
m-systems of polar spaces and SPG reguli
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Abstract

It will be shown that every m-system of W2n+1(q), Q−(2n+1, q)
or H(2n, q2) is an SPG regulus and hence gives rise to a semipartial
geometry. We also briefly investigate the semipartial geometries,
associated with the known m-systems of these polar spaces.

1 Introduction

A partial m-system M of a polar space P is a set of m-dimensional sub-
spaces π1, . . . , πt of P such that each generator of P containing an element
πi ∈ M has an empty intersection with (π1∪. . .∪πt)\πi. Partial m-systems
of polar spaces were introduced by Shult and Thas in [5]. They show that
there exists an upper bound, which is independent of m, on the number
of elements of a partial m-system and they call a partial m-system which
meets this upper bound an m-system. We mention the size of an m-system
M for the finite classical polar spaces:

if P = W2n+1(q), then |M| = qn+1 + 1, (1)

if P = Q(2n, q), then |M| = qn + 1, (2)

if P = Q+(2n + 1, q), then |M| = qn + 1, (3)

if P = Q−(2n + 1, q), then |M| = qn+1 + 1, (4)

if P = H(2n, q2), then |M| = q2n+1 + 1, (5)

if P = H(2n + 1, q2), then |M| = q2n+1 + 1. (6)
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The union of the elements of an m-system M will be denoted by M̃. It
can be shown that m-systems of certain polar spaces have two intersection
numbers with hyperplanes.

Theorem 1.1 (Shult and Thas [5]). Every m-system of a polar space
P ∈ {W2n+1(q), Q

−(2n+1, q), H(2n, q2)} has two intersection numbers with
respect to hyperplanes, namely:

(a) If P = W2n+1(q) and H = p⊥, where p⊥ denotes the unique image
of p with respect to the symplectic polarity defining W2n+1(q), with p

a point of M̃, respectively p a point of W2n+1(q) \ M̃, then

|M̃ ∩H| =
(qm+1 − 1)(qn + 1)

q − 1
− qn, respectively

|M̃ ∩H| =
(qm+1 − 1)(qn + 1)

q − 1
.

(b) If P = Q−(2n+1, q) and H is the tangent hyperplane of the quadric
Q−(2n + 1, q) at a point p ∈ M̃, respectively the tangent hyperplane
of Q−(2n + 1, q) at a point p 6∈ M̃ or a non-tangent hyperplane of
Q−(2n + 1, q), then

|M̃ ∩H| =
(qm+1 − 1)(qn + 1)

q − 1
− qn, respectively

|M̃ ∩H| =
(qm+1 − 1)(qn + 1)

q − 1
.

(c) If P = H(2n, q2) and H is the tangent hyperplane of the hermitian
variety H(2n, q2) at a point p ∈ M̃, respectively the tangent hyper-
plane of H(2n, q2) at a point p 6∈ M̃ or a non-tangent hyperplane of
H(2n, q2), then

|M̃ ∩H| =
(q2m+2 − 1)(q2n−1 + 1)

q2 − 1
− q2n−1, respectively

|M̃ ∩H| =
(q2m+2 − 1)(q2n−1 + 1)

q2 − 1
.

Theorem 1.1 has the following corollary.

Corollary 1.2 (Shult and Thas [5]). Every m-system of a polar space
P ∈ {W2n+1(q), Q

−(2n + 1, q), H(2n, q2)} defines a strongly regular graph
and a two-weight code.
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2 A connection between m-systems and SPG reguli

An SPG regulus of PG(n, q) is a set R of m-dimensional subspaces π1, . . . , πr,
r > 1, of PG(n, q), satisfying:

SPG1 πi ∩ πj = ∅ for all i 6= j.

SPG2 If PG(m+1, q) contains πi ∈ R, then it has a point in common
with either 0 or α (α > 0) spaces in R \ {πi}. If PG(m + 1, q)
has no point in common with πj ∈ R for all j 6= i, then it is
called a tangent (m + 1)-space of R at πi.

SPG3 If the point x of PG(n, q) is not contained in an element of R,
then it is contained in a constant number θ (θ ≥ 0) of tangent
(m + 1)-spaces of R.

In [6], Thas shows that for n 6= 2m+1, SPG3 holds if conditions SPG1
and SPG2 are satisfied, and if also the following two conditions hold:

SPG3’ At each πi ∈ R, the union of all tangent (m + 1)-spaces is a
PG(n−m− 1, q).

SPG4’ r = q(n+1)/2 + 1.

We now prove that for certain polar spaces, every m-system is an SPG
regulus.

Theorem 2.1. If P ∈ {W2n+1(q), Q
−(2n + 1, q), H(2n, q2)}, then all m-

systems of P are SPG reguli of the ambient space of P.

Proof.
Let M be an m-system of a polar space P, with P ∈ {W2n+1(q), Q

−(2n +
1, q), H(2n, q2)} and denote its ambient space by PG(k, t), where (k, t) ∈
{(2n+1, q), (2n+1, q), (2n, q2)}. Let πm be an element of M. For πm−1 ⊆
πm consider an (m + 1)-dimensional subspace πm+1 of PG(k, t) containing
πm−1 and meeting P in πm−1P1, where P1 is the polar space W1(q), Q+(1, q)
or H(1, q2) in the respective cases. Denote by X the number of points of
M̃ contained in πm−1P1 and by Y the number of points of M̃ ∩ (π⊥m+1 \
πm−1), with π⊥m+1 the image of πm+1 with respect to the polarity defining
P. We now use Theorem 1.1 to count the number of pairs (H, x) with H a
hyperplane containing πm+1 and x a point of (H ∩ M̃) \ πm+1. This yields
the following in the respective cases.

(a) For P = W2n+1(q) and P = Q−(2n + 1, q) we obtain the same result:

(

Y +
qm − 1

q − 1

)(

(qm+1 − 1)(qn + 1)

q − 1
− qn −X

)

+

(

q2n−m − 1

q − 1
−

qm − 1

q − 1
− Y

)(

(qm+1 − 1)(qn + 1)

q − 1
−X

)

=

(

(qn+1 + 1)
qm+1 − 1

q − 1
−X

)

q2n−m−1 − 1

q − 1
,
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from which we obtain

(q − 1)Y + qn−m−1(q − 1)X − qn + qn−m−1 − qm+1 + qm = 0.

(b) For P = H(2n, q2) the result is:

(

Y +
q2m − 1

q2 − 1

)(

(q2m+2 − 1)(q2n−1 + 1)

q2 − 1
− q2n−1 −X

)

+

(

q4n−2m−2 − 1

q2 − 1
−

q2m − 1

q2 − 1
− Y

)(

(q2m+2 − 1)(q2n−1 + 1)

q2 − 1
−X

)

=

(

(q2n+1 + 1)
q2m+2 − 1

q2 − 1
−X

)

q4n−2m−4 − 1

q2 − 1
,

which yields

(q2− 1)Y + q2n−2m−3(q2− 1)X − q2n−1 + q2n−2m−3 − q2m+2 + q2m = 0.

Now consider the special case where πm = 〈πm−1, y〉 ∈ M, for some y ∈ P1.
In this case Y = 0 and we can determine X from the above equalities:

(a) For P = W2n+1(q) and P = Q−(2n + 1, q) we obtain

X =
qm+1 − 1

q − 1
+ q2m−n+1, (7)

here we put α := q2m−n+1.

(b) For P = H(2n, q2) we find

X =
q2m+2 − 1

q2 − 1
+ q4m−2n+3, (8)

and in this case α := q4m−2n+3.

The value of X tells us that every (m+1)-dimensional subspace of PG(k, t),
containing πm ∈ M and not contained in π⊥m, has exactly α points in
common with M̃ \ πm. From the definition of an m-system, it is known
that every (m + 1)-dimensional subspace of π⊥m which contains πm, has an
empty intersection with all elements of M\ {πm}. Hence the union of all
tangent (m+1)-spaces ofM at πm is exactly π⊥m and thus has the dimension
required in SPG3’ of the alternative definition of an SPG regulus. As the
number of elements of an m-system, see (1), (4) and (5), is exactly the value
required in SPG4’, it follows that M satisfies SPG1, SPG2, SPG3’ and
SPG4’, so it is an SPG regulus in PG(k, t) with parameters

(a) for P = W2n+1(q) or P = Q−(2n + 1, q):

r = qn+1 + 1, α = q2m−n+1 and θ = qn−m + 1;

(b) for P = H(2n, q2):

r = q2n+1 + 1, α = q4m−2n+3 and θ = q2n−2m−1 + 1. �
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We mention two interesting corollaries of the previous theorem.

Corollary 2.2. For any m-system of P ∈ {W2n+1(q), Q
−(2n + 1, q),

H(2n, q2)} there holds that 2m + 1 ≥ n.

Proof.
In (7) and (8), X ≥ |πm| must hold. The result follows. �

Remark.
This inequality was already found by Hamilton and Mathon [2]. However
the proofs are distinct.

Corollary 2.3. If M is a 1-system of Q−(7, q), then every line of Q−(7, q)
meets M̃ in 0, 1, 2 or q + 1 points. If a line of Q−(7, q) contains q + 1
points of M̃, then it is necessarily a line of M.

Proof.
This follows immediately from the proof of Theorem 2.1, applied to 1-
systems of the quadric Q−(7, q). �

3 semipartial geometries arising from the known m-sys-

tems

In [6], Thas shows that every SPG regulus gives rise to a semipartial ge-
ometry. Hence, by the previous theorem, every m-system of W2n+1(q),
Q−(2n + 1, q) or H(2n, q2) also gives rise to a semipartial geometry. For
spreads of H(2n, q2) or Q−(2n + 1, q), this was already observed by Thas
in [6]. For arbitrary m-systems, the corresponding semipartial geometries
have the following parameters:

(a) for P = W2n+1(q) or P = Q−(2n + 1, q):

s = qm+1 − 1, t = qn+1, α = q2m−n+1 and µ = qm+1(qm+1 − 1);

(b) for P = H(2n, q2):

s = q2m+2 − 1, t = q2n+1, α = q4m−2n+3 and µ = q2m+2(q2m+2 − 1).

For several values of m and n, these parameters are new. Unfortunately,
most of the known m-systems of the considered polar spaces do not yield
new semipartial geometries.

First we remark that a lot of examples of m-systems arise from a known
m-system in a small polar space by applying the so-called “trace trick”.
This means that the trace map is used to reduce the field while at the
same time increasing the dimension, see [3] for an algebraic approach to
the trace trick and [5] for a geometric explanation of this method. The
corresponding semipartial geometry is clearly isomorphic to the one aris-
ing from the initial m-system in the small polar space, so m-systems which
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are constructed with the trace trick never yield new semipartial geome-
tries. This observation highly reduces the number of candidates for new
semipartial geometries.

Of the hermitian polar space H(2n, q2), only one m-system is known,
apart from those obtained by the trace trick from this one, namely the point
set of H(2, q2) considered as an ovoid (or a spread) of H(2, q2). The asso-
ciated semipartial geometry is well known and was introduced by Debroey
and Thas in [1]; it is often denoted by T ∗

2 (U).

For the elliptic quadric Q−(2n + 1, q), the situation is similar. First
we observe that for q even, every m-system of Q−(2n + 1, q) is also an
m-system of W2n+1(q). This can be seen as follows. It is possible to embed
Q−(2n+1, q) in a parabolic polar space Q(2n+2, q) such that the nucleus
of Q(2n + 2, q) is not contained in the ambient space PG(2n + 1, q) of
Q−(2n + 1, q). Clearly, every m-system of Q−(2n + 1, q) is an m-system
of Q(2n + 2, q) as well. If we project Q(2n + 2, q) from its nucleus onto
PG(2n+1, q), we obtain a symplectic polar space W2n+1(q). Now it is easily
seen that the projection of the m-system of Q(2n + 2, q) is an m-system of
W2n+1(q). As this m-system is completely contained in PG(2n + 1, q), it is
projected onto itself and this shows that every m-system of Q−(2n + 1, q),
q even, is an m-system of W2n+1(q). Hence we may omit the q even case.
If q is odd, m-systems are only known for the small dimensions, except for
those which are constructed with the trace trick from the small ones. It is
known that Q−(5, q) has several non-isomorphic spreads, but the case of
spreads of elliptic quadrics was already discussed in [6]. Moreover, Q−(5, q)
has no ovoids and the point set of Q−(3, q), considered as an ovoid of
Q−(3, q), yields the well known semipartial geometry T ∗

3 (O), with O =
Q−(3, q). Consequently, nothing new arises here.

Finally, we consider the known m-systems of W2n+1(q). The semipartial
geometry corresponding to the regular spread of W2n+1(q), that is, a spread
of W2n+1(q) which is regular considered as an n-spread of PG(2n+1, q), was
given as an example in [6]. Other spreads of W2n+1(q) are known and they
yield other semipartial geometries with the same parameters. Candidates
for new semipartial geometries are given by the m-systems of W2n+1(2),
n ≤ 4, which were found by computer by Hamilton and Mathon in [2].
Some of these yield indeed new semipartial geometries, but their param-
eters are not new. Very recently, A. Offer ([4]) discovered a new class of
spreads of the hexagon H(22h), which yields a new class of 1-systems of the
parabolic quadric Q(6, 22h). By projection from the nucleus of Q(6, 22h)
onto a 5-dimensional subspace not containing the nucleus, a new class of
1-systems of W5(2

2h) is obtained. These 1-systems are distinct from the
only previously known 1-system of W5(q), which arises from H(2, q2) as
described in [5, Theorem 14] and the semipartial geometry of which is
isomorphic to T ∗

2 (U). Hence this new class of spreads of H(22h) implies
the existence of a new class of semipartial geometries for q = 22h, but
once again their parameters are not new. All other known m-systems of
W2n+1(q) give rise to known semipartial geometries, as they are always ob-
tained from an m-system in a small polar space, the semipartial geometry
of which is well known.
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