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Rolf Riesinger

Abstract

A spread S of a Pappian projective 3-space admits a regulization Σ, if Σ is
a collection of reguli contained in S and if each element of S, except at most
two lines, is contained either in exactly one regulus of Σ or in all reguli of Σ.
Replacement of each regulus of Σ by its complementary regulus (exceptional
lines remain unchanged) yields the complementary congruence ScΣ of S with
respect to Σ. If ScΣ belongs to a single linear complex of lines, then Σ is called a
unisymplecticly complemented regulization. For spreads with unisymplecticly
complemented regulization we give a construction which can be seen as an
extension of the well-known Thas-Walker construction of spreads admitting
net generating regulizations.

1 Introduction

Let Π = (P ,L) be a Pappian projective 3-space with point set P and line set L.
We are going to investigate spreads composed of reguli and at most two exceptional
lines. Therefore we standardize by defining: A proper regulus R is the set of lines
meeting three mutually skew lines; the directrices of R form the complementary
(opposite) regulus Rc; if x ∈ L, then {x} is called an improper regulus; {x}c := {x}.

Definition 1. Let S be a spread of Π and let Σ be a collection of (proper or improper)
reguli contained in S. We call Σ a regulization of S, if the following hold:

(RZ1) Each line of S belongs either to exactly one regulus of Σ or to all reguli
of Σ.

(RZ2) There are at most two improper reguli in Σ.
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The set ∪(Rc|R ∈ Σ) =: ScΣ is named complementary congruence of S with respect
to Σ. If ScΣ belongs to a linear complex of lines, then we say that Σ is a symplecticly
complemented regulization. If ScΣ belongs to a single linear complex of lines, then Σ
is called a unisymplecticly complemented regulization, otherwise multisymplecticly
complemented. If ScΣ is a non-degenerate linear congruence of lines, shortly a net
(of lines), then we call Σ a net generating regulization, in particular, a hyperbolic
or parabolic or elliptic regulization depending on the type of the complementary net
ScΣ. We say that Σ is a preparabolic regulization, if there exists a parabolic net Z
with axis z such that ScΣ = Z \ {z}.

For spreads with net generating regulizations and references to this subject, see
[7] and [8]. Clearly, each net generating and each preparabolic regulization is mul-
tisymplecticly complemented. For the real projective 3-space PG(3,R) an example
of a non-regular spread admitting a unisymplecticly complemented regulization is
given in [7, (4.1,6)].

Let λ be the well-known Klein mapping of L onto the Klein quadric H5 which
is embedded into a projective 5-space Π5 with point set P5; cf. e.g. [5]. If R is
a proper or improper regulus, then λ(R) is an irreducible conic or a point. For
obvious reasons, we speak of proper or improper conics. If S is a spread of Π with
the net generating regulization Ψ, then {λ(Rc)|R ∈ Ψ} is a flock of the quadric
λ(ScΨ) ⊂ H5; cf. [7, Prop. 3.1] and [7, Def. 3.1].

Recall the Thas-Walker construction [7, Prop. 3.3]: If F is a flock of a quadric
Q with Q ⊂ H5, then ∪((λ−1(k))c|k ∈ F) is a spread of Π with the net generating
regulization {(λ−1(k))c|k ∈ F}. This construction was discovered independently by
M. Walker [11] and J. A. Thas (unpublished).

In Section 3 we start with a spread S of Π admitting a unisymplecticly comple-
mented regulization Ω and investigate the set {λ(Rc)|R ∈ Ω} =: E of conics. By
statement (S3) of Section 2, ScΩ belongs to a general linear complex G of lines. Each
conic of E is contained in the quadric λ(G) ⊂ H5. We sum up the properties of λ(G)
in

Definition 2. A hyperquadric L4 of a Pappian projective 4-space is called Lie quad-
ric, if L4 has no vertex and if L4 contains a line. A generatrix of L4 is a line g with
g ⊂ L4.

In the Proof of Proposition 1 we shall find that E is a ”flockoid” of the Lie quadric
λ(G); we define the concept ”flockoid”, as follows

Definition 3. A collection D of conics contained in a Lie quadric L4 of a Pappian
projective 4-space is called a flockoid of L4, if the following two conditions hold:

(FD1) For each generatrix g of L4 there exists exactly one conic k ∈ D with
g ∩ k 6= ∅.

(FD2) There are at most two improper conics in D.

The extended Thas-Walker construction starts with a flockoid D of a Lie quadric
L4 ⊂ H5. Then ∪((λ−1(k))c|k ∈ D) is a spread of Π admitting the regulization
{(λ−1(k))c|k ∈ D} which is either unisymplecticly complemented or elliptic; cf.
Proposition 2. Each flock of an elliptic quadric Qe can be interpreted as flockoid of
a Lie quadric L4 containing Qe; cf. Remark 9. Note, a flock of a quadric Q covers
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Q, but a flockoid of a Lie quadric L4 is no covering of L4. By K we denote the
(commutative) coordinatizing field of Π, i.e., Π = PG(3,K). We combine Remark 7
and the Propositions 1 and 2 and get

Theorem 1. To each spread of PG(3,K) with a unisymplecticly complemented or
an elliptic regulization there corresponds a flockoid of a Lie quadric contained in the
Klein quadric of Π5 = PG(5,K), and vice versa.

In Section 4 we state further properties of the extended Thas-Walker construc-
tion. The present paper will be continued by [9] wherein we apply the Thas-Walker
construction to get topological spreads with unisymplecticly complemented reguli-
zation.

2 Preliminaries

If S is a spread of Π and Σ an arbitrary regulization of S, then each point of Π is
incident with at least one line of ScΣ and ScΣ contains at least one proper regulus.
Thus ScΣ cannot be part of a degenerate linear congruence C of lines since such a C
consists of all lines meeting two intersecting lines. Consequently,

(S1) Each multisymplecticly complemented regulization is either net generating
or preparabolic, and vice versa.

If ScΣ belongs to a special linear complex of lines, then Σ is hyperbolic, parabolic
or preparabolic by virtue of [7, Remark 2.7]. As an immediate consequence we
obtain the following two statements.

(S2) Let S be a spread of Π and let Ω be a symplecticly complemented regulization
of S. Then there exists at least one general linear complex G of lines with ScΩ ⊂ G.

(S3) Let S be a spread of Π and let Ω be a unisymplecticly complemented regu-
lization of S. Then the linear complex H of lines with ScΩ ⊂ H is general.

If Πn is an arbitrary n-dimensional projective space, then the set of all subspaces
of Πn is a lattice with respect to the operations ∩ and ∨; we write Lat(Πn) for this
lattice and Pn for the point set of Πn. By [7, Theorem 2.8] (compare also [3,
Corollary 5.7]), a spread with net generating regulization is also a dual spread; we
generalize this result in

Theorem 2. Let S be a spread of Π and let Φ be a covering of S by (proper or
improper) reguli. If ∪(Rc|R ∈ Φ) is contained in a general linear complex G of
lines, then S is also a dual spread.

Proof. The null polarity γ associated with G is an antiautomorphism of Lat(Π)
fixing G elementwise. If X is an arbitrary regulus of Φ, then X c ⊂ G implies
γ(X c) = X c. Consequently, γ(X ) = X for all X ∈ Φ. Therefore γ(S) = S since S
is covered by the reguli of Φ. As S is a spread, so γ(S) is a dual spread. �

Corollary 1. If a spread S of Π admits a symplecticly complemented regulization,
then S is also a dual spread.



240 R. Riesinger

A spread S of Π is called symplectic, if S belongs to a linear complex of lines.

Corollary 2. A symplectic spread S of Π is also a dual spread.

Proof. Let H be a linear complex with S ⊂ H. By [7, Remark 4.1.3], H is
general. Hence S and the collection Φ0 := {{x}|x ∈ S} of improper reguli satisfy
the assumptions of Theorem 2. �

In connection with the Klein mapping λ we often use Plücker coordinates. We
may assume that Π = PG(3,K) and Π5 = PG(5,K) are the projective spaces on K4

and K4 ∧K4, respectively, and that λ maps cK ∨ dK ∈ L onto (c ∧ d)K ∈ P5. The
standard basis B of K4 yields the ordered basis (p0, . . . ,p5) =: B5 of K4 ∧ K4 with

p0 := b0 ∧ b1, p1 := b0 ∧ b2, p2 := b0 ∧ b3, p3 := b2 ∧ b3,

p4 := b3 ∧ b1, p5 := b1 ∧ b2.

Thus

H5 = {pK ∈ P5| p =
5∑
k=0

pkpk and p0p3 + p1p4 + p2p5 = 0}. (1)

Next we give some properties of Lie quadrics.

Remark 1. Let L4 be a Lie quadric of Π4 = PG(4,K). We may assume that Π4

is the projective space on K5. By [10, (7.40), (7.41), (7.49)] there exists a basis
(a0, . . . , a4) of K5 such that

L4 = {xK ∈ P4| x =
4∑

k=0

akxk and x0x3 + x1x4 − x2
2 = 0}. (2)

This shows that in Π4 there exists an essentially unique Lie quadric.

Remark 2. Throughout this paper, the polarities associated with a Lie quadric
L4 and with a Klein quadric H5 are denoted by π4 and π5, respectively. From
(1) we deduce that π5 always is an antiautomorphism of Lat(Π5). Yet, π4 is an
antiautomorphism of Lat(Π4) if, and only if, CharK 6= 2.

Remark 3. Let H5 be the Klein quadric of PG(5,K) and let U be a hyperplane of
PG(5,K) which is not tangent to H5. Then H5 ∩ U is a Lie quadric.

Remark 4. From Remark 1 and 3 we deduce that each Lie quadric of PG(4,K) is
embeddable into the Klein quadric of PG(5,K) .

Remark 5. Let L4 be a Lie quadric of an arbitrary Pappian projective 4-space Π4.
A simple application of Witt’s theorem (cf. e.g. [2, p.376]) shows that the group
AutL4 := {ξ ∈ PΓL(Π4)|ξ(L4) = L4} operates transitively both on the points of L4

and on the set of all generatrices of L4.

Lemma 1. Let L4 be a Lie quadric of an arbitrary Pappian projective 4-space.
(i) If P ∈ L4, then the intersection of L4 and the tangent hyperplane π4(P ) of L4 at
P is a quadratic cone (”tangent cone of L4 at P”).
(ii) If g is a generatrix of L4, then L4 ∩ π4(g) = g.
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(iii) If the intersection of a plane α and L4 consists of a single point, say P , then
α ⊂ π4(P ) and the tangent cone of L4 at P has no generatrix in α.
(iv) There exists a plane α with #(α ∩ L4) = 1 if, and only if, there exist p, q ∈ K
such that x2 + qx 6= p for all x ∈ K.

We leave the proof of Lemma 1 to the reader.

Remark 6. Let L4 and L̃4 be Lie quadrics contained in the Klein quadric H5 of
PG(5,K). By Remark 1 and the theorem of Witt, there exists a collineation κ of
PG(5,K) with κ(L4) = L̃4 and κ(H5) = H5.

Lemma 2. Let L4 be a Lie quadric which belongs to the Klein quadric H5 of Π5 =
PG(5,K). If a plane α of spanL4 intersects L4 in a single point, say P , then
π5(α) ∩H5 = {P}.

Proof. We may assume that Π5 = PG(5,K) is the projective space on K4 ∧ K4.
In K4 ∧ K4 we change coordinates according to

pj = p′j (j = 0, ..., 4), p5 = −p′2 + p′5 (3)

and denote the corresponding basis by (p′0, ...,p
′
5). From (1) follows

H5 = {pK ∈ P5| p =
5∑

k=0

p′kp
′
k and p′0p

′
3 + p′1p

′
4 − p′2

2
+ p′2p

′
5 = 0}. (4)

The hyperplane η with p′5 = 0 is not tangent to H5. By Remark 5 and 6, we may
assume that L4 is the intersection of H5 and η, and that P = p′0K. There must
be a1, a2 ∈ K such that p′5 = p′3 = a1p

′
1 + a2p

′
2 + p′4 = 0 describes α and such that

x2 + a2x + a1 6= 0 for all x ∈ K. The plane π5(α) is spanned by (p′2 + p′52)K =: P1,
p′0K, and (p′1 + p′4a1 + p′5a2)K =: P2. Because of p′0K ∈ α ⇒ π5(α) ⊂ π5(p

′
0K), the

determination of π5(α)∩H5 is equivalent to finding (P1∨P2)∩H5 and, consequently,
equivalent solving the equation x2 + a2x + a1 = 0. �

3 The extended Thas-Walker construction

This Section generalizes [7, Section 3]. In the subsequent, the star of lines with
vertex A is denoted by L[A] := {x ∈ L|A ∈ x}; let α be a plane, then the set of lines
L[α] := {x ∈ L|x ⊂ α} is called a ruled plane. If A ∈ α, then L[A, α] := L[A]∩L[α]
is a pencil of lines.

Proposition 1. Let S be a spread of Π and let Ω be a unisymplecticly complemented
regulization of S. Then {λ(Rc)|R ∈ Ω} =: D is a flockoid of a uniquely determined
Lie quadric L4 ⊂ H5.

Proof. Clearly, (RZ2) implies (FD2).
We consider i(Ω) := #(∩(X |X ∈ Ω)) ∈ {0, 1, 2}, cf. [7, (2,1) and Remark 2.4].

First we show i(Ω) = 0. Assume, to the contrary, i(Ω) ∈ {1, 2} then, by [7, Re-
marks 2.5 and 2.6], Ω is a parabolic or preparabolic (i(Ω) = 1) or a hyperbolic
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(i(Ω) = 2) regulization. From statement (S1) of Section 2 follows that Ω is a multi-
symplecticly complemented regulization, a contradiction to the hypothesis.

By statement (S3), the linear complex G of lines with ScΩ ⊂ G is general, hence
the conics of D are contained in the Lie quadric λ(G) ⊂ H5. By γ we denote the null
polarity associated with G. Let g be an arbitrary generatrix of λ(G), then λ−1(g) is
a pencil L[A, γ(A)] of lines. If λ(Rc) is a conic of D with g ∩ λ(Rc) 6= ∅, then the
regulus Rc contains a line of L[A, γ(A)] and, consequently,Rc has a unique directrix
d ∈ R ⊂ S incident with γ(A). By Corollary 1, L[γ(A)] and S have a single line
s0 = d in common. Because of i(Ω) = 0 and (RZ1), in Ω there exists exactly one
regulus Rd with d ∈ Rd. Conversely, d ∈ Rd and d ⊂ γ(A) imply that there is
exactly one line h ∈ Rc

d incident with γ(A), and from Rc
d ⊂ ScΩ ⊂ G we deduce

h ∈ L[A, γ(A)] and λ(h) ∈ g ∩ λ(Rc
d) with λ(Rc

d) ∈ D because of Rd ∈ Ω. Thus D
is a flockoid of the Lie quadric λ(G). �

Remark 7. Let S be a spread of Π and let Ω be an elliptic regulization of S. Then
there exists a Lie quadric L4 of H5 such that {λ(Rc)|R ∈ Ω} =: D is a flockoid of
L4.

Proof. (a) There exists a general linear complex G of lines which contains the
elliptic net ScΩ. The Lie quadric λ(G) contains the elliptic quadric λ(ScΩ) and
span λ(ScΩ) is a hyperplane of the 4-space spanλ(G). By [7, Proposition 3.1], D
is a flock of λ(ScΩ).

(b) An arbitrary generatrix g of λ(G) has exactly one common point G with
span λ(ScΩ) and G ∈ λ(ScΩ). In the flock D there exists a unique conic k containing
G. Thus (FD1) is valid for D and λ(G). �

Remark 8. Remark 7 does not hold true for a hyperbolic, parabolic or preparabolic
regulization Ω. Part (a) of the above Proof can be done, mutatis mutandis. Part (b)
splits into two cases. If the generatrix g does not belong to the hyperbolic quadric
resp. quadratic cone λ(ScΩ), then, as above, there is a unique conic k ∈ D with
g ∩ k 6= ∅. If the generatrix g belongs to λ(ScΩ), then g ∩ k 6= ∅ holds for all conics
k ∈ D; such a generatrix of the Lie quadric λ(G) could be called a transversal of D.

Remark 9. By [8, 2.1], each elliptic quadric Qe of PGL(3,K) is embeddable into
the Klein quadric H5 of PGL(5,K), shortly Qe ⊂ H5. There exists a 4-space V of
PGL(5,K) containing span Qe and being not tangent to H5. Now V ∩ H5 is a Lie
quadric with V ∩ H5 ⊃ Qe, consequently, each elliptic quadric Qe of PGL(3,K)
is embeddable into the Lie quadric L4 of PGL(4,K). If F is a flock of Qe with
Qe ⊂ L4, then F is a flockoid of L4 (see part (b) of the above Proof).

Before formulating and proving the converse of Proposition 1 and Remark 7 in
Proposition 2 we state some Lemmas about flockoids. The following two Lemmas
are immediate consequences of (FD1) and the properties of a plane section of a
quadric.

Lemma 3. Let D be a flockoid of the Lie quadric L4.
(i) Then different conics of D are disjoint.
(ii) If {P1} and {P2} are different improper conics of D, then P1 ∨ P2 6⊂ L4.
(iii) If g is a generatrix of L4 and k ∈ D satisfies k ∩ g 6= ∅, then g 6⊂ span k and
#(k ∩ g) = 1.
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Lemma 4. Let D be a flockoid of the Lie quadric L4 and let k1 be a proper conic of
D. If k2 ∈ D \ {k1}, then there exists no tangent cone C3 of L4 with k1 ∪ k2 ⊂ C3.

Proposition 2. If D is a flockoid of the Lie quadric L4 with L4 ⊂ H5, then

∪
(
(λ−1(k))c|k ∈ D

)
=: TE(D) (5)

is a spread of Π admitting the regulization

{(λ−1(k))c|k ∈ D} =: TR(D) (6)

and TR(D) is either unisymplecticly complemented or elliptic.

Proof. Let X be an arbitrary point of Π. In TE(D) there exists a line incident
with X if, and only if, there is a conic kX ∈ D such that X is on a line h of the
regulus λ−1(kX). But λ−1(kX) ⊂ λ−1(L4) implies h ∈ L[X, γ(X)], wherein γ denotes
the null polarity associated with λ−1(L4). By (FD1) there is a unique kX ∈ D with
kX ∩λ(L[X, γ(X)]) 6= ∅. Hence there is a unique regulus (λ−1(kX))c ⊆ TE(D) which
contains a line through X. Consequently, TE(D) is a spread.

Next we prove the validity of (RZ1) and (RZ2) for TR(D). Clearly, (FD2) ⇒
(RZ2). Instead of (RZ1) we show even more:
(RZ1*) Each line of TE(D) belongs to exactly one regulus of TR(D).
Let b ∈ TE(D) be arbitrary. We assume

b ∈ (λ−1(k1))
c ∩ (λ−1(k2))

c, {k1, k2} ⊆ D, k1 6= k2. (7)

In the case that both (λ−1(k1))
c and (λ−1(k2))

c are improper reguli with (λ−1(ki))
c =

{gi} and gi ∈ L, i = 1, 2, the lines g1 and g2 are skew and (7) yields the absurdity
b ∈ {g1}∩{g2} = ∅. Hence we may assume, without loss of generality, that (λ−1(k1))

c

is a proper regulus. Each line of (λ−1(k1)) ∪ (λ−1(k2)) meets b. Thus k1 ∪ k2 is
contained in the tangent cone of L4 at the point λ(b), a contradiction to Lemma 4.
Therefore TR(D) is a regulization and, because of k ⊂ L4 for all k ∈ D, TR(D) is
symplecticly complemented.

As (RZ1*) holds for TR(D), so i(TR(D)) = 0 and, by [7, Remarks 2.5 and 2.6],
TR(D) is neither hyperbolic nor parabolic nor preparabolic. �

Now Theorem 1 is proved completely. The process of gaining a spread from a
flockoid via formula (5) is called extended Thas-Walker construction. Using Propo-
sition 1, Remark 7, and Proposition 2 we see: The construction of all spreads of
PG(3,K) with unisymplecticly complemented or elliptic regulization is equivalent
to the construction of all flockoids of the Lie quadric of PG(4,K).

4 Thas-Walker line sets

This Section is a generalization of [8, Section 2.2]. For the rest of this paper, we
assume that the Lie quadric L4 is contained in the Klein quadric H5. We want a
proper conic k ⊂ L4 to be uniquely determined by the line π4(span k), hence we
assume CharK 6= 2 throughout Section 4. Thus span L4 =: L4 and the pole Z
of L4 with respect to H5 are complementary subspaces of Π5, and the projection
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∆ : P5 \ Z → L4, X 7→ (X ∨ Z) ∩ L4 is well-defined. A set T` of lines contained in
L4 is called Thas-Walker line set with respect to L4, if

D(T`) := {π4(x) ∩ L4|x ∈ T ′`} with T ′` := {x ∈ T`|π4(x) ∩ L4 6= ∅} (8)

is a flockoid of L4. By Lemma 1 (ii), a Thas-Walker line set with respect to L4

must not contain a generatrix of L4. If K is quadratically closed, then, by virtue
of Lemma 1 (iv), formula (8) does not yield flockoids of L4 which contain improper
conics. We put

T p
` := {x ∈ T`|#(π4(x) ∩ L4) > 1}. (9)

Remark 10. Let {P} ⊂ L4 be an improper conic. In the case K = R there are
infinitely many lines a with π4(a) ∩ L4 = {P}; see Lemma 1 (iii). In other words,
if T`1 and T`2 are Thas-Walker line sets with respect to L4, then D(T`1) = D(T`2)
implies T p

`1 = T p
`2, but not T ′`1 = T ′`2.

Lemma 5. Denote by G[L4] the set of all generatrices of the Lie quadric L4 and
put G∗[L4] := π4(G[L4]). A set A of lines is a Thas-Walker line set with respect to
L4 if, and only if, the following four conditions hold true:

(TL1) a ⊂ span L4 =: L4 for all a ∈ A.
(TL2) #(Ae) ≤ 2 with Ae := {a ∈ A|a ∩ π4(a) 6= ∅}.
(TL3) If ae ∈ Ae, then #(π4(ae) ∩ L4) = 1.
(TL4) For each plane ξ ∈ G∗[L4] there exists exactly one line a ∈ A with ξ∩a 6= ∅.

Proof. If the intersection of the line a ∈ A and the plane π4(a) is empty, then
π4(a) ∩ L4 is either a proper conic or empty, and conversely. We define D(A)
according to (8). Now (TL2) and (TL3) imply that all elements of D(A) are
proper or improper conics and that D(A) satisfies (FD2), and vice versa. Finally,
(TL4)⇔(FD1). �

If k ⊂ L4 is a proper conic, then(
λ−1(k)

)c
= λ−1

(
Z ∨ π4(span k)

)
and (∆ ◦ λ)

((
λ−1(k)

)c)
= π4(span k). (10)

If α ⊂ L4 is a plane such that α∩L4 is the improper conic {A}, then, by Lemma 2,(
λ−1({A})

)c
= λ−1

(
Z ∨ π4(α)

)
and (∆ ◦ λ)

((
λ−1({A})

)c)
= {A}. (11)

Thus we have the subsequent modification of the extended Thas-Walker construc-
tion:

Lemma 6. Let H5 be the Klein quadric of a classical projective 5-space. If T` is a
Thas-Walker line set with respect to the Lie quadric L4 ⊂ H5, then

T` := ∪
(
λ−1(x ∨ Z)|x ∈ T`

)
with Z = π5(span L4) (12)

is a spread of Π admitting the regulization

Θ` := {λ−1(x ∨ Z)|x ∈ T ′`} (13)

wherein T ′` is defined by (8); Θ` is either unisymplecticly complemented or elliptic.
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Remark 11. If T ′` is contained in a 3-space σ, then T` is a symplectic spread, since
λ(T`) belongs to the hyperplane Z ∨ σ of Π5.

Remark 12. If all lines of T ′` have a common point, then Θ` is an elliptic reguliza-
tion.

Remark 13. If T p
` contains two skew lines, then Θ` is a unisymplecticly comple-

mented regulization of T`.
The image of a proper conic m under any projection through a point Z ∈

span m =: m onto a line of m (not through Z) will be called a linear segment.
We say that Φ(T ′`) := ∪(t|t ∈ T ′`) is the ruled surface determined by T ′` and that
each line t ∈ T ′` is a T ′`-generatrix of Φ(T ′`).

Lemma 7. Suppose that the conditions (and notations) of Lemma 6 hold. If each
linear segment sx with sx ⊂ Φ(T ′`) is contained in a T ′`-generatrix of Φ(T ′`) and if
Φ(T ′`) contains no proper conic which is the ∆-image of a conic of H5, then
(1) each proper regulus contained in T` belongs to Θ`;
(2) T` admits exactly one regulization, namely Θ`.

Proof. Assume, to the contrary, that R is a proper regulus with R ⊂ T` and
R 6∈ Θ`. Put r := span λ(R). If Z 6∈ r, then (∆ ◦ λ)(R) ⊂ Φ(T ′`) is a proper conic
which is the ∆-image of the proper conic λ(R) ⊂ H5. If Z ∈ r, then (∆◦λ)(R) =: sr
is a linear segment with sr ⊂ Φ(T ′`). From R 6∈ Θ` follows that sr is not contained
in a T ′`-generatrix of Φ(T ′`). �

Remark 14. Using the language of descriptive geometry we can say that L4 is the
contour (silhouette) of H5 under ∆. Without proof we mention: If c is a proper
conic of H5 with c 6⊂ L4 and Z 6∈ c := span c, then ∆(c) is ”doubly tangent to L4”,
i.e., the determination of L4∩∆(c) is equivalent to the determination of the zeroes of
a biquadratic polynomial which splits into two (not necessarily different) quadratic
polynomials. An arbitrary biquadratic polynomial Ax4+Bx3+Cx2+Dx+E ∈ K[x]
splits into two quadratic polynomials if, and only if,

AD2 −EB2 = 0 and 8A2D + B3 − 4ABC = 0; (14)

(extend [1, p.60] where K = R is assumed). In geometric terms: If L4∩c =: l4 is not
tangent to L4, then ∆(c) and L4 determine the same involution of conjugate points
in l4 and the pole of l4 with respect to ∆(c) is incident with π4(l4); if l4 is tangent to
L4 at the point H, then ∆(c) hyperosculates L4 ∩ span∆(c) at H. The converse is
not always true: Let b ⊂ L4 be a proper conic which is tangent to L4 at the different
points D1 and D2. The quadratic cone Z∨b and the quadric H5∩ span (Z∨b) =: h5

have common tangent planes at D1 and D2. If h5 ∩ (Z ∨ b) 6= {D1, D2}, then
h5 ∩ (Z ∨ b) consists of two (not necessarily different) conics. But for K = R it is
easy to give an example of a quadratic cone and a quadric such that their complete
intersection consists of two different points.

Lemma 8. Suppose that the conditions of Lemma 7 hold and that T p
` contains two

skew lines t1,t2. Let κ ∈ AutT` ⊂ PΓL(Π) and let κλ be the collineation of Π5

induced by κ (i.e., λ ◦ κ = κλ ◦ λ). Then

(3) κλ(Z) = Z and κλ(L4) = L4 (4) κλ(T
p
` ) = T p

` .
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(5) If Θ` contains two different improper reguli {g1} and {g2}, then {g1} and {g2}
are fixed or interchanged by κ. The points λ(g1) and λ(g2) are fixed or interchanged
by κλ.

Proof. Now (Z ∨ tj) ∩H5 =: c∗j are proper conics with λ−1(c∗j) ∈ Θ` (j = 1, 2).
As t1 and t2 are skew, so

Z = span c∗1 ∩ span c∗2. (15)

By Lemma 7 (1), κ(λ−1(c∗j )) ∈ Θ`, hence Z ∈ κλ(span c∗j) for j = 1, 2. Consequently,
κλ(Z) = Z and κλ(L4) = L4.

If t ∈ T p
` , then Rt := λ−1(t ∨ Z) ∈ Θ` is a proper regulus contained in T` and

hence, by Lemma 7 (1), κ(Rt) ∈ Θ`. Thus κλ(t) = spanλ(κ(Rt)) ∩ L4 ∈ T p
` , i.e.,

(4) is valid.
By Remark 13, Θ` is a unisymplecticly complemented regulization and i(Θ`) = 0,

because of [7, Remarks 2.5 and 2.6]. By Lemma 7 (1) and [7, Remark 2.8], there is
no proper regulus X ⊂ T` with {gk} ⊂ X , thus there is no proper regulus Y ⊂ T`
with κ({gk}) ∈ Y and, consequently, κ({gk}) ∈ {κ({g1}), κ({g2})}, k = 1, 2. �

Remark 15. By Remark 10, the statement κλ(T
′
`) = T ′` is not necessarily true.

Lemma 9. Assume K = R and let T` be a spread constructed from a Thas-Walker
line set T` via (12). Put L4 := span L4 and

Aut (L4, T
p
` ) := {ξ ∈ PGL(L4)|ξ(L4) = L4 and ξ(T p

` ) = T p
` }.

If each collineation κ ∈ AutT` ⊆ PGL(Π) induces a collineation κλ of Π5 with
κλ(L4) = L4 and κλ(T

p
` ) = T p

` , then

g : AutT` → Aut (L4, T
p
` ), η 7→ ηλ|L4

is an isomomorphism and AutT` = {idLat(Π)} ⇔ Aut (L4, T
p
` ) = {idLat(L4)}.

Proof. The assumptions imply that g is a map from the group AutT` into the
group Aut (L4, T

p
` ). Clearly, g is homomorphic. Up to notational modifications, the

proof of the surjectivity of g can be taken from the proof of [8, Lemma 2.2.4]; we
point out that a quadratic form which describes the Lie quadric L4 has signature
(+ + +−−) or (−−−+ +). Finally,

ξλ|L4 = idLat(L4) ⇔ ξλ|L4 = idL4 ⇔ ξ|λ−1(L4) = idλ−1(L4) ⇔ ξ = idLat(Π)

implies ker g = {idLat(Π)}. �

Remark 16. A spread S of Π with AutS = {idLat(Π)} is called rigid. Explicitly
given examples of rigid spreads are very rare; cf. [4] for the finite case and [6] for
PG(3,R).

I would like to express my thanks to H. HAVLICEK (Vienna) for valuable sug-
gestions in the preparation of this article.
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