + t2(c2(1 + δ2

1) + a2δ1) + a2t)

t4 + δ2
1t

2 + 1
.
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Now we equate coefficients on like powers of t on both sides of Eq.(34) using Eqs.(35)
and (36).

(i) Coeff. on t4 ⇒ µc2 = 0̄3δ2
1 + 0̄ (37)

= 0̄(µ4δ4
1 + µ4δ2

1 + δ2
1 + 1) + µ2δ3

1 + µ6δ3
1

(ii) Coeff. on t⇒ µa2 = 0̄(δ1 + µ4δ3
1) + µ2 + µ2δ2

1 + µ6δ2
1.

And now it is possible to use Eqs.(37) and (27) to verify that the coefficients on t3,
t2 and t1/2, respectively, on both sides of Eq.(34) are equal.

This means that we have effectively determined all special linear isomorphisms
from GQ(δ1) to GQ(δ2) with the interesting corollary that there always is one.

4.4 Theorem Let δ1 and δ2 be any two elements of F for which tr (δ−1
1 ) = tr (δ−1

2 ) =

1. Put µ2 = δ2/δ1. Then (µ4 + 1)/µ4δ2
1 = δ−2

1 + δ−2
2 has trace 0. Hence

0̄2 + µ2δ10̄ + µ4 + 1 = 0 (38)

has two solutions with 0̄ ∈ F (say 0̄ and 0̄ + µ2δ1). Put B =

(
a b
c d

)
, where

(i) µa2 = 0̄(δ1 + µ4δ3
1) + µ2δ2

1 + µ6δ2
1 + µ2, (39)

(ii) µb2 = 0̄(µ2δ2
1) + µ4δ1 + δ1,

(iii) µc2 = 0̄(µ4δ4
1 + µ4δ2

1 + δ2
1 + 1) + µ2δ3

1 + µ6δ3
1,

(iv) µd2 = 0̄(µ2δ1 + µ2δ3
1) + 1 + δ2

1 + µ4δ2
1.

Then

θ(µ,B, id, π: t 7→ t̄ = µ2t+ 0̄):GQ(δ1)→ GQ(δ2) (40)

(α, c, β) 7→
(
αB, µ1/2c+

√
αBA′0̄B

TαT , (µβ + 0̄1/2α)B
)

is a special linear isomorphism.

Conversely, each special linear isomorphism from GQ(δ1) to GQ(δ2) mapping
(0, 0, 0) 7→ (0, 0, 0), [A(∞)] 7→ [A′(∞)], (∞) 7→ (∞), must be of this form. 2

Using the results of Sections 3 and 4 we can now determine all collineations of
GQ(C), for C a canonical Subiaco q–clan. In fact, we need only determine the
stabiliser H of [A(∞)] in G0.

5 The Stabiliser H of [A(∞)]

By the Fundamental Theorem [1] we know that any θ ∈ H must be of the form

θ = θ(µ,B, σ, π) given in Eq.(17). All such collineations with σ = id are give by
Lemma 6.2 of [1] (using slightly different notation), but we may also use Section 4
of the present work with δ1 = δ2, µ = 1, along with the kernel N .
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Fix δ ∈ F with tr (δ−1) = 1, and let σ ∈ AutF . Put δ1 = δσ and δ2 = δ. In the
context of Theorem 4.4, µ2 = δ2/δ1 = δ1−σ, so

µ = δ
1−σ

2 . (41)

Then Eq.(38) becomes

0 = 0̄2 + δ0̄ + δ2(1−σ) + 1. (42)

One solution of Eq.(42) is

0̄ =
j∑
i=1

δ1−2i, where σ: x 7→ x2j . (43)

(If σ = id, j = 0, then 0̄ = 0 or 0̄ = δ).

The other solution is 0̄ + δ. For either of these two solutions for 0̄, by Theorem
4.4 there is the following isomorphism:

θ = θ(δ
1−σ

2 , B, id, π) : GQ(δσ)→ GQ(δ) (44)

(α, c, β) 7→ (αB, δ
1−σ

4 c+
√
αBA0̄BTαT , (δ

1−σ
2 β + 0̄1/2α)B),

where B is determined by Eqs.(39) and (41). Also π: t 7→ t̄ = δ1−σt+ 0̄.

We also have θσ:GQ(δ) → GQ(δσ), (α, c, β) 7→ (ασ, cσ, βσ). Composition of these
two collineations gives

(i) θσ ◦ θ:GQ(δ)→ GQ(δ)

(α, c, β) 7→ (ασB, δ
1−σ

4 cσ +
√
ασBA0̄BT (ασ)T , (δ

1−σ
2 βσ + 0̄1/2ασ)B).(45)

(ii) θσ ◦ θ = θ(µ,B, σ, π) with π: t 7→ δ1−σtσ + 0̄ and ∆ = det(B) = 1.

If we follow θσ ◦ θ with θa ∈ N (as in Eq.(19)) we obtain all elements of H.

5.1 Theorem |H| = 2e(q − 1). Specifically, for each σ ∈ AutF ,

(i) Let 0̄ be either solution to 0̄2 + δ0̄ + δ2−2σ + 1 = 0.

(ii) Put ā = 0̄1/2
(
δ

3σ−1
4 + δ

3σ+3
4

)
+ δ

1−σ
4 + δ

3σ+1
4 + δ

5−σ
4 .

(iii) Put b̄ = 0̄1/2δ
3σ+1

4 + δ
3−σ

4 + δ
3σ−1

4 .

(iv) Put c̄ = 0̄1/2
(
δ

5σ+3
4 + δ

σ+3
4 + δ

5σ−1
4 + δ

σ−1
4

)
+ δ

5σ+1
4 + δ

σ+5
4 .

(v) Put d̄ = 0̄1/2
(
δ
σ+1

4 + δ
5σ+1

4

)
+ δ

σ−1
4 + δ

5σ−1
4 + δ

σ+3
4 .

(vi) Put B̄ =

(
ā b̄
c̄ d̄

)
, so det(B̄) = 1.
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(vii) For 0 6= a ∈ F , put µ = a2δ
1−σ

2 , B = aB̄, ∆ = a2 = det(B).

Then the general element of H is given by

(i) θ(µ,B, σ, π): (α, c, β) 7→ (46)

(ασB, µ1/2cσ +
√
ασBA0̄BT (ασ)T , (µ∆−1βσ + 0̄1/2ασ)B),

π: t 7→ (µ/∆)2tσ + 0̄, or

(ii) θ(a2δ
1−σ

2 , B, σ, π): (α, c, β) 7→

(aασB̄, aδ
1−σ

4 cσ + a
√
ασB̄A0̄B̄T (ασ)T , a(δ

1−σ
2 βσ + 0̄1/2ασ)B̄),

π: t 7→ δ1−σtσ + 0̄.

Note that a = 1, σ = id, 0̄ = δ gives the unique involution I∞ fixing [A(∞)].

Proof: To get ā, b̄, c̄, d̄, use µ = δ
1−σ

2 and δ1 = δσ, δ2 = δ, in Theorem 4.4. 2

5.2 Corollary |G0| = 2e(q2 − 1). 2

Let L = GF (2)(δ) ⊆ F ⊆ E = GF (q2). The hypothesis that p(x) = x2 + δx+ 1
be irreducible over F means that p(x) = (x + λ)(x + λ−1) for some λ ∈ E \ F .
Let ζ be a primitive element for E, so λ = ζj for some j. Then λ /∈ F if and

only if j 6≡ 0 (mod q + 1). The unique minimal polynomial for λ over F must be
x2 +(λ+λq)x+λq+1 = p(x) = x2 +δx+1, so necessarily λq+1 = 1. This is equivalent
to j ≡ 0 (mod q − 1). So we may put j = n(q − 1), 1 ≤ n ≤ q. In view of Theorem
4.4, we may choose whichever n is most convenient.

Consider the following pair of involutions.

(i) I0 = θ (1, B0, id, π: t 7→ t/(δt+ 1)) , (47)

with B0 =

(
1 + δ + δ2 δ1/2 + δ5/2

δ3/2 1 + δ + δ2

)
.

(ii) Iδ = θ
(
1, Bδ, id, π: t 7→ (t(δ2 + 1) + δ3)/(δt + δ2 + 1)

)
,

with Bδ =

(
1 + δ4 + δ6 + δ7 δ1/2 + δ9/2 + δ13/2

δ15/2 1 + δ4 + δ6 + δ7

)
.

First consider the action of I0 ◦ Iδ on the lines [A(t)], t ∈ F̃ . For t ∈ F , let t

correspond to (t, 1) ∈ PG(1, q) and∞ correspond to (1, 0). So t 7→ (at+ b)/(ct+ d)

is represented in matrix form by γ 7→ γ

(
a c

b d

)
for γ ∈ PG(1, q). So I0 and

Iδ, respectively, are represented by

(
1 δ
0 1

)
and

(
δ2 + 1 δ
δ3 δ2 + 1

)
, respectively.

Then I0 ◦ Iδ is represented by

(
1 + δ2 + δ4 δ3

δ3 1 + δ2

)
with trace δ4 and det = 1.

Hence I0◦Iδ has eigenvalues λ4 and λ−4 on F̃ . Then (λ4)j ∈ F if and only if λj ∈ F .
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If n = 1, that is, λ = ζq−1, then λ4j ∈ F if and only if j ≡ 0 (mod q+ 1) if and only
if (I0 ◦ Iδ)j = id on F̃ , so that I0 ◦ Iδ permutes the lines [A(t)] in a cycle of length

q + 1.
Now consider the action of I0◦Iδ on the subquadrangles, that is, on the subgroups

Gα. I0 ◦ Iδ:Gα 7→ GαB0Bδ . First compute

(i) B0 ◦Bδ =

(
1+δ+δ2+δ4+δ5+δ8+δ9+δ10 δ3/2+δ11/2+δ19/2

δ3/2+δ11/2+δ19/2 1+δ+δ4+δ5+δ6+δ8+δ9

)
, (48)

and in general

(ii) (B0 ◦Bδ)
j =

1

δ1/2

(
[10j + 1

2
] [10j]

[10j] [10j − 1
2
]

)
, where [a] = λa + λ−a.

(Note: The formula in Eq.(48)(ii) is obtained by diagonalising B0 ◦Bδ over E.)
Since det (B0 ◦Bδ) = 1 and tr (B0 ◦Bδ) = δ2 + δ6 + δ10 = λ10 + λ−10 = [10], it

follows that B0 ◦ Bδ has eigenvalues λ10 and λ−10, with (left) eigenvectors (λ1/2, 1)
and (1, λ1/2), respectively. Since I0 ◦ Iδ:Gα → GαB0◦Bδ , we see that (B0 ◦Bδ)

j leaves

invariant some Gα if and only if (λ10)j ∈ F . So if λ = ζq−1, (λ10)j ∈ F if and only
if 5j ≡ 0 (mod q + 1). This complete a proof of the following.

5.3 Theorem Let δ = λ + λ−1, where λ = ζq−1, ζ a primitive element for E =
GF (q2). Then

(i) I0 ◦ Iδ permutes the lines through (∞) in a cycle of length q + 1.

(ii) If e 6≡ 2 (mod 4) (that is, q + 1 6≡ 0 (mod 5)), then I0 ◦ Iδ permutes the Gα in a
cycle of length q + 1.

(iii) If e ≡ 2 (mod 4), I0 ◦ Iδ permutes the Gα in five cycles of length (q + 1)/5. 2

5.4 Corollary If q = 2e with e 6≡ 2 (mod 4), there is a unique Subiaco oval. It

has stabiliser of order 2e inherited from G0.

Proof: Uniqueness follows from Theorem 4.4 and Theorem 5.3(ii). Since |G0| =

2e(q2 − 1), G0 is transitive on all q + 1 Gα, and the kernel N induces the identity
map on the plane of the oval Oα, the corollary is proved. 2

In a later paper [10] the action of the induced stabiliser of Oα will be considered
in greater depth in the case that e 6≡ 2 (mod 4). For the remainder of this work we

concentrate on the case e ≡ 2 (mod 4).

6 Subiaco Ovals with q + 1 ≡ 0 (mod 5)

Let e ≡ 2 (mod 4), δ = ω ∈ F with ω2 +ω+ 1 = 0. So L = GF (2)(δ) = GF (4), and
r = [F : L] implies that e = 2r with r odd. Recall the following involutions from
Eqs.(8) and (9).

(i) I∞: (α, c, β) 7→ (αP, gω(α) + c, (β + ω2α)P ), (49)

(ii) I1: (α, c, β) 7→ (βP, c+ α ◦ β, αP ),
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with the immediate consequences

(iii) I∞ ◦ I1: (α, c, β) 7→ (β + ω2α, c+ gω(α) + α ◦ β, α),

(iv) I∞ ◦ I1: (aα, c, bα) 7→ ((b+ ω2a)α, c+ agω(α), aα).

It is clear from Eq.(49)(iv) that I∞ ◦ I1 leaves invariant each Gα, α ∈ PG(1, q). It

is also easy to check that I∞ ◦ I1 is a collineation of order 5. And clearly Gal (F/L)
provides a group of order r stabilising each Gα, and the kernel provides an additional
factor of order q − 1. This provides the following.

6.1 Lemma 〈I∞ ◦I1,Gal (F/L),N〉 is a group of order 5r(q−1) stabilising Gα for
each α ∈ PG(1, 4). Hence the orbit containing Gα has length at most 4(q + 1)/5.2

6.2 Lemma The stabiliser in G0 of G(1,1) is
⋃{HIs | s ∈ L̃} of order (q − 1)10e,

so the G0-orbit Ω1 containing G(1,1) has length (q + 1)/5.

Proof: If At =

(
xt t1/2

0 zt

)
gives the Subiaco q–clan C in canonical form, then

A′t =

(
ω2 0
0 ω

)
At

(
ω2 0
0 ω

)
=

(
ωxt t1/2

0 ω2zt

)
gives the original q–clan C′ studied

in [1] (cf. Theorem 2.2 of the present work.)
The associated isomorphism of generalised quadrangles is given by

θ = θ(1, B, id, π = id):GQ(C)→ GQ(C
′
) (50)

(α, c, β) 7→ (αB, c, βB), B =

(
ω 0
0 ω2

)
.

Since θ:G(1,1) 7→ G(1,1), ϕ is a collineation of GQ(C
′
) leaving invariant G(1,ω) if

and only if θ ◦ ϕ ◦ θ−1 is a collineation of GQ(C) leaving invariant G(1,1). Clearly,
θ: [A(∞)] 7→ [A′(∞)]. In [1] it is shown that the stabiliser H′ of [A′(∞)] leaves in-
variant G′α with α = (1, ω), so in the present situation H must leave G(1,1) invariant.

(We checked that this does indeed hold, but the details in the canonical case seem
rather more tedious than those in [1].) But now, as in [1], it is easy to check that
the full stabiliser of G(1,1) is

⋃{HIs | s ∈ L̃}. 2

6.3 Lemma G0 has exactly q + 1 involutions, each fixing a unique Gα.

Proof: We know that for each s ∈ F̃ there is a unique involution Is fixing [A(s)].
Since q + 1 is odd, any involution would have to fix some line [A(s)]. Hence G0 has
just the involutions Is. By considering the associated matrix Bs, we immediately

find the following:

(i) I∞ fixes only G(1,1). (51)

(ii) For s ∈ F, Is fixes a unique Gα.

(a) Is fixes G(0,1) ⇐⇒ c(s) = 0 ⇐⇒ s5 + s4 + ω2s+ 1 = 0,

(see Eq.(67)(iii) of [1]).

(b) Is fixes only G(c(s),a(s)+1) ⇐⇒ c(s) 6= 0.

2
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6.4 Theorem G0 has two orbits on the Gα, the short orbit Ω1 of length (q + 1)/5
and containing G(1,1) and a long orbit Ω2 of length 4(q + 1)/5.

Proof: Since G0 acts on Ω1 and |Ω1| = (q+1)/5 is odd, each of the q+1 involutions

Is ∈ G0 must fix some Gα ∈ Ω1. Hence by Lemma 6.3 no Is can fix any Gβ not in
Ω1. Suppose Ω2 is any G0-orbit on the Gα’s other than Ω1. The stabiliser of any
Gβ ∈ Ω2 must have odd order, implying that 4, the highest power of 2 dividing |G0|,
must divide |Ω2|. By Theorems 4.4 and 5.3, |Ω2| = k(q + 1)/5, with 1 ≤ k ≤ 4.

Since (q + 1)/5 is odd, it must be that k = 4. 2

6.5 Corollary 〈I∞ ◦ I1,Gal (F/L),N〉 is the full subgroup of G0 stabilising each

Gα in Ω2 with α ∈ PG(1, 4). 2

Note: Theorem 6.4 improves Theorem 7.6 of [1].

For a given α, the oval Oα obtained directly from Gα is

Oα = {(1, gt(α), t1/2) ∈ PG(2, q) | t ∈ F} ∪ {(0, 0, 1)}. (52)

The semilinear map T : (x, y, z) 7→ (x2, z2, y2) on PG(2, q) replaces Oα with

O(2)
α = {(1, t, hα(t)) | t ∈ F} ∪ {(0, 1, 0)}, with hα(t) = αAtα

T . (53)

There are just two ovals we consider here.

(i) For α = (1, 1), hα(t) =
ω2(t4 + t)

t4 + ω2t2 + 1
+ t1/2, (54)

(ii) For α = (0, 1), hα(t) =
t3 + t2 + ω2t

t4 + ω2t2 + 1
+ ωt1/2.

For α = (1, 1), Oα belongs to the short G0-orbit Ω1 with length (q + 1)/5. For
α = (0, 1), if 5 6 | r, Oα belongs to the long G0-orbit Ω2. But if 5 | r, it follows from
computations in [1] that Oα also belongs to the short orbit Ω1.

Remark: In [10] it will be shown that when δ = λ + λ−1, λ = ζq−1, ζ is

a primitive element of E = GF (q2), then (1, δ1/2) is in the long orbit. But we
postpone any further discussion of this example.

Direct computation with the formulae for hα(t) in Eq.(54) provides the following
information.

(i) If α = (1, 1), hα(t) = t2, for t ∈ GF (4). (55)

(ii) If α = (0, 1), hα(t) = ω2t2, for t ∈ GF (4).

We want to use Eq.(55) to write out explicitly the stabiliser of O(2)
α induced by

G0. By Theorem 6.5, when α = (0, 1) no θ ∈ G0 stabilising Gα has companion
automorphism σ = 2. So we first put α = (1, 1) and apply both Eq.(46)(ii) and

Lemma 6.2. Since elements of the kernel N induce the identity map on the PG(2, q)

containing O(2)
(1,1), in Eq.(46)(ii) we may put a = 1, so B̄ = B and ∆ = 1, and δ = ω.
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Then for α = (1, 1), ασB̄ ≡ α, so we obtain the following induced automorphisms
of G(1,1).

θ(ωσ−1, B̄, σ, π): (aα, c, bα) 7→ (56)

(aσα, ω1−σcσ + aσ
√
αA0̄αT , (ω

σ−1bσ + 0̄1/2aσ)α).

So the induced map on PG(2, q) preserving O(2)
(1,1) is

θ(ωσ−1, B̄, σ, π): (x, y, z) 7→ (xσ, ω1−σzσ + 0̄xσ, ωσ−1zσ + 0̄2xσ). (57)

Here for σ ∈ AutF , 0̄ is either solution of 0̄2 + δ0̄+ δ2−2σ + 1 = 0. Hence ωσ = ω

implies 0̄ ∈ {0, ω} and ωσ = ω2 implies 0̄ ∈ {1, ω2}. So in any case 0̄4 = 0̄. Put
σ = 2 and 0̄ = 1 to get the specific map

ψ: (x, y, z) 7→ (x2, ω2y2 + x2, ωz2 + x2). (58)

Note: The involution ϕ: (x, y, z) 7→ (y, x, z) leaves invariant O(2)
α for α = (1, 1), but

not for α = (0, 1). From Eq.(49)(iv),

On the oval O(2)
α , I∞ ◦ I1: (x, y, z) 7→ (ωx+ y, x, z + x(αAωα

T )). (59)

Then also using Eq.(55), we obtain,

On the oval O(2)
(1,1) we have the following

induced stabilising collineations, (60)

(i) I∞ ◦ I1: (x, y, z) 7→ (ωx+ y, x, z + ω2x)

(ii) I∞: (x, y, z) 7→ (x, y + ωx, z + ω2x)

On the oval O(2)
(0,1), I∞ ◦ I1: (x, y, z) 7→ (ωx+ y, x, z + ωx). (61)

For α = (1, 1), it is routine to verify that hα(t+ω) = hα(t)+ω2, which can be used

to give a direct verification that the collineation of Eq.(60)(ii) does stabilise O(2)
(1,1).

For α = (0, 1), it is also routine to verify that hα((t+ω)−1) = (hα(t) + ω)(t+ ω)−1.

This can be used to show directly that the map in Eq.(61) also stabilises O(2)
(0,1).

We have essentially completed a proof of the following theorem:

6.6 Theorem For e ≡ 2 (mod 4), δ = ω and α = (1, 1), the complete group
induced by G0 on PG(2, q) and stabilising

O(2)
(1,1) =

{
(1, t,

ω2(t4 + t)

t4 + ω2t2 + 1
+ t1/2) | t ∈ F

}
∪ {(0, 1, 0)} ,

has order 10e and is generated by the following three collineations:

(i) ϕ: (x, y, z) 7→ (y, x, z),
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(ii) θ: (x, y, z) 7→ (x, y + ωx, z + ω2x), and

(iii) ψ: (x, y, z) 7→ (x2, x2 + ω2y2, x2 + ωz2). 2

Note: θ ◦ ϕ: (x, y, z) 7→ (y + ωx, x, z + ω2x) has order 5.

6.7 Theorem For e ≡ 2 (mod 4), 5 6 |e, δ = ω, and α = (0, 1), the complete group

induced by G0 on PG(2, q) and stabilising

O(2)
(0,1) =

{
(1, t,

t3 + t2 + ω2t

t4 + ω2t2 + 1
+ ωt1/2) | t ∈ F

}
∪ {(0, 1, 0)} ,

has order 5e/2 and is generated by the following collineations:

(i) θσ: (x, y, z) 7→ (xσ, yσ, zσ), σ ∈ AutF with ωσ = ω,

(ii) θ ◦ ϕ: (x, y, z) 7→ (y + ωx, x, z + ωx). 2

For e ≡ 10(mod 20), O(2)
(0,1) belongs to the short orbit Ω1. So α = (1, δ1/2) is used

in [10] to compute the corresponding stabiliser of order 5e/2.
What remains to be shown here is that in all cases with e ≡ 2 (mod 4), the group

stabilising O(2)
α and induced by G0 is the complete subgroup of PΓL(2, q) stabilising

O(2)
α .

From the proof of Theorem 6.4 we know that α (that is, Gα) is in the long orbit
Ω2 precisely if it is fixed by no involution Is. So we may use Eq.(11) to recognize
members of Ω2. Moreover, each oval O(2)

α may be associated with an irreducible
algebraic curve in PG(2, q) of degree 10. Then a little algebraic geometry (viz.,

Bezout’s theorem) and some classical group theory finish off the proof as follows.
We want to reindex the α ∈ PG(1, q) by c ∈ F̃ in the following way. For c ∈ F̃ ,

put αc =
(

ω2+ωc
1+c1/2+ωc

, ωc
1+c1/2+ωc

)
. Clearly 1 + c1/2 + ωc 6= 0 for all c ∈ F . Then

αc = (1, 1) if and only if c =∞, and for c, d ∈ F , αc ≡ αd if and only if c = d. For
c = ω, αc = (0, ω2) ≡ (0, 1). For c ∈ F̃ \ {∞, ω}, αc ≡ (1, c/(c + ω)). Index the

ovals O(2)
α for α ∈ PG(1, q) so that Oc = O(2)

αc , c ∈ F̃ . Hence we have the following:

O∞ = {(1, t, f∞(t)) | t ∈ F} ∪ {(0, 1, 0)}, where (62)

f∞(t) =
ω2t4+ω2t

t4+ω2t2+1
+ t1/2.

Then for c ∈ F , using Eqs.(1), (2) and (53) we obtain

Oc = {(1, t, fc(t)) | t ∈ F} ∪ {(0, 1, 0)} where (63)

fc(t) =
(

ω2+ωc

1+c1/2+ωc

)2 (ω2t4+t3+t2

t4+ω2t2+1
+ ωt1/2

)

+
(

(ω2+ωc)ωc

1+c+ω2c2

)
t1/2 +

ω2c2

1+c+ω2c2

(
t3+t2+ω2t

t4+ω2t2+1
+ ωt1/2

)

=
1

1+c+ω2c2

(
(1+ωc2)t4+ωt3+ωt2+ωc2t

t4+ω2t2+1
+ (ω2 + c+ ω2c2)t1/2

)
.

The choice of αc may seem unnecessarily complicated, but it has the following
interesting consequences.
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6.8 Lemma Let g ∈ PGL(3, q) be defined by

g: (x, y, z) 7→ (y, x+ ωy, ω2y + z).

Then g is a collineation of order 5 stabilising Oc for every c ∈ F̃ .

Proof: Using Eq.(49) we see that I1◦I∞: (α, c, β) 7→ (β, c+α◦β+gω(βP ), α+ω2β),
and in particular, I1 ◦ I∞: (aα, c, bα) 7→ (bα, c+ gω(bαP ), (a+ω2b)α). Hence I1 ◦ I∞
is a collineation of order 5 leaving Gα invariant for each α ∈ PG(1, q). Use the
semilinear map T : (x, y, z) 7→ (x2, y2, z2) mapping Oα to O(2)

α to transfer the action

of I1 ◦ I∞ to the map

gα: (x, y, z) 7→ (y, x+ ωy, z + yα(PAωP
T )αT )

which stabilises Oα. Note that PAωP
T ≡ Aω =

(
ω ω2

0 ω

)
. For α = (1, 1),

αAωα
T = ω2. Now put α = αc and compute

αAωα
T =

(
ω+ω2c2

1+c+ω2c2

)
ω +

(
(ω2+ωc)ωc

1+c+ω2c2

)
ω2 +

(
ω2c2

1+c+ω2c2

)
ω = ω2.

Hence for every c ∈ F̃ , gαc is the map g of the Lemma. 2

6.9 Lemma

(i) O∞ is always in the short orbit Ω1.

(ii) For c ∈ F , Oc ∈ Ω2 if and only if

pc(x) = x5 + (ω2c2 + ω2)x4 + (ω2c2 + 1)x + 1 = 0,

has no root in F .

(iii) There is a c ∈ F \GF (4) for which both pc(x) = 0 and

p(ω2c2+ω2)(x) = x5 + (c4 + ω)x4 + c4x+ 1 = 0,

have no root in F .

Proof: We have already seen that (i) holds. For c = ω, pω(x) = x5 +x4 +ω2x+ 1,
which by [1] is irreducible if and only if O(0,1) ∈ Ω2 if and only if 5 does not divide

e. For ω 6= c ∈ F , αc ≡ (1, c/(c+ ω)). So put d = c/(c+ ω). Then

Oc ∈ Ω2 ⇐⇒ αc ∈ Ω2

⇐⇒ (1, d) ∈ Ω2

⇐⇒ (1, d) is fixed by no involution Is,

⇐⇒ (1, d)Bs 6≡ (1, d) for all s ∈ F,

where Bs =

(
a(s) b(s)
c(s) a(s)

)
from Eq.(11),
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⇐⇒ b(s) + da(s) 6= d(a(s) + dc(s)) for all s ∈ F,
⇐⇒ b(s) 6= d2c(s) for all s ∈ F,

⇐⇒ d2 6= b(s)

c(s)
=
s5 + ω2s4 + s+ 1

s5 + s4 + ω2s+ 1
for all s ∈ F,

⇐⇒ s5(1 + d2) + s4(d2 + ω2) + s(1 + d2ω2) + d2 + 1 = 0

has no solution s ∈ F,

⇐⇒ s5 +

(
d2 + ω2

1 + d2

)
s4 +

(
1 + d2ω2

1 + d2

)
s+ 1 = 0

has no solution s ∈ F,
⇐⇒ pc(s) 6= 0 for all s ∈ F,

where c =
dω

1 + d
, that is, d =

c

c+ ω
.

This completes the proof of (ii).
Hence pc(x) = 0 has no root in F for 4(q + 1)/5 values of c ∈ F . Moreover,

c 7→ ω2c2 + ω2 is a bijection on F , so p(ω2c2+ω2)(x) = 0 has no root in F also for
4(q + 1)/5 values of c. This implies that both pc(x) = 0 and p(ω2c2+ω2)(x) = 0 have
no root for at least (3q + 2)/5 values of c, from which (iii) follows. 2

Define the conic O: xy = z2, that is,

O = {(1, t, t1/2) | t ∈ F} ∪ {(0, 1, 0)}.

6.10 Lemma

(i) O∞ ∩O = PG(2, 4) ∩O,

(ii) For c satisfying condition (iii) of Lemma 6.9, Oc ∈ Ω2 and Oc∩O = PG(2, 4)∩O.

Proof: For (i), (O∞ \ {(0, 1, 0)}) ∩ O = {(1, t, f∞(t)) | f∞(t) = t1/2}. Clearly
f∞(t) = t1/2 if and only if t ∈ GF (4). Similarly, if c satisfies condition (iii) of
Lemma 6.9, then Oc ∈ Ω2 and (Oc \ {(0, 1, 0)}) ∩ O = {(1, t, fc(t)) | fc(t) = t1/2}.
Using Eq.(63) we may compute that fc(t) = t1/2 if and only if ω2t(t3 + 1)(t5 + (c4 +
ω)t4 + c4t + 1) = 0, proving (ii). 2

For each c ∈ F̃ we may define the hyperoval Hc = Oc ∪ {(0, 0, 1)}, and with a
natural abuse of language refer to Hc belonging to Ω1 or Ω2. For example,H∞ ∈ Ω1.

And for c = c0 satisfying condition (iii) of Lemma 6.9, Hc0 ∈ Ω2. From now on fix
c = c0 to be such an element.

By the results in [12] the hyperovals H∞ and Hc0 are inequivalent for q = 64

and have full collineation stabilisers of order 60 and 15, respectively. So from now
on we assume that q ≥ 1024.

Using the ideas of [8] we shall show that H∞ and Hc0 are the pointsets of two
absolutely irreducible degree ten algebraic curves in PG(2, q).

6.11 Lemma For both c = ∞ and c = c0, Hc is the pointset of an absolutely
irreducible degree ten algebraic curve C in PG(2, q) having (0, 0, 1) as its only sin-
gular point. The multiplicity of (0, 0, 1) for C is 8, and in PG(2, q2) there are two
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tangent lines for C at (0, 0, 1). The tangent lines are Q = [η, 1, 0]T : ηx + y = 0
and Q̄ = [ηq, 1, 0]T : ηqx + y = 0, where η ∈ GF (q2) \ GF (q) satisfies ηq+1 = 1 and

ηq + η = ω.

Proof: For c ∈ {∞, c0}, write d = c/(c + ω), so d ∈ {1, c0/(c0 + ω)}. In par-

ticular, we are avoiding the case c = ω with d = ∞. Put mc =
(

ω2+ωc
1+c1/2+ωc

)2
.

So mc 6= 0, m∞ = 1, and αc = (mc)
1/2(1, d). Then Hc = {(1, t, fc(t)) | t ∈

F} ∪ {(0, 1, 0), (0, 0, 1)} is projectively equivalent to H̄c = {(1, t, fc(t)/mc) | t ∈
F} ∪ {(0, 1, 0), (0, 0, 1)}. Here

fc(t)

mc

= f(t, d) =
(
ω2t4+t3+t2

t4+ω2t2+1
+ ωt1/2

)
+ dt1/2 + d2

(
t3+t2+ω2t

t4+ω2t2+1
+ ωt1/2

)

=
ω2t4+(1+d2)(t3+t2)+ω2d2t

t4+ω2t2+1
+ (ω + d+ ωd2)t1/2.

Define gc ∈ PGL(3, q2) by gc: (x, y, z) 7→ (x, y,mcz). So gc: H̄c 7→ Hc, and gc
fixes the two points (0, 1, 0) and (0, 0, 1). We show that H̄c satisfies the conclusions
of the Lemma. Since gc also fixes the lines Q, Q̄, it will follow that Hc satisfies the
same conclusions.

The point (1, t, f(t, d)) ≡ (1, y, z) satisfies

z =
ω2y4+(1+d2)(y3+y2)+d2ω2y

y4+ω2y2+1
+ (ω + d + ωd2)y1/2.

Multiply through by y4 + ω2y2 + 1, square both sides, and then make the resulting
equation homogeneous in x, y, z to get the algebraic curve Cd: hd(x, y, z) = 0, where

hd(x, y, z) = (z2 + (ω2 + d2 + ω2d4)xy)(y2 + ωxy + x2)4 (64)

+ ωx2y8 + ωd4x8y2 + (1 + d4)(x4y6 + x6y4).

By construction, for all t ∈ F , (1, t, f(t, d)) ∈ Cd. But in fact it is routine to check
that the pointset of Cd is exactly the hyperoval H̄c (always d = c/(c + ω)). So

|Cd| = q + 2, and we want to prove that hd(x, y, z) is absolutely irreducible.
First compute ∂hd

∂x
= (ω2 + d2 + ω2d4)y(y2 + ωxy + x2)4, ∂hd

∂y
= (ω2 + d2 +

ω2d4)x(y2 +ωxy+x2)4, and ∂hd
∂z

= 0. Since ω2 +x+ω2x2 is irreducible over GF (4),

and hence over F , ω2 + d2 + ω2d4 6= 0 for all d ∈ F . It follows readily that the only
singular point of Cd is (0, 0, 1) with multiplicity 8 and (0, 0, 1) has two tangents Q, Q̄
in the quadratic extension of F , where the product of Q and Q̄ is y2 +ωxy+x2 = 0.
If one of Q, Q̄ is a component of Cd, so is the other, and in this case y2 + ωxy + x2

must divide hd(x, y, z). We now show that this is not the case. Put y2 = ωxy + x2,
and hence y4 = x3(y+ωx), y6 = x5y, y8 = ωx8 +ωyx7 into hd(x, y, z). After a little
simplification, hd(x, y, z) = x9(ω2(1 + d4)y + x), which is not the zero polynomial.

This proves that neither tangent to Cd at (0, 0, 1) is a component of Cd.
Now suppose that Cd has components C1, . . . , Cl, l > 1, with degCi = ki, and

suppose (0, 0, 1) has multiplicity ti for Ci. So
∑
ki = 10 and

∑
ti = 8. If some
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ti = ki, then ti = ki = 1 and Ci is a line. But in this case Ci must be tangent to Ci
at (0, 0, 1), so Ci is tangent to Cd at (0, 0, 1), contradicting the previous paragraph.

So the only possibility is that there are exactly two components C1 and C2 with
t1 = k1 − 1 and t2 = k2 − 1.

First suppose C1 and C2 are defined over F , and (0, 0, 1) is a (ki−1)-tuple point
for Ci, i = 1, 2. Any tangent to Ci at (0, 0, 1) is tangent to Cd and not defined

over F . So any line (over F ) through (0, 0, 1) meets Ci in a second point, which
implies |Ci| ≥ q + 2. Since any point of C1 ∩ C2 is a singular point for Cd clearly
|C1 ∪ C2| ≥ 2(q + 2)− 1 > q + 2 = |Cd|, an impossibility.

So we may suppose C1 and C2 are not defined over F = GF (q), but over some
GF (qr), r > 1. Let id 6= σ ∈ Gal (GF (qr)/GF (q)). Then Cσ

1 = C2, so degC1 =
degC2 = 5. By Lemma 10.1.1 of [3], |Ci| ≤ 52, so |Cd| ≤ 49. Since q > 64 we have a
contradiction. 2

Acknowledgment: We thank our friend and colleague J. A. Thas for explaining
to us how the preceding proof should go.

For the remainder of this section write H1 = H∞ and H2 = Hc0 . Then for i = 1,
2, let Gi = PΓL(3, q)Hi be the full collineation stabiliser of the hyperoval Hi.

Let g ∈ PΓL(3, q) have a companion automorphism σ ∈ Aut (F ). Let h ∈
F [x, y, z] be a homogeneous polynomial. The image, hg, of h under g is defined by:

hg = g ◦ h ◦ σ−1,

and for d = 1 ∈ F , write h1 = hd(x, y, z) (since g∞ = id), and for d = c0/(c0 +ω), let
h2 be the image of hd(x, y, z) under g−1

c0
. Then we have Hi = {(x, y, z) ∈ PG(2, q) |

hi(x, y, z) = 0}, i = 1, 2.

6.12 Lemma

Gi = {g ∈ PΓL(3, q) | hgi = λhi, λ ∈ GF (q) \ {0}}, for i = 1, 2.

Proof:
(⊇) Let g ∈ PΓL(3, q) with hgi = λhi, λ ∈ GF (q) \ {0} for i = 1, 2. Then g fixes

the set of points (x, y, z) such that hi(x, y, z) = 0. But these are just the points of

the hyperoval Hi for i = 1, 2.
(⊆) Let g ∈ Gi and suppose hgi 6= hi. If Ci: hi(x, y, z) = 0, i = 1, 2, then the

pointsets of Ci and Cig coincide. By Bezout’s Theorem, it follows that the number of
points of Ci ∩ Cgi , counted according to multiplicity, is at most 100. This is contrary

to our hypothesis that q ≥ 1024. 2

Since (0, 0, 1) is the unique singular point of Ci, i = 1, 2, Gi must fix (0, 0, 1)
and the set {Q, Q̄} of tangents. Also, since (0, 0, 1) is on Hi, no nontrivial element
of Gi can have (0, 0, 1) as its centre, i = 1, 2. Hence G1 and G2 fix (0, 0, 1) but not

linewise, and so act faithfully on the quotient space PG(2, q)/(0, 0, 1).
We are now ready to prove the final theorem of this section.

6.13 Theorem The hyperovals H1 and H2 in PG(2, q), q = 2e, are inequivalent

for e ≡ 2 (mod 4). The full collineation stabiliser of H1 in PΓL(3, q) is isomorphic
to C5 × C2e, and the full collineation stabiliser of H2 in PΓL(3, q) is isomorphic to
C5 × Ce/2.
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Proof: Let h ∈ PGL(2, q) with |h| = q+1. Then 〈h〉 is a Singer cycle of PG(1, q),
so 〈h〉 = Cq+1 acts regularly on PG(1, q). Since h is induced by an invertible 2× 2

matrix over F with (conjugate) eigenvalues in GF (q2) \ GF (q), we have 〈h〉 fixing
a conjugate pair of points, say {P, P̄ }. As NPΓL(2,q)(〈h〉) permutes the fixed points
of 〈h〉, NPΓL(2,q)(〈h〉) stabilises the conjugate pair {P, P̄ }. Hence NPΓL(2,q)(〈h〉) ≤
PΓL(2, q){P,P̄}. And since PΓL(2, q) acts transitively on conjugate pairs of points,

then replacing h by a conjugate if necessary,

NPΓL(2,q)(〈h〉) ≤ PΓL(2, q){Q,Q̄},

where {Q, Q̄} is the pair of conjugate tangent lines (which are conjugate points in
the quotient space) to the hyperovals at (0, 0, 1) in PG(2, q). By [5] and [4, Theorem
II.7.3], we have

NPΓL(2,q)(〈h〉) = Cq+1 × C2e.

But the order of PΓL(2, q){Q,Q̄} is 2(q + 1)e, so by comparing orders

Cq+1 × C2e = PΓL(2, q){Q,Q̄}.

Hence both G1 and G2 are subgroups of Cq+1 × C2e. From this, for the g from

Lemma 6.8, we have that 〈g〉 is normal in PGL(2, q){Q,Q̄}, since 〈g〉 is characteristic
in 〈h〉, which is normal in PGL(2, q){Q,Q̄}. Since q2 + q + 1 ≡ 1 (mod 5), g has a
unique fixed line, namely x+ y + ω2z = 0. Since G1 and G2 normalise 〈g〉, they fix
x+ y + ω2z = 0.

Let Hi = Gi ∩ Cq+1, for i = 1, 2. We have H1 and H2 fixing both tangent
lines Q and Q̄, so fixing their product x2 + ωxy + y2 = 0. They also fix the line
x+ y + ω2z = 0, so fix x2 + y2 + ωz2 = 0. Let P be the pencil generated by these

two. The group induced on the set of conics of P by the stabiliser in PGL(3, q) of
P is cyclic of order q − 1. Since (q + 1, q − 1) = 1 each Hi fixes every conic in P .
So for i = 1, 2, Hi fixes the conic O: xy = z2, so it fixes Hi ∩O = O ∩ PG(2, 4), by
Lemma 6.10.

Now Hi acts semiregularly on PG(2, q)\{(0, 0, 1)} for i = 1, 2. All points (except
the fixed point) have orbits of length |Hi|. But since Hi fixes O∩PG(2, 4) and acts
semiregularly on O, we have |Hi| dividing |O ∩ PG(2, 4)| = 5. Hence |Hi| = 1 or 5.
But 〈g〉 ≤ Hi, so Hi = 〈g〉 for i = 1, 2. Hence G1 and G2 are subgroups of 〈g〉×C2e.

From Theorem 6.6 we have the induced group of H1 having order 10e so we have
G1 = 〈g〉 × C2e.

As q+ 1 ≡ 0 (mod 5) with q = 2e, then e = 2r where r is odd, so e/2 is odd. We
now show that G2 ≤ 〈g〉 × Ce/2. The subgroup C5 × C4 contains all the involutions

of 〈g〉 × C2e (five in total) since e/2 is odd. These five involutions are conjugate
under 〈g〉. If G2 contains an involution then it will contain the involution ϕ from
Theorem 6.6. Since

ϕ: {(1, t, f2(t)) | t ∈ F} 7→
{(t, 1, f2(t)) | t ∈ F} = {(1, u, uf2(u

−1)) | u ∈ F},

it follows that if G2 contains an involution, then f2(t) = tf2(t
−1) for all t ∈ F , but

this is not so. Hence 2 does not divide |G2|. That is, G2 ≤ 〈g〉 × Ce/2.
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From Theorem 6.7 we have the induced group of H2 has order 5e/2. Hence
G2 = 〈g〉 × Ce/2.

This completes the proof of the theorem. 2

Remark: In the case of H1 the statement of Theorem 6.6 can be sharpened

slightly. Not only does θ ◦ ϕ have order 5, but ϕ ◦ ψ 6= ψ ◦ ϕ while θ ◦ ψ = ψ ◦ θ.
Moreover, ψ has order 2e and ψe = θ. So

〈ϕ, θ, ψ〉 = 〈θ ◦ ϕ〉 × 〈ψ〉 ∼= C5 × C2e.

For e 6≡ 2 (mod 4) and q ≥ 32, it is also true that the stabiliser of order 2e of
the Subiaco oval induced by the collineation group of the GQ is the complete oval
stabiliser (cf. [8]).

7 Remarks on the Subiaco hyperovals

For q = 16 the Subiaco hyperoval is a Lunelli-Sce hyperoval. For q = 32, the Subiaco
hyperoval is a Payne hyperoval. For q = 64, they are the hyperovals discovered by
Penttila and Pinneri [12], with groups of orders 15 and 60. For q = 128, 256, they
are the hyperovals which were also discovered by Penttila and Royle [13].

By the results on the stabilisers of the Subiaco hyperovals, the only known infinite
family of hyperovals which could intersect with the family of Subiaco hyperovals
is the family of Payne hyperovals, for q not square (see [12] for stabilisers of the

known hyperovals and [8] for the stabiliser of the Subiaco hyperovals). In this case,
with q = 2e, and e odd, both the Payne and the Subiaco hyperoval in PG(2, q)
have a stabiliser in PΓL(3, q) that is cyclic of order 2e, so they could conceivably
be equivalent. However, the Subiaco hyperoval is an absolutely irreducible curve

of degree 10 and the Payne hyperoval is associated with an absolutely irreducible
curve of degree 6 [14]. By Bezout’s theorem, for q ≥ 128, it follows that the Subiaco
hyperoval is not a Payne hyperoval. Of course, for q = 32, it is a Payne hyperoval.
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