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Abstract

In this paper we prove the existence, uniqueness and uniform decay of
strong and weak solutions of the nonlinear model of the wave equation

utt −∆u+ f(u) + h(∇u) = 0

in bounded domains with nonlinear dissipative boundary conditions given by

∂u

∂ν
+ g(ut) = 0.

The existence is proved by means of Faedo-Galerkin method and the
asymptotic behavior is obtained making use of the multiplier technique due
to Komornik and Zuazua .

1 Introduction

Consider the nonlinear wave equation with a nonlinear boundary dissipative term

(∗)



utt −∆u+ f(u) + h(∇u) = 0 in Ω× (0,∞),
u = 0 on Γ1 × (0,∞),
∂u

∂ν
+ g(ut) = 0 on Γ0 × (0,∞),

u(x, 0) = u0(x); ut(x, 0) = u1(x) in Ω,

where Ω is a bounded domain of Rn, n ≥ 1, with a smooth boundary Γ = Γ0 ∪ Γ1.
Here, Γ0 and Γ1 are closed and disjoint , ν represents the unit outward normal
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to Γ and f, g and h are nonlinear functions satisfying some general properties (see
assumptions (A.1)− (A.3) below).

The main goal of this paper is to prove the existence of strong and weak solutions
to problem (∗) and, moreover, that they decay to zero uniformly when t goes to
infinity. Let us remark that in our work, we do not have the a priori estimate
E(t) ≤ E(0), where E(t) is given by (1.1). This a priori estimate plays a crucial
role in establishing the global existence and when studying the asymptotic stability
of the solution, as it was considered in the prior literature.

The proof of the existence is based on the Galerkin’s approximation. For strong
solutions to (∗) this approximation requires a change of variables to transform (∗)
into an equivalent problem with initial value equals zero. The presence of the non-
linearities h(∇u) and g(ut) brings up serious difficulties when passing to the limit,
which were overcome combining arguments of compacity and monotonicity.

Controllability and boundary stabilization of distributed systems has attracted
considerable attention in the literature and, in recent years, important progress
has been obtained in this context. New techniques were developed which allow us
to stabilize a system through its boundary or control it from an initial to a final
state. There is a large body of literature regarding boundary stabilization with
linear feedbacks. Indeed, when g(s) = s we refer the reader the following works:
Chen [2,3], Lagnese [8,9], Russell [14], Triggiani [15], Komornik and Zuazua [7] and
Cavalcanti et al. [1]. Now when the boundary conditions are nonlinear we can cite
the works of Chen and Wong [4], Lagnese and Leugering [10], Zuazua [17] , You [16],
Cipolatti et al. [5] and Lasiecka and Tataru [12], among others.

We note that stability of problems with the nonlinear term h (∇u) require a
careful treatment because we do not have any information about the influence of
the integral

∫
Ω h (∇u)ut dx on the energy

E(t) =
1

2

∫
Ω

(
|ut(x, t)|2 + |∇u(x, t)|2

)
dx (1.1)

or about the sign of the derivative E ′(t).
We also observe that our problem deals with nonlinearity which involves the

gradient combined with a nonlinear feedback acting on the boundary. This situation
was not previously considered and leads to new difficulties. In order to overcome
these difficulties we make use of the perturbed energy Liapunov functional due to
Komornik and Zuazua [7].

Our paper is organized as follows. In section 2 we establish notations and state
the main results. In section 3 we prove existence and uniqueness of strong and
weak solutions to problem (∗) using Galerkin method. In section 4, we prove the
exponential decay of solutions.
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2 Notations and Main Results

Consider the Hilbert space

V =
{
v ∈ H1(Ω); v = 0 on Γ1

}
,

and define the following

(u, v) =
∫

Ω
u(x)v(x) dx; (u, v)Γ0

=
∫

Γ0

u(x)v(x) dΓ,

||u||pp =
∫

Ω
|u(x)|p dx; ||u||pp,Γ0

=
∫

Γ0

|u(x)|p dΓ.

Now, we state the general hypotheses:

(A.1) Assumptions on f :

Let f : R→ R be a W 1,∞
loc (R), piecewise C1(R) function, (H.1)

f(s)s ≥ 0 for s ∈ R. (H.2)

Assume that there exists C > 0 such that

|f ′(s)| ≤ C
(
1 + |s|p−1

)
, 1 < p ≤ n

n− 2
for all s ∈ R. (H.3)

Defining

F (s) =
∫ s

0
f(λ) dλ

there exist α,C > 0 verifying

C |s|p+1 ≤ F (s) ≤ αsf(s) for all s ∈ R. (H.4)

We observe that from assumption (H.3) we deduce that there exists C > 0 such
that

|f(s)| ≤ C (1 + |s|p) for all s ∈ R. (2.1)

Assume that there exists C > 0 such that∣∣∣f(ξ) − f(ξ̂)
∣∣∣ ≤ C

(
|ξ|p−1 +

∣∣∣ξ̂∣∣∣p−1
) ∣∣∣ξ − ξ̂∣∣∣ for all ξ, ξ̂ ∈ R. (H.5)

(A.2) Assumptions on h

Let h : Rn → R be a C1 function. (H.6)

Assume that there exist β, L > 0 such that

|h(ζ)| ≤ β |ζ| , for all ζ ∈ Rn, (H.7)

|h′(ζ)| ≤ L, for all ζ ∈ Rn. (H.8)
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From assumption (H.8), we have∣∣∣h(ζ)− h(ζ̂)
∣∣∣ ≤ L ∣∣∣ζ − ζ̂∣∣∣ for all ζ, ζ̂ ∈ Rn. (2.2)

(A.3) Assumptions on g:

Let g : R→ R be a non-decreasing C1 function, (H.9)

g(s)s ≥ 0 for all s 6= 0.

There exist Ci > 0; i = 1, 2, 3, 4 such that

C1 |s| ≤ |g(s)| ≤ C2 |s| if |s| ≤ 1 (H.10)

C2 |s|q ≤ |g(s)| ≤ C4 |s|q , 1 < q ≤ n − 1

n − 2
if |s| > 1. (H.11)

Remark: The functions f(u) = |u|p−1u , g(u) = |u|q−1u and h(u) =
∑n
i=1 sin

(
∂u
∂xi

)
,

for instance, verify all the hypotheses above.
In order to obtain the global existence for strong solutions the following assump-

tions are made on the initial data:

(A.4) Assumptions on the Initial Data:

Assume that {
u0, u1

}
∈
(
V ∩H2(Ω)

)2
(H.12)

verifying the compatibility condition

∂u0

∂ν
+ g(u1) = 0 on Γ0. (H.13)

Now, we are in a position to state our results:

Theorem 2.1 Under assumptions (A1, A2, A3, A4), Problem (∗) possesses a
unique strong solution, that is a function u :]0,∞[×Ω→ R, such that

u ∈ L∞(0,∞;V ), u′ ∈ L∞(0,∞;V ) and u′′ ∈ L∞(0,∞;L2(Ω)).

Moreover, assuming that q = 1 in (H.11) and considering β given by (H.7) suf-
ficiently small, the energy determined by the strong solution u decays exponentially.
That is,

E(t) =
1

2

∫
Ω
|u′(x, t)|2 dx+

1

2

∫
Ω
|∇u(x, t)|2 dx +

∫
Ω
F (u(x, t)) dx ≤ C exp (−γt)

(2.3)
for some positive constants C and γ.

Theorem 2.2 Suppose that {u0, u1} ∈ V × L2(Ω), and the assumptions (A.1)-
(A.3) hold. Then, (∗) has at least a weak solution, u : Ω×]0,∞[→ R, in the space

C([0,∞);V ) ∩ C1([0,∞);L2(Ω)).

Furthermore, if q = 1, then (2.3) holds for the weak solution.
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3 Existence of Strong and Weak Solutions

In this section we prove the existence and uniqueness of strong solutions to Problem
(∗). First we consider strong solutions, and then using a density argument we extend
the same result to weak solutions.

A variational formulation of Problem (∗) leads to the equation

(u′′(t), w) + (∇u(t),∇w) + (g(u′(t)), w)Γ0
+ (f(u(t)), w) + (h(∇u(t)), w) = 0

for all w ∈ V.
Strong solutions to (∗) with boundary condition (g(u′(t)), w)Γ0

can not be ob-
tained by the method of ’special basis’; therefore basis formed by eigen-functions of
(−∆) operator can not be used for it. This leads us to differentiate the variational
formulation related with (∗) with respect to t. But this brings up serious difficulties
when estimating u′′(0). To avoid this difficulties, we transform (∗) into an equivalent
problem with initial value equals to zero. Indeed, the change of variables

v(x, t) = u(x, t)− φ(x, t) (3.1)

where
φ(x, t) = u0(x) + tu1(x), t ∈ [0, T ]

leads to the equivalent problem

vtt −∆v + f(v + φ) + h (∇v +∇φ) = F in Ω× (0,∞),
v = 0 on Γ1 × (0,∞),
∂v

∂ν
+ g (vt + φt) = G on Γ0 × (0,∞),

v(0) = vt(0) = 0 in Ω,

(3.2)

where

F = ∆φ and G = −∂φ
∂ν
. (3.3)

Note that if v is a solution of (∗) on [0,T]; then u = v + φ is a solution of (∗) in
the same interval. From the estimates obtained below, we are able to prove that

||∆v(t)||22 + ||∇v′(t)||22 ≤ C, ∀t ∈ [0, T ].

Thus from (3.1) the above inequality holds for the solution u. Then using stan-
dard methods, we extend u to the interval (0,∞). Hence, it is sufficient to prove
that (3.2) has a local solution, which shall be done by using the Galerkin method.

Let (ων)ν∈N be a basis in V ∩H2(Ω) which is orthonormal in L2(Ω). Let Vm the
space generated by ω1, · · · , ωm and let

vm(t) =
m∑
i=1

γj(t)ωj (3.4)

be the solution to the Cauchy problem

(v′′m(t), w) + (∇vm(t),∇w) + (g (v′m(t) + φ′(t)) , w)Γ0
(3.5)
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+ (f (vm(t) + φ(t)) , w) + (h (∇vm(t) +∇φ(t)) , w)

= (F(t), w) + (G(t), w)Γ0
; ∀w ∈ Vm,

vm(0) = v′m(0) = 0.

At this point it is important to observe that since p ≤ n
n−2

then

H1(Ω) ↪→ L2p(Ω) (3.6)

and since q ≤ n−1
n−2

one has

H1(Ω) ↪→ L2q(Γ). (3.7)

Then, considering the embeddings given by (3.6) and (3.7) and (2.1), (H.7),
(H.10) and (H.11) it is easy to see that the variational formulation (3.5) is well
defined.

By standard methods of differential equations, we can prove the existence of a
solution to (3.5) on some interval [0, tm). Then, this solution can be extended to the
closed interval [0,T] by use of the first estimate below.

A Priori Estimates.

The First Estimate:

Taking w = v′m(t) in (3.5) we obtain

d

dt

{
1

2
||v′m(t)||22 +

1

2
||∇vm(t)||22 +

∫
Ω
F (vm + φ) dx

}
(3.8)

+ (g (v′m(t) + φ′(t)) , v′m(t) + φ′(t))Γ0

= (F(t), v′m(t)) +
d

dt
(G(t), vm(t))Γ0

− (G ′(t), vm(t))Γ0

+ (f (vm(t) + φ(t)) , φ′(t)) + (g (v′m(t) + φ′(t)) , φ′(t))Γ0

− (h (∇vm(t) +∇φ(t)) , v′m(t)) .

Estimate for I1 := (f (vm(t) + φ(t)) , φ′(t)) .

Here and in the sequel C denotes positive constants. From (2.1) and applying
Young’s inequality we have

|I1| ≤ C
∫

Ω
(1 + |vm + φ|p) |φ′| dx (3.9)

≤ C
{∫

Ω
|φ′| dx+

∫
Ω
|vm + φ|p+1 dx+

∫
Ω
|φ′|p+1

dx
}

≤ C + C
∫

Ω
|vm + φ|p+1 dx.

Estimate for I2 := (g (v′m(t) + φ′(t)) , φ′(t))Γ0
.

The Young’s inequality yields

|I2| ≤ η
∫

Γ0

|g (v′m + φ′)|
q+1
q dΓ + C(η)

∫
Γ0

|φ′|q+1
dΓ, (3.10)



On nonlinear hyperbolic problems with nonlinear boundary feedback 527

where η is an arbitrary positive constant.
On the other hand, from assumption (H.11) we deduce

|g(s)|
q+1
q = |g(s)| |g(s)|

1
q ≤ |g(s)| |s| ; |s| > 1. (3.11)

Estimate for I3 := (h (∇vm(t) +∇φ(t)) , v′m(t)) .

From assumption (H.7) we conclude

|I3| ≤ C
{
||φ(t)||22 + ||v′m(t)||22 + ||∇vm(t)||22

}
. (3.12)

Estimate for I4 := (G ′(t), vm(t))Γ0
.

Observing that
||v||2,Γ0

≤ C0 ||∇v||2 , ∀v ∈ V (3.13)

from Cauchy-Schwarz’s inequality we obtain

|I4| ≤ C
{
||G ′(t)||22,Γ0

+ ||∇vm(t)||22
}
. (3.14)

Combining (3.8)-(3.14) it follows that

d

dt

{
1

2
||v′m(t)||22 +

1

2
||∇vm(t)||22 +

∫
Ω
F (vm + φ) dx

}
(3.15)

+(1− η)
∫
|v′m+φ′|>1

|g(v′m + φ′)|
q+1
q dΓ

≤ C(η) + ||F(t)||22 + ||G ′(t)||22,Γ0
+
d

dt
(G(t), vm(t))Γ0

+C
{∫

Ω
|vm + φ|p+1

dx+ ||v′m(t)||22 + ||∇vm(t)||22
}
.

Integrating (3.15) over (0,t), noting that vm(0) = v′m(0) = 0 and taking the
assumption (H.4) into account it results that

1

2
||v′m(t)||22 +

1

2
||∇vm(t)||22 +

∫
Ω
F (vm + φ) dx (3.16)

+(1− η)
∫ t

0

∫
|v′m+φ′|>1

|g(v′m + φ′)|
q+1
q dΓds

≤ C + C
∫ t

0

{∫
Ω
F (vm + φ) dx +

∫
|v′m+φ′|>1

|g(v′m + φ′)|
q+1
q dΓ .

+ ||v′m(s)||22 + ||∇vm(s)||22
}
ds+ (G(t), vm(t))Γ0

.

For an arbitrary η > 0 and taking (3.13) into account we have

(G(t), vm(t))Γ0
≤ C2

0

4η
||G(t)||22,Γ0

+ η ||∇vm(t)||22 . (3.17)
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Combining (3.16)- (3.17), choosing η > 0 small enough and employing Gronwall’s
lemma we obtain the first estimate

||v′m(t)||22+||∇vm(t)||22+
∫

Ω
F (vm + φ) dx+

∫ t

0

∫
Γ0

|g(v′m + φ′)|
q+1
q dΓds ≤ L1, (3.18)

where L1 is a positive constant independent of t ∈ [0, T ] and m ∈ N.

The Second Estimate.

Firts of all, we are estimating v′′m(0) in L2−norm. Then, considering w = v′′m(0)
in (3.5) and noting that vm(0) = v′m(0) = 0, one has

||v′′m(0)||22 +
(
g(u1), v′′m(0)

)
Γ0

+
(
f(u0), v′′m(0)

)
+
(
h
(
∇u0

)
, v′′m(0)

)
(3.19)

=
(
∆u0, v′′m(0)

)
+

(
−∂u

0

∂ν
, v′′m(0)

)
Γ0

.

From (3.19) and taking the assumption (H.13) into account, we obtain

||v′′m(0)||22 ≤
(
||f(u0||2 +

∣∣∣∣∣∣h (∇u0
)∣∣∣∣∣∣

2
+
∣∣∣∣∣∣∆u0(0)

∣∣∣∣∣∣
2

)
||v′′m(0)||2 .

Considering the last inequality and (2.1) and (H.7) we deduce that

||v′′m(0)||2 ≤ N ; ∀m ∈ N (3.20)

where N is a positive constant independent of m.
On the other hand, taking the derivative of (3.5) with respect to t and substi-

tuting w = v′′m(t) we get

d

dt

{
1

2
||v′′m(t)||22 +

1

2
||∇v′m(t)||22

}
+
∫

Γ0

g′ (v′m + φ′) (v′′m)
2
dΓ (3.21)

+
∫

Ω
f ′ (vm + φ) (v′m + φ′) v′′m dΓ +

∫
Ω
h′ (∇vm +∇φ) (∇v′m +∇φ′) v′′m dx

= (F(t), v′′m(t)) +
d

dt
(G ′(t), v′m(t))Γ0

.

Next, we are going to estimate some terms of (3.21).

Estimate for I4 :=
∫
Ω f
′ (vm + φ) (v′m + φ′) v′′m dΓ.

Assuming that (H.3) holds we deduce that

|I4| ≤ C
∫

Ω

(
1 + |vm + φ|p−1

)
|v′m + φ′| |v′′m| dx. (3.22)

Now, observing that p−1
2p

+ 1
2p

+ 1
2

= 1, from (3.22) and considering the generalized
Hölder’s inequality we infer

|I4| ≤ C
(
||v′m(t) + φ′(t)||22 + ||v′′m(t)||22

)
+C

(∣∣∣∣∣∣|vm(t) + φ(t)|p−1
∣∣∣∣∣∣ 2p
p−1

||v′m(t) + φ′(t)||2p ||v′′m(t)||2
)
.
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Considering the Sobolev imbeding in (3.6) and the first estimate from the last
inequality we obtain

|I4| ≤ C
(
1 + ||v′′m(t)||22 + ||∇v′m(t)||22

)
. (3..23)

Estimate for I5 :=
∫

Ω h
′ (∇vm +∇φ) (∇v′m +∇φ′) v′′m dx.

Taking the assumption (H.8) into account we infer

|I5| ≤ L
∫

Ω
|∇v′m +∇φ′| |v′′m| dx (3.24)

≤ C
(
1 + ||v′′m(t)||22 + ||∇v′m(t)||22

)
.

Combining (3.21), (3.23) and (3.24) and noting that g′(s) ≥ 0 it follows that

d

dt

{
1

2
||v′′m(t)||22 +

1

2
||∇v′m(t)||22

}
(3.25)

≤ ||F ′(t)||22 +
d

dt
(G ′(t), v′m(t))Γ0

+ C
(
1 + ||v′′m(t)||22 + ||∇v′m(t)||22

)
.

Integrating (3.25) over (0,t), considering (3.20) and noting that v′m(0) = 0 we
get

||v′′m(t)||22 + ||∇v′m(t)||22 (3.26)

≤ C + (G ′(t), v′m(t))Γ0
+ C

∫ t

0

{
||v′′m(s)||22 + ||∇v′m(s)||22

}
ds.

On the other hand, for an arbitrary η > 0 we have

(G ′(t), v′m(t))Γ0
≤ C2

0

4η
||G ′(t)||22,Γ0

+ η ||∇v′m(t)||22 . (3.27)

Combining (3.26)-(3.27), choosing η > 0 sufficiently small and employing Gron-
wall’s lemma we obtain the second estimate

||v′′m(t)||22 + ||∇v′m(t)||22 ≤ L2 (3.28)

where L2 is a positive constant independent of m ∈ N and t ∈ [0, T ].

Analysis of the Nonlinear Terms:

Analysis of f.

From (2.1) and the first estimate one has

∫ t

0

∫
Ω
|f (vm + φ)|

p+1
p dx ds ≤ C

∫ t

0

∫
Ω

(
1 + |vm + φ|p+1

)
dx ds ≤ M (3.29)

where M is a positive constant independent of t ∈ [0, T ] and m ∈ N. The last
inequality yields
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{f (vm + φ)} is bounded in L
p+1
p (QT ); QT = Ω× (0, T ). (3.30)

From the first estimate and making use of Aubin-Lions Theorem we can find a
subsequence {vµ} of {vm} such that

vµ → v strongly in L2(QT ). (3.31)

Then,
vµ→ v a.e. in QT

and therefore, from (H.1)

f (vµ + φ)→ f (v + φ) a.e. in QT . (3.32)

Combining (3.30) and (3.32) and making use of Lions’s lemma we deduce

f (vµ + φ)→ f (v + φ) weakly in L
p+1
p (QT ). (3.33)

Remark 1. We note that from (2.1) and since H1(Ω) ↪→ L2p(Ω) we have∫
Ω
|f (vµ + φ)|2 dx ≤ C

∫
Ω

(
1 + |vµ + φ|2p

)
dx

≤ C + C ||∇vµ(t) +∇φ(t)||2p2 ≤ C.
Thus,

{f (vµ + φ)} is bounded in L2(QT ).

Consequently, from (3.33) one has

f (vµ + φ)→ f (v + φ) weakly in L2(QT ). (3.34)

Analysis of h :

From assumption (H.7) and the first estimate it results that

{h (∇vm +∇φ)} is bounded in L2(QT ).

Then, there exist Ξ ∈ L2(QT ) and {vµ} ⊂ {vm} such that

h (∇vµ +∇φ)→ Ξ weakly in L2(QT ). (3.35)

Analysis of g :

In the same way, from the first estimate it holds that

{g (v′m + φ′)} is bounded in L
q+1
q (Σ0,T ) ; Σ0,T = Γ0 × (0, T )

and therefore there exist χ ∈ L
q+1
q (Σ0,T ) and {vµ} ⊂ {vm} such that

g
(
v′µ + φ′

)
→ χ weakly in L

q+1
q (Σ0,T ) . (3.36)
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Remark 2. We also note that from the first estimate and from assumptions
(H.10) and (H.11) we infer ∫

Γ0

∣∣∣g (v′µ + φ′
)∣∣∣2 dΓ∫

|v′µ+φ′|≤1

∣∣∣g (v′µ + φ′
)∣∣∣2 dΓ +

∫
|v′µ+φ′|>1

∣∣∣g (v′µ + φ′
)∣∣∣2 dΓ

≤ C + C
∣∣∣∣∣∣v′µ(t) + φ′(t)

∣∣∣∣∣∣2q
2q,Γ0

≤ C + C
∣∣∣∣∣∣∇v′µ(t) +∇φ′(t)

∣∣∣∣∣∣2q
2
≤ C.

Then,
g
(
v′µ + φ′

)
→ χ weakly in L2 (Σ0,T ) . (3.37)

Returning to (3.5) and using standard arguments we can show, from the conver-
gences above that

v′′ −∆v + f (v + φ) + Ξ = F in L2(0,∞;L2(Ω)). (3.38)

Also, using the generalized Green formula we deduce that

∂v

∂ν
+ χ = G in L2(0,∞;L2(Γ0)). (3.39)

Next, we are going to prove that Ξ = h (∇v +∇φ) . Indeed, considering w =
vm(t) in (3.5) and integrating the result over (0,T) it follows that

∫ T

0
(v′′m(t), vm(t)) dt +

∫ T

0
||∇vm(t)||22 dt +

∫ T

0
(g (v′m(t) + φ′(t)) , vm(t))Γ0

dt (3.40)

+
∫ T

0
(f (vm(t) + φ(t)) , vm(t)) dt +

∫ T

0
(h (∇vm(t) +∇φ(t)) , vm(t))dt

=
∫ T

0
(F(t), vm(t)) dt +

∫ T

0
(G(t), vm(t))Γ0

dt.

On the other hand, we note that from the first and second estimates one has

||vm(t)||2H1/2(Γ0) ≤ C ||∇vm(t)||22 ≤ C

||v′m(t)||2H1/2(Γ0) ≤ C ||∇v′m(t)||22 ≤ C.

Since H1/2(Γ0) ↪→ L2(Γ0) is compact from Aubin-Lions Theorem we deduce

vm → v strongly in L2(0, T ;L2(Γ0)). (3.41)

Considering the convergences (3.31), (3.34), (3.35), (3.37), (3.41) and the weak one

v′′m → v′′ weakly in L2(0, T ;L2(Ω)) (3.42)

we can pass to the limit in (3.40) to obtain
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lim
m→∞

∫ T

0
||∇vm(t)||22 dt (3.43)

= −
∫ T

0
(v′′(t), v(t))dt−

∫ T

0
(χ(t), v(t))Γ0

dt−
∫ T

0
(f (v(t) + φ(t)) , v(t))dt

−
∫ T

0
(Ξ(t), v(t))dt +

∫ T

0
(F(t), v(t))dt +

∫ T

0
(G(t), v(t))Γ0

dt.

Combining (3.38), (3.39), (3.43) and making use of the generalized Green formula
we obtain

lim
m→∞

∫ T

0
||∇vm(t)||22 dt =

∫ T

0
||∇v(t)||22 dt (3.44)

and consequently
∇vm→ ∇v a.e. in QT

which implies in view of (H.7) that

h (∇vm +∇φ)→ h (∇v +∇φ) a.e. in QT . (3.45)

Using Lions’s lemma from (3.35) and (3.45) we deduce

h (∇vm +∇φ)→ h (∇v +∇φ) weakly in L2(QT ). (3..46)

Unfortunatelly we can not use compacity arguments in order to show that χ =
g (v′ + φ′) . For this purpose, we shall use monotonicity arguments. First of all we
note that from the first and second estimates and considering Aubin-Lions Theorem
one has

v′m → v′ strongly in L2(0, T ;L2(Ω)). (3.47)

Considering w = v′m(t) in (5), integrating the obtained result over (0,T), consid-
ering the convergences above mentioned and the facts

v′′ −∆v + f (v + φ) + h (∇v +∇φ) = F in L2(0,∞;L2(Ω))

∂v

∂ν
+ χ = G in L2(0,∞;L2(Γ0))

we deduce, in a similar way we have just done before, that

lim
m→∞

∫ T

0
(g (v′m(t) + φ′(t)) , v′m(t) + φ′(t))Γ0

dt =
∫ T

0
(χ(t), v′(t) + φ′(t))Γ0

dt.

(3.48)
On the other hand, since g is a non-decreasing monotone function one has∫ T

0
〈g (v′m + φ′)− g(ψ), (v′m + φ′)− ψ〉 dt ≥ 0; for all ψ ∈ Lq+1(Γ0)

where 〈., .〉 means the duality between L
q+1
q (Γ0) and Lq+1(Γ0). The last inequality

yields ∫ T

0
〈g (v′m + φ′) , ψ〉 dt +

∫ T

0
〈g(ψ), (v′m + φ′)− ψ〉 dt (3.49)

≤
∫ T

0
〈g (v′m + φ′) , v′m + φ′〉 dt.
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From (3.49) we deduce

lim inf
m→∞

∫ T

0
〈g (v′m + φ′) , ψ〉 dt + lim inf

m→∞

∫ T

0
〈g(ψ), (v′m + φ′) − ψ〉 dt (3.50)

≤ lim inf
m→∞

∫ T

0
〈g (v′m + φ′) , v′m + φ′〉 dt.

Since
||v′m(t)||q+1,Γ0

≤ C ||∇v′m(t)||2 ≤ C
it follows that

v′m→ v′ weakly star in L∞(0, T ;Lq+1(Γ0)). (3.51)

Then from (3.36), (3.48), (3.50) and (3.51) we conclude that∫ T

0
〈χ(t)− g(ψ), v′(t) + φ′(t)− ψ〉 dt ≥ 0. (3.52)

Considering ψ = (v′ + φ′) + λξ in (3.52) where ξ is an arbitrary element of
Lq+1(Γ0) and λ > 0, we obtain∫ T

0
〈χ(t)− g ((v′ + φ′) + λξ) , (−λξ)〉 dt ≥ 0.

Consequently∫ T

0
〈χ(t)− g ((v′ + φ′) + λξ) , ξ〉 dt ≤ 0, for all ξ ∈ Lq+1(Γ0).

As the operator

g : Lq+1(Γ0)→ L
q+1
q (Γ0); v 7→ g(v)

is hemicontinuous one has∫ T

0
〈χ(t)− g (v′ + φ′) , ξ〉 dt ≤ 0; for all ξ ∈ Lq+1(Γ0).

Hence ∫ T

0
〈χ(t)− g (v′ + φ′) , ξ〉 dt = 0; for all ξ ∈ Lq+1(Γ0)

which implies
χ = g (v′ + φ′) . (3.53)

Uniqueness:

Let u1 and u2 be two smooth solutions to problem (∗). Then, z = u1−u2 verifies

(z′′(t), w) + (∇z(t),∇w) + (g(u′1)− g(u′2), w)Γ0
(3.54)

= (f(u2)− f(u1), w) + (h (∇u1)− h (∇u2) , w) ; for all w ∈ V.
Substituting w = z′(t) in (3.54) it follows that
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1

2

d

dt

{
||z′(t)||22 + ||∇z(t)||22

}
+ (g(u′1)− g(u′2), u′1 − u′2)Γ0

(3.55)

= (f(u2)− f(u1), z′(t)) + (h (∇u1)− h (∇u2) , z
′(t)) .

Next, we are estimating the terms in the right hand side of (3.55).

Estimate for J1 := (f(u2)− f(u1), z′(t)) .

From assumption (H.5) we obtain

|J1| ≤ D1

∫
Ω

[
|u2|p−1 + |u1|p−1

]
|z||z′| dx (3.56)

≤ C
[
||u2(t)||2p + ||u1(t)||2p

]
||z(t)||2p ||z′(t)||2

≤ C
(
||∇z(t)||22 + ||z′(t)||22

)
.

Estimate for J2 := (h (∇u1)− h (∇u2) , z
′(t)) .

Taking (2.2) into account we infer

|J2| ≤ D2

∫
Ω
|∇u2 −∇u1| |z′| dx (3.57)

≤ C
(
||∇z(t)||22 + ||z′(t)||22

)
.

Combining (3.55)-(3.57), observing that g is monotone and employing Gronwall’s
lemma we deduce ||∇z(t)||2 = ||z′(t)||2 = 0 and therefore u1 = u2. This concludes
the proof of existence and uniqueness of smooth solutions.

Existence of Weak Solutions:

Let us consider {
u0, u1

}
∈ V × L2(Ω). (3.58)

Since D(−∆) =
{
v ∈ V ∩H2(Ω); ∂v

∂ν
= 0 on Γ0

}
is dense in V and H1

0 (Ω) ∩
H2(Ω) is dense in L2(Ω) there exist

{
u0
µ

}
⊂ D(−∆) and

{
u1
µ

}
⊂ H1

0 (Ω) ∩ H2(Ω)
such that

u0
µ → u0 strongly in V, (3.59)

u1
µ → u1 strongly in L2(Ω). (3.60)

Moreover, from (H.10) and (H.11) we have for each µ ∈ N

∂u0

∂ν
+ g(u1

µ) = 0 on Γ0.

Then, for each µ ∈ N there exists uµ : Q→ R a smooth solution of problem (∗)
verifying
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u′′µ −∆uµ + f(uµ) + h (∇uµ) = 0 in L2(0,∞;L2(Ω)),
uµ = 0 on Γ1,
∂uµ
∂ν

+ g(u′µ) = 0 in L2(0,∞;L2(Γ0)),

uµ(0) = u0
µ; u′µ(0) = u1

µ.

(3.61)

Repeating the same arguments used in the first estimate we obtain

∣∣∣∣∣∣u′µ(t)
∣∣∣∣∣∣2

2
+ ||∇uµ(t)||22 +

∫ t

0

∫
Ω
|uµ|p+1

dx dt +
∫ t

0

∫
Γ0

∣∣∣g(u′µ)
∣∣∣ q+1
q dΓds ≤ C (3.62)

and ∫ t

0

∫
Ω
|f(uµ)|

p+1
p dx ds ≤ C, (3.63)∫ t

0

∫
Γ0

∣∣∣u′µ∣∣∣q+1
dΓds ≤ C (3.64)

for all t ∈ [0, T ] and µ ∈ N.
Putting zσµ = uµ−uσ; µ, σ ∈ N where uµ and uσ are smooth solutions of (3.61),

repeating the same arguments used in the uniqueness of strong solutions and taking
(3.62) into account we deduce that there exists u : Q→ R such that

uµ → u in C0([0, T ];V ), (3.65)

u′µ → u′ in C0([0, T ];L2(Ω)). (3.66)

Moreover, from (3.62), (3.63) and (H.7) we deduce

u′µ → u′ weakly in Lq+1(Σ0,T ), (3.67)

f(uµ)→ η weakly in L
p+1
p (QT ), (3.68)

h (∇uµ)→ Ξ weakly in L2(QT ), (3.69)

g(u′µ)→ χ weakly in L
q+1
q (Σ0,T ). (3.70)

In view of (3.65) and using Lions’s lemma it is easy to conclude that η = f(u)
and Ξ = h(∇u). Morover, we have{

u′′ −∆u+ f(u) + h(∇u) = 0 in L2(0,∞;V ′)
u(0) = u0; u′(0) = u1.

(3.71)

Our aim is to show that χ = g(u′). Indeed, multiplying the first equation of
(3.61) by u′µ and integrating over Ω we obtain

1

2

d

dt

∣∣∣∣∣∣u′µ(t)
∣∣∣∣∣∣2

2
+

1

2

d

dt
||∇uµ(t)||22 +

(
f(uµ(t)), u′µ(t)

)
+
(
h (∇uµ(t)) , u′µ(t)

)
+
(
g(u′µ(t)), u′µ(t)

)
Γ0

= 0.

Integrating the last equality over (0,t) it holds that

1

2

∣∣∣∣∣∣u′µ(t)
∣∣∣∣∣∣2

2
+

1

2
||∇uµ(t)||22 +

∫ t

0

(
f(uµ(s)), u′µ(s)

)
ds (3.72)
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+
∫ t

0

(
h (∇uµ(s)) , u′µ(s)

)
ds+

∫ t

0

(
g(u′µ(s)), u′µ(s)

)
Γ0

ds

=
1

2

∣∣∣∣∣∣u1
µ

∣∣∣∣∣∣2
2

+
1

2

∣∣∣∣∣∣∇u0
µ

∣∣∣∣∣∣2
2
.

From (3.72) and taking into account the convergences (3.59), (3.60), (3.65),
(3.66), (3.68) and (3.69) we deduce

lim
µ→+∞

∫ t

0

(
g(u′µ(s)), u′µ(s)

)
ds (3.73)

= −1

2
||u′(t)||22 −

1

2
||∇u(t)||22 +

1

2

∣∣∣∣∣∣u1
∣∣∣∣∣∣2

2
+

1

2

∣∣∣∣∣∣∇u0
∣∣∣∣∣∣2

2

−
∫ t

0
(f(u(s)), u′(s)) ds−

∫ t

0
(h (∇u(s)) , u′(s)) ds.

On the other hand, assuming that w is a weak solution to problem

w′′ −∆w + f(w) + h(∇w) = 0 in Ω × (0,∞),
w = 0 on Γ1 × (0,∞),
∂w

∂ν
+ χ = 0 on Γ0 × (0,∞),

w(0) = u0; w′(0) = u1,

(3.74)

then, considering the same arguments used to prove (3.73) we conclude that∫ t

0
〈χ(s), w′(s)〉Γ0

ds (3.75)

= −1

2
||w′(t)||22 −

1

2
||∇w(t)||22 +

1

2

∣∣∣∣∣∣u1
∣∣∣∣∣∣2

2
+

1

2

∣∣∣∣∣∣∇u0
∣∣∣∣∣∣2

2

−
∫ t

0
(f(w(s)), w′(s)) ds−

∫ t

0
(h (∇w(s)) , w′(s)) ds.

Since u is a weak solution to problem (3.74) then, from (3.73) and (3.75) it
follows that

lim
µ→+∞

∫ t

0

〈
g(u′µ(s)), u′µ(s)

〉
Γ0

ds =
∫ t

0
〈χ(s), u′(s)〉Γ0

ds.

The convergence above plays an essential role to show that χ = g(u′) by using
the same arguments considered before.

4 Uniform Decay.

In this section we prove the exponential decay for strong solutions of (∗), and by a
density argument we obtain the same results for weak solutions.

For the rest of this section, let x0 be a fixed point in Rn. Then put

m = m(x) = x− x0, R = max
x∈Ω
||m(x)||

and partition the boundary Γ into two sets:

Γ0 = {x ∈ Γ;m(x) · ν(x) ≥ 0} , Γ1 = {x ∈ Γ;m(x) · ν(x) < 0} .
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A simple computation shows that

E ′(t) = −
∫

Ω
h (∇u)u′dx−

∫
Γ0

g(u′)u′dΓ. (4.1)

Let us introduce the following perturbed energy functional:

Eε(t) = E(t) + ερ(t) (4.2)

where
ρ(t) =

∫
Ω
u′ (2m · ∇u+ (n− 1)u) dx. (4.3)

It is easy to see that there exists θ1 > 0 such that

|Eε(t)− E(t)| ≤ εθ1E(t), (4.4)

for all t ≥ 0 and for all ε > 0.
Then, in view of (4.4) and in order to prove our main result it is sufficient to

prove the following result:

Proposition 4.1. There exists θ2 > 0 such that

E ′ε(t) ≤ −θ2E(t),

for all t ≥ 0.

Proof. From (4.3) it holds that

ρ′(t) =
∫

Ω

(
2u′′ (m · ∇u) + 2u′ (m · ∇u′) + (n− 1)u′′u+ (n− 1)(u′)2

)
dx. (4.5)

Next, we are going to analyse the terms in the right hand side of (4.5).

Estimate for I1 =
∫

Ω u
′′u dx.

Taking the generalized Green formula we infer

I1 =
∫

Ω
(∆u− f(u)− h (∇u)) u dx

= −
∫

Γ0

g(u′)u dΓ−
∫

Ω
|∇u|2 dx −

∫
Ω
f(u)u dx−

∫
Ω
h (∇u)u dx. (4.6)

Estimate for I2 = 2
∫

Ω u
′ (m · ∇u′) dx.

From Gauss theorem we deduce

I2 =
∫

Ω
m · ∇(u′)2dx = −n

∫
Ω
|u′|2dx +

∫
Γ0

|u′|2dΓ. (4.7)

Estimate for I3 = 2
∫

Ω u
′′ (m · ∇u) dx.

Making use of Green and Gauss theorems we obtain
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I3 ≤ (n− 2)
∫

Ω
|∇u|2 dx−

∫
Γ0

[
2u′ (m · ∇u) + |∇u|2

]
dΓ (4.8)

+2n
∫

Ω
F (u)dx− 2

∫
Ω
h (∇u) (m · ∇u)dx.

Combining (4.1), (4.2), (4.5)-(4.8) it follows that

E ′ε(t) ≤ −
∫

Ω
h (∇u)u′dx−

∫
Γ0

g(u′)u′dΓ (4.9)

+ε
{

(n− 2)
∫

Ω
|∇u|2 −

∫
Γ0

[
2u′ (m · ∇u) + |∇u|2

]
dΓ+ 2n

∫
Ω
F (u)dx

−2
∫

Ω
h (∇u) (m · ∇u) dx− n

∫
Ω
|u′|2dx+

∫
Γ0

|u′|2dΓ− (n− 1)
∫

Γ0

g(u′)u dΓ

−(n− 1)
∫

Ω
|∇u|2 dx− (n− 1)

∫
Ω
f(u)u dx− (n− 1)

∫
Ω
h (∇u)u dx

+(n− 1)
∫

Ω
|u′|2 dx

}
.

Since from (H.7) we have∫
Ω

(−h (∇u)u′ − 2εh (∇u) (m · ∇u)− ε(n− 1)h (∇u)u) dx (4.10)

≤ 1

2

∫
Ω
|u′|2 dx+

(
β2

2
+ 2εβR+

ε(n− 1)

2
β2 +

ε(n− 1)

2
C(Ω)

)∫
Ω
|∇u|2 dx

where ∫
Ω
|u|2 dx ≤ C(Ω)

∫
Ω
|∇u|2 dx

from (4.9) and (4.10) we deduce

E ′ε(t) ≤ −
(
−n

2
+ ε

) ∫
Ω
|u′|2 dx (4.11)

−
(
ε− β2

2
− 2εβR− ε(n− 1)

2
β2 − ε(n− 1)

2
C(Ω)

)∫
Ω
|∇u|2 dx

+2nε
∫

Ω
F (u) dx− ε(n− 1)

∫
Ω
f(u)u dx−

∫
Γ0

g(u′)u′ dΓ

−ε
∫

Γ0

[
2u′ (m · ∇u) + |∇u|2

]
dΓ + ε

∫
Γ0

|u′|2 dΓ− ε(n− 1)
∫

Γ0

g(u′)u dΓ.

On the other hand we have∫
Γ0

|2u′(m · ∇u)|dΓ ≤ R2
∫

Γ0

|u′|2 dΓ +
∫

Γ0

|∇u|2 dΓ, (4.12)

∫
Γ0

|(n − 1)g(u′)u| dΓ ≤ 1

2
(n− 1)2

∫
Γ0

|g(u′)|2 dΓ + C(Ω)E(t). (4.13)

Combining (4.11)-(4.13), taking the assumption (H.4) into account and assuming
that there exist positive constants C1, C2 such that

C1|s| ≤ |g(s)| ≤ C2|s|; for all s ∈ R,
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we deduce

E ′ε(t) ≤ −
(
−1

2
+ ε− C(Ω)ε

2

) ∫
Ω
|u′|2 dx (4.14)

−
(
ε− β2

2
− 2εβR− ε(n− 1)

2
β2 − ε(n− 1)

2
C(Ω)− C(Ω)ε

2

)∫
Ω
|∇u|2 dx

−
(
−2nε+

ε(n− 1)

α
− C(Ω)ε

2

)∫
Ω
F (u) dx

−
(

1− ε
(

2(1 +R2)

C1
+ 2(n− 1)2C2

))∫
Γ0

g(u′)u′dΓ.

Hence, if we choose ε, α, β, C1 and C2 such that

−1

2
+ ε− C(Ω)ε

2
> 0

ε− β2

2
− 2εβR− ε(n− 1)

2
β2 − ε(n− 1)

2
C(Ω)− C(Ω)ε

2
> 0

−2nε+
ε(n− 1)

α
− C(Ω)ε

2
> 0

ε

(
2(1 +R2)

C1

+ 2(n − 1)2C2

)
≤ 1

we conclude the proof of proposition 4.1 and consequently the exponential decay of
the energy. �
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