
Finite p-groups with few normal subgroups

Gheorghe Silberberg

Abstract

This paper investigates the finite nonabelian p-groups G with the property
that every normal subgroup of G either contains the commutator subgroup
G′, or is contained in the center of G. We will prove that the nilpotency class
of G is 2 or 3 and we will find all such groups with nilpotency class 3.

1 Introduction

Let G be a finite group. Let us denote by S(G) the set of the subgroups of G, by
N (G) the set of the normal subgroups of G, by (H] the ideal generated by H in the
lattice (S(G),⊆), and by [H) the filter generated by H in the same lattice. Then

(Z(G)] ∪ [G′) ⊆ N (G) ⊆ S(G). (1)

If the group G is abelian, then in (1) we have equalities.
If G is a finite nonabelian group, then the right inclusion becomes an equality

iff G is one of the well-known Dedekind groups.
A natural problem is the search of the finite nonabelian groups which realize the

equality in the left inequality from (1). These groups have as few normal subgroups
as possible. Unfortunately, the family of these groups is too big. (It contains, for
example, all the finite simple groups.) Hence, we decided to restrict ourselves to the
case of the finite p-groups.

All the groups in discussion will be finite.
All the notation is standard.
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2 FNS-p-groups and AF- p-groups

Definition 2.1. A nonabelian p-group G is called FNS-group (”Few Normal Sub-
groups”) if

H �G⇔ H ≥ G′ or H ≤ Z(G) ∀H ∈ S(G). (2)

First we will identify some particular families of FNS-groups.

Proposition 2.1. Let p be a prime and let G be a nonabelian group of order p3 or
p4. Then G is a FNS-group.

Proof Let H be a normal subgroup of G.
If |H| ≤ p, then H ≤ Z(G).
If |H| ≥ p2, then |G/H| ≤ p2, so G/H is abelian and H ≥ G′. �

A much more interesting family of FNS-groups is the family of the AF-p-groups.

Definition 2.2. A nonabelian p-group G is called AF-group (”Abelian Factors”) if
every proper quotient of G is abelian.

Proposition 2.2. Every AF-p-group is a FNS-p-group.

Proof Let G be an AF-p-group and let H be a proper normal subgroup of G.
Then G/H is abelian, hence H ≥ G′. �

The structure of the AF-p-groups is established by the following result.

Theorem 2.1. Let p be a prime and let G be a nonabelian group with |G| =
pn, |Z(G)| = pm, 1 ≤ m ≤ n− 2.
Then G is a AF-group iff n−m is even and

a) G ∼= Q8YQ8Y . . .YQ8︸ ︷︷ ︸
n−m

2

or G ∼= Q8YQ8Y . . .YQ8︸ ︷︷ ︸
n−m

2
−1

YD8, if pm = 2;

b) G ∼= Kpm+2YKpm+2Y . . .YKpm+2︸ ︷︷ ︸
n−m

2

or G ∼= Lpm+2YLpm+2Y . . .YLpm+2︸ ︷︷ ︸
n−m

2

, if pm 6= 2.

(Here Kpm+2 = 〈a, b|apm+1
= bp = 1, [a, b] = ap

m〉 and

Lpm+2 = 〈a, b, c|apm = bp = cp = [a, b] = [a, c] = 1, [b, c] = ap
m−1〉.

By GYH we have denoted the central product of the finite groups G and H, if these
groups have cyclic isomorphic centers.)

Proof This is Theorem 3.1 in [7]. �

The preceeding examples hint that the family of the FNS-p-groups is large enough
and that the members of this family have few properties in common. One of these
common properties tells that the nilpotency class of a FNS-p-group is lower than 4.

Proposition 2.3. Let G be a nonabelian FNS-p-group. Then the nilpotency class
of G is 2 or 3.

Proof Assume that the class of G is greater than 2. Then Z(G) < Z2(G)�G. It
results G′ ≤ Z2(G), hence G/Z2(G) is abelian and G has class 3. �
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In the rest of this article we will classify all the FNS-p-groups of class 3 and
we start this task with some necessary conditions for a p-group of class 3 to be a
FNS-group.

Proposition 2.4. Let G be a FNS-p-group of class 3. Then Z(G) < G′.

Proof Because G has class 3 we may choose an element x from G \ Z(G) such
that x · (G′ ∩ Z(G)) has order p in the nontrivial group G′/(G′ ∩ Z(G)). Since
[G′, G] ≤ G′ ∩ Z(G), we derive that x · (G′ ∩ Z(G)) ∈ Z(G/(G′ ∩ Z(G))).

Let us assume that the conclusion of Proposition 2.4 is false. One may then
choose an element y from Z(G) \ G′ such that y · (G′ ∩ Z(G)) has order p in the
group Z(G)/(G′ ∩ Z(G)). It results y · (G′ ∩ Z(G)) ∈ Z(G/(G′ ∩ Z(G))).

Now (xy) · (G′ ∩ Z(G)) is a central element of order p in G/(G′ ∩ Z(G)), hence

〈(xy) · (G′ ∩ Z(G))〉�G/(G′ ∩ Z(G)).

We will denote by H the subgroup of G generated by the element xy and the
subgroup G′ ∩ Z(G). Obviously we have H �G and |H : (G′ ∩ Z(G))| = p. But G
is a FNS-group and H is not contained in Z(G), hence G′ ≤ H. One gets

1 < G′/(G′ ∩ Z(G)) ≤ H/(G′ ∩ Z(G)),

the last group having order p. It results G′ = H and xy ∈ G′, a contradiction. �

The following result establishes a link between the FNS-groups of nilpotency
class 3 and the AF-groups.

Proposition 2.5. Let G be a FNS-group of nilpotency class 3. Then G/Z(G) is an
AF-group.

Proof Let Ḡ = G/Z(G) and let H̄ be a proper normal subgroup of Ḡ. There
exists a proper normal subgroup H of G such that Z(G) < H and H/Z(G) = H̄.

One must have G′ ≤ H, so G/H is abelian. But

Ḡ/H̄ = (G/Z(G))/(H/Z(G)) ∼= G/H.

In conclusion, Ḡ is an AF-group. �

Corollary 2.1. If G is a FNS-p-group of class 3, then |G′ : Z(G)| = p and
Z2(G)/Z(G) is a cyclic group.

Proof Let Ḡ = G/Z(G). Then Ḡ is an AF-p-group and Lemma 2.1 from [7] tells
that such a group has cyclic center, and its commutator subgroup has order p.

But Ḡ′ = G′/Z(G) and Z(Ḡ) = Z2(G)/Z(G). �

Based on Proposition 2.5, we need to study which AF-p-group may be written
in the form G/Z(G).

Definition 2.3. A group H is called capable if there exists a group G such that
H ∼= G/Z(G).

One possesses a very useful necessary condition for a group being capable.

Lemma 2.1. Let H be a capable group and let G be a generating system for H.
Then ⋂

{〈g〉|g ∈ G} = 1.

Proof It follows from [2], Lemma 3.1. �
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We may now determine all the capable AF-p-groups.

Theorem 2.2. The only capable AF-p-groups are:
a) D8 if p = 2;
b) Lp3 if p 6= 2.

Proof Let H be an AF-p-group, that is one of the groups from Theorem 2.1.
Let us assume that H is the central product of r copies (r ≥ 1) of the group Q8.

Then
H = 〈a1, a2, . . . , ar, b1, b2, . . . , br|a4

1 = 1, a2
i = b2

i = a2
1,

[ai, aj] = [bi, bj] = 1, [ai, bj] = a
2δij
1 〉,

where i, j ∈ {1, 2, . . . , r}. Obviously we have

〈a1〉 ∩ 〈a2〉 ∩ . . . ∩ 〈ar〉 ∩ 〈b1〉 ∩ 〈b2〉 ∩ . . . ∩ 〈br〉 = 〈a2
1〉 6= 1,

and consequently H is not capable for any value r ≥ 1.
Let H be the central product of r copies (r ≥ 1) of the group Q8 with one copy

of the group D8. Then

H = 〈a1, . . . , ar, b1, . . . , br, c, d|a4
1 = d2 = 1, a2

i = b2
i = c2 = a2

1,

[ai, aj] = [bi, bj] = [ai, c] = [ai, d] = [bi, c] = [bi, d] = 1, [ai, bj] = a
2δij
1 , [c, d] = a2

1〉,
where i, j ∈ {1, 2, . . . , r}. One may choose for H the generating system

G = {a1, . . . , ar, b1, . . . , br, c, a1d}

and one gets ⋂
{〈g〉|g ∈ G} = 〈a2

1〉 6= 1,

Hence H is not capable for any r ≥ 1.
Observing that for every group G of order 16 and of class 3 we have G/Z(G) ∼=

D8, it results that D8 is the only capable AF-p-group with the center of order 2.
In the rest of the proof p will be an arbitrary prime.
Let H be the central product of r copies (r ≥ 1) of the group Kpn (n ≥ 3). Then

H = 〈a1, a2, . . . , ar, b1, b2, . . . , br|ap
n−1

1 = bpi = 1, api = ap1,

[ai, aj] = [bi, bj] = 1, [ai, bj] = a
δijp

n−2

1 〉,
where i, j ∈ {1, 2, . . . , r}. Choosing for H the generating system

G = {a1, a2, . . . , ar, a1b1, a2b2, . . . , arbr}

we get ⋂
{〈g〉|g ∈ G} = 〈ap1〉 6= 1,

hence H is not capable for any r ≥ 1.
Finally, let H be the central product of r copies (r ≥ 1) of the group Lpn (n ≥ 3).

Then
H = 〈a, b1, b2, . . . , br, c1, c2, . . . , cr|ap

n−2

= bpi = cpi = 1,
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[a, bi] = [a, ci] = [bi, bj] = [ci, cj] = 1, [bi, cj] = aδijp
n−3〉,

where i, j ∈ {1, 2, . . . , r}. One chooses for H the generating system

G = {a, ab1, ab2, . . . , abr, ac1, ac2, . . . , acr}

and one gets ⋂
{〈g〉|g ∈ G} = 〈ap〉.

If n ≥ 4, then ap 6= 1, hence H is not capable.

If n = 3, then p 6= 2. Let us assume that there is a group G such that G/Z(G) ∼=
H. Then G is generated by the set

{α, β1, β2, . . . , βr, γ1, γ2, . . . , γr} ∪ Z(G),

where α, βi, γj are preimages in G of the generators a, bi, cj from H. For every
i, j ∈ {1, 2, . . . , r} the following relations take place:

αp, βpi , γ
p
i ∈ Z(G); α, βi, γi 6∈ Z(G); [α, βi], [α, γi], [βi, βj], [γi, γj ] ∈ Z(G);

[βi, γi] ∈ α · Z(G); [βi, γj] ∈ Z(G) if i 6= j.

If r > 1, for i ∈ {2, 3, . . . , r} we apply to the elements β1, γ
−1
1 , βi the Witt identity

([3], Proposition 1.4, p. 254) and we get

[β1, γ1, βi]
γ−1

1 · [γ−1
1 , β−1

i , β1]
βi · [βi, β−1

1 , γ−1
1 ]β1 = 1. (3)

The images inH of the elements [γ−1
1 , β−1

i ] and [βi, β
−1
1 ] are [c−1

1 , b−1
i ] and respectively

[bi, b
−1
1 ], which are equal to the unity in the group H, hence

[γ−1
1 , β−1

i ], [βi, β
−1
1 ] ∈ Z(G).

The relation (3) becomes successively

[β1, γ1, βi]
γ−1

1 = 1,

[α, βi]
γ−1

1 = 1,

[α, βi] = 1.

In a similar way we get [α, β1] = 1 and also [α, γi] = 1 for every i ∈ {1, 2, . . . , r}.
All these give the contradiction α ∈ Z(G).

Hence, H is not capable if r > 1.

The group Lp3 is capable because for every group G of order p4 and class 3 we
have G/Z(G) ∼= Lp3 . �
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3 The classification of the FNS- p-groups of class 3

In this section we will determine all the FNS-p-groups of nilpotency class 3, using
the results from the previous section.

More precisely, we need to solve the ”equation” G/Z(G) ∼= D8 in the family of
the FNS-2-groups of class 3 and the ”equation” G/Z(G) ∼= Lp3 in the family of the
FNS-p-groups of class 3 for p 6= 2.

Theorem 3.1. Let G be a FNS-2-group of class 3. Then G is isomorphic to one of
the following groups:
a) D16 = 〈a, b|a8 = b2 = 1, [a, b] = a6〉,
b) SD16 = 〈a, b|a8 = b2 = 1, [a, b] = a2〉,
c) Q16 = 〈a8 = 1, b2 = a4, [a, b] = a6〉.

Proof We have already proved that

G/Z(G) = 〈a, b|a4 = b2 = 1, [a, b] = a2〉 ∼= D8.

Denoting by α and β the preimages in G of the elements a and b, one obtains
the relations:

G = 〈α, β, Z(G)〉; α4, β2 ∈ Z(G); α2, β 6∈ Z(G); [α, β] ∈ α2 · Z(G).

The last relation tells that α and [α, β] commute. Then [α, β]n = [αn, β] for every
n ∈ N. In particular, [α, β]2 = [α2, β] 6= 1 (otherwise α2 ∈ Z(G)) and [α, β]4 =
[α4, β] = 1. Hence the element [α, β] has order 4 in G. Let H be the subgroup
generated in G by this element. Obviously H ≤ G′. We have

α−1[α, β]α = [α, β] · [α, β, α] = [α, β] · [α2, α] = [α, β],

β−1[α, β]β = [α, β] · [α, β, β] = [α, β] · [α2, β] = [α, β]3,

henceH is a normal subgroup of G. Moreover,G/H is abelian because its generators
commute. Finally, G′ = H ∼= Z4. From Corollary 2.1 it results that |Z(G)| = 2 and
so |G| = 16. G must be a group of order 16 and of class 3, but the only groups with
these properties are the groups D16, SD16 and Q16 ([1], Theorem 4.5, p. 194).

On the other hand, these three groups are FNS-groups (Proposition 2.1) and so
the proof is complete. �

In the case of the ”equation” G/Z(G) ∼= Lp3 the orders of the solutions are also
bounded.

Proposition 3.1. Let G be a FNS-p-group (p 6= 2) of class 3. Then the order of G
does not exceed p5 and the commutator subgroup of G is elementary abelian.

Proof We know that

G/Z(G) = 〈a, b, c|ap = bp = cp = [a, c] = [b, c] = 1, [a, b] = c〉 ∼= Lp3.

Let us denote by α, β, γ the preimages in G of the elements a, b, c. Then

G = 〈α, β, γ, Z(G)〉; αp, βp, γp ∈ Z(G); α, β, γ 6∈ Z(G);
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[α, γ], [β, γ] ∈ Z(G); [α, β] ∈ γ · Z(G).

We get [α, γ]p = [αp, γ] = 1 and [β, γ]p = [βp, γ] = 1.
By induction one may prove that

[α, β]n = [α, βn] · [β, γ]
n(n−1)

2 for every n ∈ N,

hence [α, β]p = 1.

It follows that the subgroup

H = 〈[α, β]; [α, γ]; [β, γ]〉

of G is elementary abelian and its order does not exceed p3. Moreover,

[α, γ]; [β, γ] ∈ Z(G),

α−1[α, β]α = [α, β] · [α, β, α] = [α, β] · [α, γ]−1 ∈ H,

β−1[α, β]β = [α, β] · [α, β, β] = [α, β] · [β, γ]−1 ∈ H,

γ−1[α, β]γ = [α, β] · [α, β, γ] = [α, β] ∈ H,

HenceH is a normal subgroup ofG. G/H is obviously an abelian group and therefore
we may conclude that H = G′.

One deduces |Z(G)| ≤ p2 and |G| ≤ p5. �

In fact, a FNS-p-group of class 3 has at least the order p4, hence its order is p4

or p5.

Proposition 3.2. For every prime p 6= 2 all the four groups of order p4 and class
3 are FNS-groups.

Proof It follows from Proposition 2.1. �

The case of the FNS-groups of order p5 and class 3 is more complicated. We
know already that the commutator subgroup of such a group is elementary abelian
of order p3 and that the center of the group has order p2 and is contained in the
commutator subgroup. These conditions are not sufficient and we will improve them
in the following.

Theorem 3.2. Let p be an odd prime and let G be a group of order p5 and of class
3, with the properties

Z(G) < G′, G′ ∼= Zp × Zp × Zp, Z(G) ∼= Zp ×Zp.

The following statements are equivalent:
a) G is a FNS-group.
b) [G,G′] = Z(G).
c) CG(G′) = G′.
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Proof First we observe that from the hypothesis we get the relations

1 < [G,G′] ≤ Z(G), G′ ≤ CG(G′) < G, G′ = Z2(G).

Let us assume that the a) assertion is true and let x ∈ G′ \ Z(G). If H is the
subgroup generated in G by x and by [G,G′], thenH�G, but H 6≤ Z(G). Moreover,
|H : [G,G′]| = p. G being FNS-group, one must have G′ ≤ H. Then [G,G′] < G′ ≤
H and |H : [G,G′]| = p. These relations give H = G′ and |[G,G′]| = p2 = |Z(G)|,
hence [G,G′] = Z(G).

If the b) assertion is true, then let H be a normal subgroup of G and let

N = (H ∩ G′) · Z(G).

Obviously Z(G) ≤ N ≤ G′. Only the cases N = Z(G) or N = G′ are possible.
If N = Z(G), then H ∩G′ ≤ Z(G), hence [H,G] ≤ Z(G), H ≤ Z2(G) = G′ and so
H ≤ Z(G).
If N = G′, then

Z(G) = [G,G′] = [G,N ] = [G, (H ∩G′) · Z(G)] = [G,H ∩G′] ≤ H ∩G′,
hence G′ = H ∩ G′, and so G′ ≤ H.
In conclusion, G is a FNS-group.

We proved that the first two statements are equivalent and now we will prove
the same thing for the last two statements.

Let x be a fixed element from G′ \ Z(G). The function

ϕ : G→ G ϕ(y) = [x, y] ∀y ∈ G
is an endomorphism of G whose kernell is CG(x) = CG(G′) and whose image is
[G,G′]. Hence

|CG(G′)| · |[G,G′]| = p5

and
[G,G′] = Z(G)⇔ |[G,G′]| = p2 ⇔ |CG(G′)| = p3 ⇔ CG(G′) = G′.

�

Finally we will give another characterization for the FNS-groups of order p5 and
of class 3, based on a method of M. F. Newman.

Definition 3.1. Let G be a p-group. The series of subgroups

G = P0(G) ≥ P1(G) ≥ P2(G) ≥ . . .

is called the p-central descending series of G if

Pi+1(G) = [G,Pi(G)] · (Pi(G))p for every i ∈ N.

Proposition 3.3. Let G be a p-group and let

G = P0(G) ≥ P1(G) ≥ P2(G) ≥ . . .

be the p-central descending series of G. Then
a) For every i ∈ N : Pi(G) is a fully invariant subgroup of G.
b) P1(G) = Φ(G).
c) ∃i ∈ N such that Pi(G) = 1.
d) For every i ∈ N : Pi(G)/Pi+1(G) is a elementary abelian p-group (possibly
trivial).

Proof All the sentences follow from [5]. �
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Consequently, every p-group G possesses a p-central descending series of finite
length

G = P0(G) > P1(G) > . . . > Pc(G) > Pc+1(G) = 1,

the length of these series being greater or equal to the length of the central descend-
ing series of G, that is to the nilpotency class of G.

The construction of M. F. Newman, presented in [6], is the following: For every
prime p is defined an oriented graph Kp, its vertices being all the finite p-groups
(modulo isomorphisms) and (G,H) being an edge iff G ∼= H/Pc(H), where Pc(H)
is the last nontrivial member of the p-central descending series of H. In this case H
is called a direct descendant of G.

The link between the graphs Kp and the FNS-groups is established by the fol-
lowing result.

Theorem 3.3. Let p be an odd prime and let G be a group of order p5. The following
sentences are equivalent:
a) G is a FNS-group of class 3.
b) G is a direct descendant of the group Lp3 in the graph Kp.

Proof Let us assume that G is a FNS-group of class 3. From

G′ ≤ Φ(G) < G, |G : G′| = p2, |G : Φ(G)| ≥ p2

it results that
Φ(G) = G′ ∼= Zp × Zp × Zp.

We will compute now, using Theorem 3.2, the p-central descendent series of G.

P1(G) = Φ(G) = G′;

P2(G) = [G,P1(G)] · (P1(G))p = [G,G′] · (G′)p = Z(G);

P3(G) = [G,P2(G)] · (P2(G))p = [G,Z(G)] · (Z(G))p = 1.

Hence the p-central descendent series of G is

G > G′ > Z(G) > 1,

c = 2 and G/Pc(G) = G/Z(G) ∼= Lp3.
Let us assume now that G is a direct descendant of the group Lp3 in Kp. Then

G has a p-central descendent series

G = P0(G) > P1(G) > P2(G) > . . . > Pc(G) > Pc+1(G) = 1

with G/Pc(G) ∼= Lp3 . It follows immediately that

|Pc(G)| = p2, Gp ≤ Pc(G), G′ 6≤ Pc(G), c ≥ 2.

From Pc+1(G) = 1 one derives that [G,Pc(G)] · (Pc(G))p = 1, hence Pc(G) is an
elementary abelian subgroup of order p2, contained in Z(G).
If Pc(G) < Z(G), we get

|Z(G)| = p3, |G′| = p, G/Z(G) ∼= Zp ×Zp,
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hence G′ ≤ Φ(G) ≤ Z(G). But Φ(G) = P1(G) > Pc(G). It follows

Z(G) = Φ(G) = P1(G),

Pc(G) ≤ P2(G) = [G,P1(G)] · (P1(G))p = [G,Z(G)] · (Z(G))p = (Z(G))p

and therefore |Z(G) : (Z(G))p| ≤ p and so Z(G) is cyclic. Lemma 2.1 from [7] tells
that every p-group with cyclic center and with commutator subgroup of order p is
an AF-group. Hence G is an AF-group, a contradiction.
Consequently, we showed that

Z(G) = Pc(G) ∼= Zp × Zp, G/Z(G) ∼= Lp3

and the nilpotency class of G is higher than 2.
Now Z(G) = Pc(G) = [G,Pc−1(G)] · (Pc−1(G))p, which implies [G,Pc−1(G)] ≤ Z(G),
hence Pc−1(G) ≤ Z2(G). Therefore we get

Z(G) = Pc(G) < Pc−1(G) ≤ Z2(G),

which leads, together with the relations |Z(G)| = p2, |Z2(G)| ≤ p3, to

Pc−1(G) = Z2(G), |Z2(G)| = p3, G/Z2(G) ∼= Zp × Zp, cl(G) = 3.

But G/Z2(G) ∼= Zp × Zp implies that Φ(G) ≤ Z2(G). On the other hand,

Z2(G) = Pc−1(G) ≤ P1(G) = Φ(G),

hence Z2(G) = Φ(G) and c = 2.
We have also

Φ(G) = G′ ·Gp ≤ G′ · Z(G) ≤ Z2(G) = Φ(G),

hence G′ · Z(G) = Φ(G). It follows

Z(G) = P2(G) = [G,P1(G)] · (P1(G))p = [G,G′ · Z(G)] · (G′ · Z(G))p =

= [G,G′] · (G′)p ≤ G′.
In this way we get G′ = Φ(G) > Z(G).
Finally, from [3], Proposition 2.13, p. 266, it results

exp(G′/[G,G′])| exp([G,G′]) = p,

hence (G′)p ≤ [G,G′]. Proposition 2 from [4] confirms that G′ is elementary abelian.
Based on Theorem 3.2 we may conclude now that G is a FNS-group of class 3.

�

Corollary 3.1. For every odd prime p there exist p+7 FNS-groups of order p5 and
of class 3.

Proof In [6] it is stated that the group Lp3 has p+ 7 direct descendants of order
p5 in the graph Kp. The statement follows now from the previous result. �

Resuming all the results obtained in this section, one may present a complete
list of the FNS-p-groups of class 3.

Theorem 3.4. Let p be a prime. Then the only FNS-p-groups of class 3 are:
a) D16, SD16 and Q16, if p = 2;
b) The 4 groups of order p4 and of class 3 and also the p + 7 direct descendants of
order p5 of the group Lp3 in the graph Kp, if p 6= 2. �
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4 Comments

Unfortunately, the case of the FNS-p-groups of class 2 seems to be more difficult
to study. If G is such a group, then G/Z(G) is abelian. The family of capable
abelian p-groups is pretty large, and each ”equation” G/Z(G) ∼= H, where H is a
capable abelian p-group, has many solutions in the family of nonabelian p-groups.
In general, to select the FNS-groups from these solutions is a hard task. However,
there is a particular case which offers a lot of FNS-p-groups of class 2.

Proposition 4.1. Let G be a p-group whose commutator subgroup has order p.
Then G is a FNS-group.

Proof Let H be a normal subgroup in G. Then

{1} ≤ [G,H] ≤ G′ .

We have two possible cases:
-if [G,H] = {1}, then H ≤ Z(G);
-if [G,H] = G′, then G′ ≤ H.

Consequently, G is a FNS-group. �

Corollary 4.1. Let G be a p-group such that G/Z(G) ∼= Zp × Zp. Then G is a
FNS-group.

Proof The hypothesis G/Z(G) ∼= Zp × Zp implies |G′| = p. �

It remains open the problem of determining all the FNS-p-groups of class 2,
whose commutator subgroup has an order bigger than p.
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