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1 Introduction

Let Π(m,n), m,n ≥ 0, be the set of partitions of a set of m objects into n mutually
disjoint non-empty subsets, and let P (m,n) = |Π(m,n)|, the number of such parti-
tions. (We systematically denote the cardinality of the set S by |S|.) Then it was
pointed out in [HPS] that there are certain non-negative integers µhk, h, k ≥ 0,such
that1

P (m,m− k) =
k∑

h=0

(
m

h+ k

)
µhk. (1.1)

We called the integers µhk Stirling factors. Our reason for choosing this terminology
was that, in fact,

P (m,n) = St(m,n), (1.2)

where

St(m,n) =
1

n!

n∑

r=0

(−1)n−r
(
n

r

)
rm, (1.3)

the Stirling number of the second kind. For completeness, let us give a proof of
(1.2).

1Actually, in [HPS], we restricted m,n, h, k to being strictly positive. This slightly reduced the
scope of our results. It also obscured from our view the uniqueness theorem (Theorem 3.1) which
we state and prove in this paper.
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First observe that P (m,n) clearly satisfies the recurrence relation

P (m,n) = nP (m− 1, n) + P (m− 1, n − 1), m, n ≥ 1. (1.4)

We adopt the reasonable convention that

P (0, 0) = 1; (1.5)

and note that it is, of course, consistent with (1.4). Further,

P (m, 0) = 0, m ≥ 1, P (0, n) = 0, n ≥ 1. (1.6)

Moreover, P (m,n) is entirely determined by (1.4), (1.5), (1.6). Thus, to prove (1.2),
it suffices to show that St(m,n) satisfies the analogs of (1.4), (1.5), (1.6).

Proving that St(0, 0) = 1, St(0, n) = 0, n ≥ 1 is easy, since2

St(0, n) =
1

n!

n∑

r=0

(−1)n−r
(
n

r

)
=





1, n = 0
(−1)n

n!
(1 − 1)n = 0, n ≥ 1

Thus it remains to prove that

St(m,n) = nSt(m− 1, n) + St(m− 1, n− 1),m, n ≥ 1 (1.7)

Now RHS = 1
(n−1)!

(∑n
r=0(−1)n−r

(
n
r

)
rm−1 +

∑n−1
r=0 (−1)n−1−r

(
n−1
r

)
rm−1

)

= 1
(n−1)!

(
nm−1 +

∑n−1
r=0 (−1)n−rrm−1

((
n
r

)
−
(
n−1
r

)))

= 1
(n−1)!

(∑n−1
r=1 (−1)n−rrm−1

((
n
r

)
−
(
n−1
r

))
+ nm−1

)
,

since
(
n
0

)
= 1 for all n,

= 1
(n−1)!

(∑n−1
r=1 (−1)n−rrm−1

(
n−1
r−1

)
+ nm−1

)
, by the Pascal Identity.

Moreover,
(
n−1
r−1

)
= r

n

(
n
r

)
,n ≥ 1, r ≥ 1, so

RHS = 1
n!

(∑n−1
r=1 (−1)n−rrm

(
n
r

)
+ nm

)

= 1
n!

∑n
r=0(−1)n−r

(
n
r

)
rm, since m ≥ 1,

=LHS,
and (1.7), and hence (1.2), are proved.

The Stirling factors µhk were simply described arithmetically in [HPS] by means
of initial values and a recurrence relation. However, (1.2) allows us to give them an
elegant combinatorial interpretation.

We define a club to be a set with at least 2 elements and we then define µhk to be
the number of partitions of a set of (h+ k) elements into h clubs. With this definition
we can prove (1.1) very much more easily than we proved the corresponding result
in [HPS]. For let us partition Π(m,m − k) into subsets Πh, where Πh consists of

2Note that 00 is to be interpreted as 1. That St(m, 0) = 0,m ≥ 1, follows immediately from
(1.3)
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partitions (of a set with m elements) into (m−h− k) singletons and h clubs. Then
0 ≤ h ≤ k; and

|Πh| =
(

m

m− h− k

)
µhk. (1.8)

Plainly, (1.8) establishes (1.1);and (1.1), (1.2) together establish the identity

St(m,m− k) =
k∑

h=0

(
m

h+ k

)
µhk, m ≥ 0, 0 ≤ k ≤ m (1.9)

justifying the name Stirling factors for the quantities µhk.

In Section 2 we establish two recurrence relations for the Stirling factors, together
with initial conditions which, together with either relation, fully determine these
factors. In Section 3 we introduce an entirely different interpretation of the Stirling
factors. In this interpretation one recurrence relation is fairly easily proved, thereby
validating the interpretation, but we make no attempt to prove the other recurrence
relation directly, since, of course, it follows from the validity of the interpretation.
We are led by these considerations to a discussion of the relationship between the
two recurrence relations, and prove that, essentially, it is only with the particular
initial conditions yielding the Stirling factors that the two recurrence relations are
compatible.

A table of values of µhk, 0 ≤ h, k ≤ 10, is given in Figure 1. Various identities
satisfied by the Stirling factors are to be found in [HHP].

The Stirling Factors µhk.

Figure 1

We close this introduction by pointing out that many nice properties of the
Stirling numbers follow from (1.2). For example, it is obvious that P (m,n) = 0 if
m < n.Thus it is true that

St(m,n) = 0,m < n, (1.10)

but this does not seem obvious (except if m = 0) from the definition (1.3).
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2 The recurrence relations for Stirling factors

From the definition of the Stirling factors µhk, h, k ≥ 0, the following initial condi-
tions are straightforward:3

µ00 = 1; µ0k = 0, k ≥ 1; µh0 = 0, h ≥ 1. (2.1)

Indeed, it is just as obvious that

µhk = 0, h > k, (2.2)

since h clubs have, altogether, at least 2h members and h+ k < 2h if k < h.
We now prove our first recurrence relation for µhk. It will be clear that this

relation, together with (2.1), fully determines µhk.

Theorem 2.1

µh+1,k =
k−h∑

j=1

(
h+ k

j

)
µh,k−j , h ≥ 0. (2.3)

Proof. We note first that (2.3) follows immediately from (2.2) if h ≥ k, so we may
assume h ≤ k−1. Let M(h, k) be the set of partitions of a set with (h+k) elements
into h clubs, so that µhk = |M(h, k)|. Now partition M(h+1, k) into disjoint subsets
Mj, as follows. Distinguish one element of our original set of (h+ k + 1) elements

•◦ ◦ ◦ · · · ◦︸ ︷︷ ︸
h+k

(F)

Then Mj consists of those partitions such that the distinguished elements belongs
to a club with (j + 1) members. Since (h + k − j) elements must then be assigned
to h clubs, we require h+ k − j ≥ 2h, or j ≤ k − h. Moreover,

|Mj| =
(
h+ k

j

)
µh,k−j ,

so that (2.3) is established. This is essentially the recurrence relation proved in
[HPS], modified to include the cases h = 0, k = 0. Notice that, with h = 0, (2.3)
yields (together with (2.1))

µ1k =





0, k = 0

1, k ≥ 1
(2.4)

Of course, (2.4) can easily be deduced from the definition of µhk, but it will prove
important for us that it follows from (2.3) (and (2.1)). It will also be significant
that (2.3) actually implies (2.2). �

We turn now to the second of our recurrence relations. Again, this relation,
together with (2.1), plainly determines µhk.

3That µ00 = 1 follows exactly the same reasonable convention as (1.5).
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Theorem 2.2

µh,k+1 = hµhk + (h+ k)µh−1,k, h ≥ 1, k ≥ 0. (2.5)

Proof. We note immediately that (2.5) follows from (2.2) if h > k + 1, so we
assume h ≤ k + 1. We are considering partitions of a set with (h+ k + 1) elements
into h clubs and, as in our proof of Theorem 2.1, we distinguish one element of our
set. We now consider the remaining (h + k) elements (see (F)). A partition of
our original set into h clubs may partition this remaining set into h clubs; it will
then assign the distinguished element to any of the clubs. Thus the number of such
partitions is hµhk. The other possibility is that it may partition the remaining set
into (h− 1) clubs and a singleton — and this could happen in (h+ k)µh−1,k ways;
but then the distinguished element would have to join the singleton to form the hth

club. This establishes (2.5). Once again, (2.5), together with (2.1), imply (2.4). �

The recurrence relation (2.5) was essentially established in [HHP], but with the
two cases h = 1, k = 0 omitted.

3 Phylogenetic trees and the compatibility theorem

Phylogenetic trees of type (h, k), 0 ≤ h, k ≤ 5

Figure 2



620 P. Hilton – J. Pedersen

A phylogenetic tree of type (h, k) is a tree with h internal nodes, each of valency
≥ 3, and (k + 2) labelled external nodes; and N(h, k) is the set of isomorphism
classes of phylogenetic trees of type (h, k). In Figure 2 we display the phylogenetic
trees of type (h, k) for 0 ≤ h, k ≤ 5, together with the values of |N(h, k)| = νhk.

The remarkable fact, established in [HHP], is that4

µhk = νhk. (3.1)

This equality was established in [ES], using a subtle and non-canonical one-one
correspondence between the sets M(h, k) and N(h, k). Here we give a simple proof,
based on that in [HHP], in which we simply show that the quantities νhk satisfy the
(second) recurrence relation of Theorem 2.2, together with correct initial conditions.

We deal first with the initial conditions; here it suffices to establish ν00 = 1,
νh0 = 0, h ≥ 1. That ν00 = 1 is obvious (see the (0,0)-tree in Figure 2). We will
now prove the analog of (2.2), namely,

νhk = 0, h > k. (3.2)

For let τ be a phylogenetic tree (PT) of type (h, k). Then since τ has (h + k + 2)
nodes it has h+ k+ 1 edges. On the other hand, the number R of rays must satisfy,
by valency considerations,

R ≥ 3h+ k + 2.

Thus 2(h + k + 1) ≥ 3h+ k + 2, so that k ≥ h, and (3.2) is proved.
It remains to prove that

νh,k+1 = hνhk + (h+ k)νh−1,k, 1 ≤ h ≤ k + 1. (3.3)

We will suppose our trees supplied with a fixed labelling of their external nodes. If
τ is a PT of type (h, k) we may attach a further edge to an internal node, leading
to an external node to be labelled (k + 3). This can be done in h ways, resulting
in a contribution of hνhk to |N(h, k + 1)|. If τ is a PT of type (h − 1, k) we may
introduce a further node into any edge of τ and then, as above, attach a further
edge to this (internal) node, giving it valency 3, and leading to an external node to
be labelled (k+ 3). This can be done in (h+ k) ways, since τ has (h+ k) edges, and
thus results in a contribution of (h + k)νh−1,k to |N(h, k + 1)|. These two contri-
butions to N(h, k + 1) are disjoint, since in the first case the internal node leading
to the last external node has valency > 3, and in the second case it has valency
3. Moreover, every PT of type (h, k + 1) may be viewed as arising in one or other
of these two ways. For given τ of type (h, k + 1), consider the edge leading to the
external node labelled (k+ 3). If the internal node at the other end of this edge has
valency > 3, delete the external node and the edge, producing a PT of type (h, k).
If the internal node at the other end of the edge has valency 3, delete the edge and

4The cases h = 0,k = 0 were omitted in [HHP]. The significance of phylogenetic trees in
evolution theory is to be found in [HLP].
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both its nodes, producing a PT of type (h − 1, k). This completes the proof that
|N(h, k + 1)| = hνhk + (h+ k)νh−1,k, thus establishing (3.3) and, with it, (3.1). We
thus have, as a consequence of (2.3) and (3.1),

Corollary 3.1 The numbers νhk satisfy

νh+1,k =
k−h∑

j=1

(
h+ k

j

)
νh,k−j , h ≥ 0. (3.4)

Remarks (i) We have not attempted to prove (3.4) from the definition of νhk as
|N(h, k)|.

(ii) Notice that (2.3) may be re-expressed as

µh+1,k =
k−1∑

j=h

(
h+ k

h+ j

)
µhj , h ≥ 0. (3.5)

Similarly, of course, for (3.4).
We now study the relationship between the two recurrence relations established

for µhk (or νhk).
We consider the recurrence relations (with h, k ≥ 0)

αh+1,k =
k−h∑

j=1

(
h+ k

j

)
αh,k−j , h ≥ 0 (3.6)

βh,k+1 = hβhk + (h+ k)βh−1,k, h ≥ 1, k ≥ 0 (3.7)

Since (3.6), by its very form, implies that αh0 = 0, h ≥ 1, we will assume hence-
forth that

αh0 = βh0 = 0, h ≥ 1, (3.8)

and will regard the initial values as the values of α0k, β0k, k ≥ 0. Plainly, both
αhk, βhk are completely determined by the recurrence relations, (3.8), and the initial
values. We now prove

Theorem 3.1 Suppose α0k = β0k, k ≥ 0. Then αhk = βhk, for all h, k, if and only
if

α0k = β0k = 0, k ≥ 1. (3.9)

Remark. Thus we may say that the two recurrence relations are compatible if
and only if (3.9) holds. In the latter case we may say that each of (3.6), (3.7)
implies the other.

Proof of Theorem 3.1 Suppose first that (3.9) holds and set α00 = β00 = a. Then
αhk and aµhk both satisfy (3.6) with the same initial conditions, so

αhk = aµhk, h, k ≥ 0. (3.10)

But we know (Theorem 2.2) that aµhk satisfies (3.7) with the same initial
conditions as βhk,
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aµ0k = β0k, k ≥ 0, (3.11)

so that aµhk = βhk, h, k ≥ 0,(3.12)
and hence

αhk = βhk, for all h, k. (3.13)

Conversely, suppose there exists k ≥ 1 such that α0k = β0k 6= 0. Let ` be the
minimum such k and set





α00 = β00 = a

α0` = β0` = b 6= 0

α0,`+1 = β0,`+1 = c

(` ≥ 1) (3.14)

Then, by (3.6), α1,`+2 =
∑`+2
j=1

(
l+2
j

)
α0,`+2−j = (`+ 2)c +

(
`+2

2

)
b+ a.

On the other hand,

β1` = β1,`−1 = · · · = β11 = β00 = a,
β1,`+1 = β1,` + (` + 1)β0` = a+ (` + 1)b,
β1,`+2 = β1,`+1 + (` + 2)β0,`+1 = a+ (` + 1)b+ (`+ 2)c.

Thus α1,`+2 = β1,`+2 if and only if
(
`+2

2

)
b = (`+ 1)b.

Since b 6= 0 and since
(
`+2

2

)
= ` + 1 if and only if ` = 0 (or−1), we see that,

since ` ≥ 1, α1,`+2 6= β1,`+2. This completes the proof of our theorem.

�

Remark Notice that we only used the fact that β10 = 0 in this last argument (to
infer that β11 = β00), not the full force of (3.8).
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[ES] Erdös, Peter, and Laszlo Szelèly, Applications of antilexicographic order I:
An enumerative theory of trees, ADV. Appl. Math. 10 (1989), 488 - 96.

[HHP] Hendy, Michael, Peter Hilton, and Jean Pedersen, Stirling factors and
phylogenetic trees, Journée, Math. & Info. 5 (1993-94), 110- 122.

[HLP] Hendy, M. D., C. H. C. Little, and David Penny, Comparing trees with
pendant vertices labelled, Siam J. Appl. Math. 44, No. 5 (1984), 1054 - 1065.

[HPS] Hilton, Peter, Jean Pedersen, and Jürgen Stigter, On partitions, surjections
and Stirling numbers, Bulletin of the Belgian Mathematical Society 1 (1994),
713 - 725.

Peter Hilton
Department of Mathematical Sciences
State University of New York
Binghamton, New York 13901-6000
U. S. A.

and
Department of Mathematics & Computer Science
Santa Clara University
Santa Clara, California 95053-0290
U. S. A.

Jean Pedersen
Department of Mathematics & Computer Science
Santa Clara University
Santa Clara, California 95053-0290
U. S. A.


