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Abstract
A computational approach to obtain normal forms for equilibrium points

of three-dimensional autonomous systems, having a linear degeneracy corre-
sponding to a triple-zero eigenvalue, is presented. Also, we provide the explicit
expressions for the normal form coefficients, and analyze some additional sim-
plifications that can be achieved.

The results are applied in the analysis of bifurcation behaviours in an
autonomous electronic oscillator.

1 Introduction

The normal form theory is an useful tool to build, for the analysis of a given dynam-
ical system, another one which is equivalent and easier to study. Typically, when
one is dealing with a nonhyperbolic situation, the full consideration of nonlinear
terms in the system is required. So, for each degeneracy in the linear part, it is
very relevant to determine the nonlinear terms that can be removed by means of
successive changes of variables, in order to obtain the simplest equivalent system
which gives account of the original dynamics.

For the most frequent bifurcation cases, normal forms have been obtained (see
[8], [10]). Here, following a line of previous works (see [7] and references therein) we
will give a computational approach to build normal forms corresponding to a triple
zero eigenvalue in the linear part. This situation was already considered in [10] but
our approach seems to be more interesting from the point of view of applications: we
give explicit expressions for the coefficients of the normal form and the changes of
variables can be easily computed. Another important feature is that the algorithms
used are very efficient when implemented in standard computer algebra systems.
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2 Normal Forms and Lie Transforms

Let us consider a dynamical system in R3 with an equilibrium point at the origin,
whose linearization matrix has a triple zero eigenvalue with geometric multiplicity
one. We will assume that the linearization matrix is put in Jordan form:

A =

 0 1 0
0 0 1
0 0 0

 . (1)

The basis of our approach is to make the changes of variables in successive steps,
without affecting in some sense previous steps. More explicitely, let us denote Hj

the linear space of tridimensional vector homogeneous polynomials in three variables
of degree j. Suppose that we perform the near-identity transformation

x = x̃+ φk(x̃), φk ∈ Hk, k ≥ 2,

in the system
ẋ = Ax+

∑
j≥2

Fj(x), Fj ∈ Hj . (2)

It is not difficult to show that the transformed system can be written as ˙̃x = Ax̃+∑
j≥2 F̃j(x̃) where F̃j ∈ Hj, and the following relations hold:

• F̃j = Fj for j = 2, 3, . . . , k − 1 and

• F̃k = Fk − Lkφk.

Here, Lk : Hk −→ Hk is the linear operator defined by Lkφk(x) = Dφk(x)Ax −
Aφk(x). This operator is called the homological operator.

If Fk belongs to Rk, the range of Lk, the terms of degree k can be eliminated
with an appropiate choice of φk. Otherwise, one can split Hk = Rk ⊕ Ck (where Ck
denotes a complementary subspace for Rk to be later selected explicitely) and write

Fk = F r
k + F c

k with F r
k ∈ Rk, F

c
k ∈ Ck.

It is easy to see that there exists φk such that Lkφk = F r
k . Then, we can obtain

F̃k = F c
k ∈ Ck. Thus, it is clear that the choice of Ck will determine the structure of

normal forms to be achieved.
Another key observation is that the above procedure can be accomplished in a

recursive way by means of an algorithmic scheme described in detail elsewhere (see
[9], [1]). Here, we only present a slight adaptation which is more convenient for
our purpose. For that, let us introduce a Lie bracket operation defined as [U, V ] =
DU · V − DV · U for arbitrary tridimensional functions U, V . Let consider the
succession of functions defined by

W1,1 = 1!F2,

Wk,1 = k!Fk+1 +
k−2∑
j=0

(
k − 1
j

)
(k − j − 1)! [Fk−j, Uj ] , k ≥ 2,

Wk,l = Wk,l−1 +
k−l∑
j=0

(
k − l
j

)
[Vk−j−1,l−1, Uj] , 2 ≤ l ≤ k,
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where Uk−1 ∈ Hk+1 is selected such that

Lk+1 (Uk−1) = W r
k,k (the projection of Wk,k onto Rk), (3)

and Vk,l = Wk,l −W r
k,k, for l = 1, . . . , k. Notice that Wk,l ∈ Hk+1 for all l. The

normal form for the system (2) can be obtained from the elements Wk,k:

F̃k+1 =
1

k!
Πk+1 (Wk,k) =

1

k!
W c
k,k,

where Πk+1 denotes the projection operator onto Ck+1. This treatment is very ad-
vantageous because the succession {Wk,l} can be organized in a Lie triangle, easy
to implement in a symbolic language

W1,1 → U0

W2,1 W2,2 → U1

W3,1 W3,2 W3,3 → U2
...

...
...

. . .

Wk,1 Wk,2 Wk,3 · · · Wk,k → Uk−1
...

...
...

...
...

. . .

The elements in the row k have degree k + 1 and Uk−1, F̃k+1 are obtained from the
diagonal element Wk,k.

The above procedure is valid for any linearization matrix A. In next section, we
will take advantage of specific structure of linear part A given in (1). It should also
be noticed that the normal form will not necessarily be unique. On the one hand,
we have some freedom in the choice of Ck. Furthermore, if dim KerLk+1 > 0, we can
also introduce some parameters, describing the general solution of equations (3). As
we will show below, selecting adequately these parameters, we are able to annihilate
upper degree terms in the normal form.

3 Computing Normal Forms

For the effective calculation of normal forms, let us consider the system (2) written
as  ẋ

ẏ
ż

 = A

 x
y
z

 +

 f(x, y, z)
g(x, y, z)
h(x, y, z)

 = A

 x
y
z

+
∑
k≥2

 fk(x, y, z)
gk(x, y, z)
hk(x, y, z)

 . (4)

Our first task is to define explicitely the spaces Ck and to perform the compu-
tations indicated in the previous section, which includes the resolution of the linear
equations (3), for each k ≥ 2. For that, it is very efficient to use a linear space
setting, defining canonical bases for Hk and obtaining the corresponding matrix
representation of operator Lk. With these ideas, and selecting reverse lexicographic
order for elements in the bases, a computer algebra code has been written in RE-
DUCE 3.2. We will now discuss some specific aspects for our case (for more details,
see [6]).
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Let us introduce, to choose Ck for this case, the integersm =
⌊
k
2

⌋
and m′ =

⌊
k−1

2

⌋
,

where b·c denotes the floor function. The orthogonal complementary subspace to
Rk (with respect to a suitable inner product, see [2]) is the subspace of dimension⌊

3(k+1)
2

⌋
given by

KerL∗k = span

p(j)
 x
y
z

 , 0 ≤ j ≤ m′; (5)

p(j)

 0
x
y

 , 0 ≤ j ≤ m′; p(j)

 0
0
x

 , 0 ≤ j ≤ m

 ,
where L∗k is the homological operator corresponding to the matrix A∗ and p(j) =
xk−2j−1(y2 − 2xz)j. A simpler complementary subspace to Rk can be obtained by
means of a slight modification in the previous basis, writing

KerL∗k = span

p(j)
 x
y
z

 , 0 ≤ j ≤ m′; p(j)

 0
x
y

 , 0 ≤ j ≤ m′; (6)

p(0)

 0
0
x

 ; p(j)

 0
0
x

 + 2p(j − 1)

 x
y
z

 , 1 ≤ j ≤ m

 .
From here, it is not difficult to pass to the following complementary subspace

Ck = span


 0

0
xk−j−1zj+1

 , 0 ≤ j ≤ m′ ;

 0
0

xk−2j−1y2j+1

 , 0 ≤ j ≤ m′;

 0
0

xk−2jy2j

 , 0 ≤ j ≤ m

 , (7)

by using the orthogonality between the elements of the bases (6) and (7) (see [3]).
Thus, the normal form we will compute has the following structure:

ẋ = y,

ẏ = z, (8)

ż =
∑
k≥2


m′∑
j=0

(
a

(k)
j xk−j−1zj+1 + b

(k)
j xk−2j−1y2j+1

)
+

m∑
j=0

c
(k)
j xk−2jy2j

 .
In the computation of the above coefficients, we can take into account the possi-

bility of solving equations (3) including an arbitrary element of KerLk, which turns
out to be

KerLk = span

q(j)
 x
y
z

 , q(j)
 y
z
0

 : 0 ≤ j ≤ m′ ; q(j)

 z
0
0

 : 0 ≤ j ≤ m

 ,
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where q(j) = zk−2j−1(y2−2xz)j. Doing so, and denoting λ
(i)
k,j the free coordinates in

KerLk, the REDUCE code gives us the following general expressions for the normal
form coefficients up to third degree:

a
(2)
0 = fxx + gxy + hxz,

b
(2)
0 = gxx + hxy,

c
(2)
0 = hxx/2,

c
(2)
1 = (2fxx + 2gxy + hyy)/2,

a
(3)
0 = (−16λ

(1)
2,0hxx + 8λ

(3)
2,1hxx − 4fyzhxx − fyygxx − 2fxzgxx + 4fxygxy + 4fxyhxz

−2fxxgyy − 4fxxhyz − 4gzzhxx − 2gyzgxx + 2gyygxy + 2gyyhxz − 3gxxhzz

+4fxxx + 4gxxy + 4hxxz)/8,

a
(3)
1 = (8λ

(1)
2,0fxx + 8λ

(1)
2,0gxy + 16λ

(1)
2,0hyy − 24λ

(1)
2,0hxz − 24λ

(3)
2,1fxx − 24λ

(3)
2,1gxy − 8λ

(3)
2,1hyy

−8λ
(3)
2,1hxz + 8fyzfxx + 8fyzgxy + 4fyzhyy + 2fyyfxy + 3fyygyy − 2fyygxz

+2fyyhyz − 4fxzfxy − 4fxzgyy + 4fxygyz + 2fxyhzz + 4fxxgzz + 4gzzgxy

+4gzzhyy − 4gzzhxz + 4gyzgyy + 8gyzhyz + 3gyyhzz − 2gxzhzz + 6hzzhyz

−4fxyy + 8fxxz − 4gyyy + 8gxyz − 4hyyz + 8hxzz)/16,

b
(3)
0 = (4fyyhxx + 12fxygxx + 4fxyhxy − 12fxxgxy − 4fxxhyy − 8fxxhxz − 12gyzhxx

+3gyygxx + 6gyyhxy − 6gxzgxx − 8gxyhxz − 6gxxhyz − 8hzzhxx − 8hyzhxy

+4gxxx + 4hxxy)/8,

b
(3)
1 = (−8λ

(1)
2,0gxx − 8λ

(1)
2,0hxy + 8λ

(2)
2,0hxx + 40λ

(3)
2,1gxx + 40λ

(3)
2,1hxy − 4fzzhxx − 16fyzgxx

−8fyzhxy + 6fyyfxx + 6fyygxy − 4fyyhxz − 12fxzfxx − 4fxzgxy − 2fxygyy

−4fxygxz + 4fxyhyz − 4fxxgyz − 2fxxhzz − 4gzzgxx − 12gzzhxy − 20gyzgxy

−12gyzhyy + 16gyzhxz + g2
yy + 2gyygxz − 2gyyhyz − 8gxzhyz − 6gxyhzz − 12hzzhyy

+8hzzhxz + 4gxyy − 8gxxz + 4hyyy − 8hxyz)/24,

c
(3)
0 = (6fxyhxx − 6fxxhxy + 3gyyhxx − 6gxxhxz − 6hyzhxx + 2hxxx)/12,

c
(3)
1 = (−16λ

(1)
2,0hxx + 28λ

(3)
2,1hxx − 12fyzhxx + fyygxx + 2fyyhxy − 6fxzgxx + 4fxygxy

−4fxxgxz − 4fxxhyz − 8gzzhxx − 6gyzgxx − 8gyzhxy + 4gyygxy + 2gyyhyy

−4gxzgxy − 4gxyhyz − 3gxxhzz − 6hzzhxy − 2hyzhyy + 4fxxx + 4gxxy + 2hxyy)/4.

We remark that the interest of the above approach is to be able of generating the
expressions for specific systems, without having to substitute values in the previous
formulas.
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4 From Normal to Hypernormal Forms

From the above expressions, we see that, under certain hypothesis, one can choose
adequately the parameters λ’s, in order to annihilate some normal form coefficients
of order greater than three. Then, we can obtain reduced normal forms, called
hypernormal forms, see [11].

Before studying this possibility, we will show that something similar can be
achieved for the second degree terms. The key idea is to perform linear changes
depending on parameters, namely: x

y
z

 = eBγ

 x
y
z

 , γ ∈ R, (9)

where B is a matrix belonging to ZA, the centralizer of A, i.e., AB = BA. Using
that eBγA = AeBγ, it is easily obtained that the transformed system has the same
linear part.

In our case, we have

ZA = span

I, A, C =

 0 0 1
0 0 0
0 0 0


 ,

and then, we can write B = αI+βA+ δC. Our goal is to perform the linear change
(9), later put the resulting system in normal form and finally, select the parameters
α, β, δ and γ in order to annihilate some terms in the normal form. It can be shown
(see [6]) that the parameters α, β and γ are not essential, i. e., they do not provide
any simplification. So, we will take α = β = 0, γ = 1, and then B = δC. The
change is  x

y
z

 = e−B

 x
y
z

 =

 1 0 −δ
0 1 0
0 0 1


 x
y
z

 . (10)

Applying to the transformed system the results of Section 2, we obtain the following
expressions for the second order normal form coefficients:

a
(2)
0 = fxx + hxz + gxy, b

(2)
0 = hxy + gxx,

c
(2)
0 = hxx/2, c

(2)
1 = δhxx + fxx + hyy/2 + gxy.

Then, if hxx 6= 0, we can achieve c
(2)
1 = 0 by selecting δ adequately. Moreover, we

can obtain further simplifications in higher order terms by means of the constants
λ’s:

Theorem 4.1 Let us consider the system (4), and assume that hxx 6= 0. Then, a
hypernormal form up to third order is

ẋ = y,

ẏ = z,

ż = a1xz + a2xy + a3x
2 + b1xz

2 + b2x
2y + b3x

3.
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Proof:
Denote by

Fk(x, y, z) =

 fk(x, y, z)
gk(x, y, z)
hk(x, y, z)

 ,
the k–degree terms of the system (4), and suppose that the second-order terms are
already put in hypernormal form, i. e.,

F2 =

 0
0

a1xz + a2xy + a3x
2

 .
The triangular scheme in this cases becomes

F2

2F3 + [F2, U0] 2F3 + 2 [F2, U0]

where U0 satisfies LkU0 = Π2 (F2) = 0 (and therefore F̃2 = F2 ∈ C2). Selecting U1

adequately, we can obtain the expression for F̃3 from the last diagonal element:

F̃3 =
1

2!
Π3 (2F3 + 2 [F2, U0]− L3U1) = F c

3 + Π3 ([F2, U0]) .

To study how F c
3 may be simplified, let us define the linear operator M : KerL2 −→

C3 by M(U) = Π3 ([φc2, U ]). The matrix representation of M , considering the basis
of L2:v1 = z

 x
y
z

 , v2 = z

 y
z
0

 , v3 = z

 z
0
0

 , v4 = (y2 − 2xz)

 1
0
0


 ,

is given by
v1 v2 v3 v4

x2z −4a3 0 0 2a3

xz2 −3a1

2
0 0 −a1

2

x2y 0 0 0 0
x3 0 0 0 0
y3 −a2

3
2a3

3
0 5a2

3

xy2 −8a3 0 0 14a3 6×4

Under the hypothesis a3 6= 0 (or equivalently hxx 6= 0), this matrix has rank 3, and
a complementary subspace to the range of M is given by

span


 0

0
xz2

 ,
 0

0
x2y

 ,
 0

0
x3


 .

Therefore, these are just the terms that appear in the third-order hypernormal form
of the statement of the theorem. �
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Similar ideas can be used to obtain different hypernormal forms under adequate
hypothesis:

Theorem 4.2 If hxx 6= 0, a fifth-order hypernormal form for the system (4) is

ẋ = y,

ẏ = z,

ż = a1xz + a2xy + a3x
2 + b1xz

2 + b2x
2y + b3x

3 + c1x
3z + c2x

4 + c3x
2y2,

where c1 = 0 or c3 = 0.

Finally, for systems with Z2–symmetry we have obtained the following result:

Theorem 4.3 If the system (4) has Z2–symmetry, and hxxx 6= 0 (or equivalently

c
(3)
0 6= 0), a hypernormal form up to fifth order is given by

ẋ = y,

ẏ = z,

ż = b1x
2z + b2xz

2 + b3x
2y + b4y

3 + b5x
3 + c1x

2z3 + c2x
4y + c3x

5 + c4x
3y2.

5 Application to an Autonomous Electronic Osc illator

In this last section, we consider the system

rẋ = − (β + ν)x+ βy −A3x
3 +B3(y − x)3 − A5x

5 +B5(y − x)5,

ẏ = βx− (β + γ) y − z − C3y
3 −B3(y − x)3 − C5y

5 − B5(y − x)5, (11)

ż = y,

governing the behaviour of an autonomous electronic circuit widely analysed (see
[4], [5] and references therein, where pitchfork, Hopf, Takens–Bogdanov and Hopf–
pitchfork bifurcations of the equilibrium at the origin have been studied). The
linear degeneracy of the origin corresponding to a triple zero eigenvalue occurs at
the critical values −νc = βc = −γc =

√
r and −νc = βc = −γc = −

√
r (see figure

1). Here we focus our attention on the first case. We begin making a linear change
of variables x

y
z

 = P

 x
y
z

 =


1 0 0
−β+ν

r
β
r

0(
β+ν
r

)2
+ β2

r
−β
r

(
β+ν
r

+ β + γ
)
−β
r


 x
y
z

 ,
bringing the linear part of system (11) to the form 0 1 0

0 0 1
ε1 ε2 ε3

 ,
where

ε1 = −β + ν

r
, ε2 = −r + βν + βγ + νγ

r
, ε3 = −rβ + rγ + β + ν

r
.
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Figure 1: Partial bifurcation set of system 11 in the ν–β–γ parameter space
where several bifurcations of codimension 1 (PI, pitchfork), 2 (TB1, TB2, Takens–
Bogdanov; HZ, Hopf–zero) and 3 (TZ1, TZ2, triple–zero) appear.

These expressions allow to verify the transversality condition:

∂(ε1, ε2, ε3)

∂(ν, β, γ)
=

2

r
3
2

6= 0 at ν = νc, β = βc, γ = γc,

i. e., the change of parameters ν, β, γ ↔ ε1, ε2, ε3 is invertible.
Next, we compute the hypernormal form up to third order for the system (11) for

the critical values of the parameters. To this end, two linear changes of variables are
in order: the first one taking the linear part into the Jordan form, and the second
one of the form indicated in (10). Globally, we make the linear change x

y
z

 = P−1eB

 x
y
z

 =

 1 0 δ
0
√
r 0√

r 0
√
r(δ − 1)


 x
y
z

 ,
obtaining a system of the form (4). The expressions for the third-order normal form
coefficients are

a
(3)
0 = −3

rB3 + A3 +B3

r
, a

(3)
1 = 3

r2B3 + r2C3 − 2rδB3 + rB3 − 2δA3 − 2δB3

2r
,

b
(3)
0 =

6B3√
r
, b

(3)
1 =

2B3(r − 2δ)√
r

,

c
(3)
0 = −A3 +B3

r
, c

(3)
1 = 3

−3rB3 + 2δA3 + 2δB3 − 2A3 − 2B3

r
.

We will take δ = r
2

in order to annihilate the coefficient b
(3)
1 (note that other elec-

tions of δ permit to annihilate a
(3)
1 or c

(3)
1 under adequate hypothesis for A3, B3). The
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Figure 2: Partial bifurcation set in the ν–β plane for γ = −0.6, r = 0.6, A3 = 0.3286,
B3 = 0.9336, C3 = A5 = B5 = C5 = 0. Four codimension 2 bifurcation points
(TB, Takens–Bogdanov; HZ, Hopf–zero; DH, degenerate Hopf bifurcation of the
origin; PSN, pitchfork–saddle–node of periodic orbits) and several codimension 1
bifurcation curves (PI, pitchfork of equilibria; H, Hopf of the origin; h, Hopf of the
nontrivial equilibria; Hom, homoclinic orbit; SN and sn, saddle–node bifurcations of
periodic orbits; HH, torus bifurcation; PPO, pitchfork of periodic orbits) are drawn.
The point d on Hom marks the beginning of the S̆il’nikov region.



Hypernormal Form Calculation for Triple-Zero Degeneracies 367

fifth-order hypernormal form of Theorem 4.3 has been computed, but the lengthy
expressions for the coefficients prevent us to show them here.

The bifurcation analysis of this hypernormal form constitutes the starting point
in the numerical study carried out. The linear degeneracies of the origin arising in
this system are of codimension one (pitchfork and Hopf bifurcations), two (Takens–
Bogdanov and Hopf–pitchfork) and three (triple–zero).

We have investigated numerically the bifurcation set in the ν–β plane for a value
of γ = −0.6, relatively close to the triple–zero point (see figure 2). We have obtained
a nondegenerate Takens–Bogdanov bifurcation TB (where a pitchfork bifurcation
curve of equilibria PI intersects with a subcritical Hopf bifurcation of the origin,
labelled H). From TB, three codimension 1 bifurcation curves appear: a curve h
of supercritical Hopf bifurcation of nontrivial equilibria, a curve Hom of homoclinic
connections and a curve sn of saddle–node bifurcation of periodic orbits. The homo-
clinic curve Hom enters quickly into the S̆il’nikov region —this occurs at point d—
giving rise to the appearance of complex periodic and aperiodic behaviour. Finally,
it will disappear in a T-point spiralling around it (we haven’t drawn this spiral for
the sake of clarity because the T-point is very close to TB). There is another codi-
mension 2 organizing centre: HZ, corresponding to a Hopf–pitchfork bifurcation.
From such a point, several codimension 1 curves emerge: the curve h (which joins
TB and HZ), a curve PPO of pitchfork bifurcation of periodic orbits and a curve HH
of torus bifurcation. There is also a degenerate Hopf bifurcation point DH (below
it, H is supercritical), and a saddle–node bifurcation of periodic orbits SN appears.
This bifurcation curve coalesces with PPO at PSN (a double–one codimension 2
bifurcation point). This point will be the end of the torus bifurcation curve HH
cited above.

The richness of this bifurcation set shows the complex situations that may arise
in the vicinity of the triple–zero degeneracy point. Numerical simulation works have
taken advantage of the analytical results provided by the study of its normal form.
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