m-systems of polar spaces and SPG reguli

It will be shown that every m-system of Wa,,11(q), @~ (2n+1,¢q)
or H(2n,q?) is an SPG regulus and hence gives rise to a semipartial
geometry. We also briefly investigate the semipartial geometries,
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associated with the known m-systems of these polar spaces.

1 Introduction

A partial m-system M of a polar space P is a set of m-dimensional sub-
spaces 71, ...,  of P such that each generator of P containing an element
m; € M has an empty intersection with (m U. ..Um,)\m;. Partial m-systems
of polar spaces were introduced by Shult and Thas in [5]. They show that
there exists an upper bound, which is independent of m, on the number
of elements of a partial m-system and they call a partial m-system which
meets this upper bound an m-system. We mention the size of an m-system
M for the finite classical polar spaces:
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P = Waont1(q),
P = Q(2n7Q>a
P=Q"(2n+1,q),

P=Q (2n+1,q),
P = H(2n,q2),
P=H?2n+1,¢%,
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M| =g +1,
M| =q"+1,
M| =q"+1,
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IM] =g+ 1,
M| =g + 1.
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The union of the elements of an m-system M will be denoted by M. It
can be shown that m-systems of certain polar spaces have two intersection
numbers with hyperplanes.

Theorem 1.1 (Shult and Thas [5]). Every m-system of a polar space
P e {Wani1(q), Q= (2n+1,q), H(2n,¢*)} has two intersection numbers with
respect to hyperplanes, namely:

(a) If P = Wy,1(q) and H = p*, where p+ denotes the unique image
of p with respect to the symplectic polarity defining W2n+1(q), with p
a point of M, respectively p a point of Wa,.1(q) \ M, then

("' = D(¢" +1)

IMNH| = | — q", respectively
g = D@L,
q—1

(b) If P = Q (2n+1,q) and H is the tangent hyperplane of the quadric
Q (2n+1,q) at a point p € M, respectively the tangent hyperplane
of Q~(2n+1,q) at a point p & M or a non-tangent hyperplane of
Q~(2n+1,q), then

(" = 1)(¢"+ 1)

IMNH| = = — q", respectively
=D,
q—1

(c) If P = H(2n,q*) and H is the tangent hyperplane of the hermitian
variety H(2n,q*) at a point p € M, respectively the tangent hyper-
plane of H(2n,¢?) at a point p € M or a non-tangent hyperplane of
H(2n,q*), then

(@™ =D +1) 5,

IMNH| = 21 —q”" ", respectively
\NMUﬂ:(fWQ—D@%*+R
¢ —1 '

Theorem 1.1 has the following corollary.

Corollary 1.2 (Shult and Thas [5]). Every m-system of a polar space
P e {Woui1(q),Q (2n +1,q), H(2n,q*)} defines a strongly reqular graph
and a two-weight code.
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2 A connection between m-systems and SPG reguli

An SPG regulus of PG(n, q) is a set R of m-dimensional subspaces 71, ..., m,,
r > 1, of PG(n, q), satisfying:

SPG1 m;Nm; =0 for all i # j.

SPG2 If PG(m+1, ¢) contains m; € R, then it has a point in common
with either 0 or @ (o > 0) spaces in R\ {m;}. If PG(m +1,q)
has no point in common with 7; € R for all j # ¢, then it is
called a tangent (m + 1)-space of R at ;.

SPG3 If the point z of PG(n, ¢) is not contained in an element of R,
then it is contained in a constant number 6 (§ > 0) of tangent
(m + 1)-spaces of R.

In [6], Thas shows that for n # 2m+1, SPG3 holds if conditions SPG1
and SPG2 are satisfied, and if also the following two conditions hold:

SPG3’ At each m; € R, the union of all tangent (m + 1)-spaces is a
PG(n —m —1,q).

SPG4’ r = ¢tD/2 4 1.

We now prove that for certain polar spaces, every m-system is an SPG
regulus.

Theorem 2.1. If P € {Wani1(q), Q= (2n + 1,q), H(2n,q¢*)}, then all m-
systems of P are SPG requli of the ambient space of P.

Proof.

Let M be an m-system of a polar space P, with P € {Wa,11(q), @~ (2n +
1,q), H(2n,¢*} and denote its ambient space by PG(k,t), where (k,t) €
{2n+1,q),(2n+1,q),(2n,¢*}. Let m,, be an element of M. For ,,, 1 C
Tm consider an (m + 1)-dimensional subspace 7,41 of PG(k,t) containing
Tm—1 and meeting P in 7, 1P, where P; is the polar space W1(q), Q1 (1, q)
or H(1,¢?) in the respective cases. Denote by X the number of points of
M contained in m,,_1P; and by Y the number of points of M N (74, \
Tm_1), With 7+ 41 the image of 7,1 with respect to the polarity defining
P. We now use Theorem 1.1 to count the number of pairs (H, z) with H a
hyperplane containing 7,1 and = a point of (H N M) \ Tma1. This yields
the following in the respective cases.

(a) For P = Wa,11(q) and P = Q~(2n+ 1, q) we obtain the same result:

(H T 1) <<qm+1 ~1)(g"+ 1) _qn_X>

qg—1 qg—1
N q2n—m_1_qm_1 Ly <qm+1_1)(qn_'_1> x
qg—1 qg—1 q—1
m+1_1 2n—m—1_1
e I e
q—1 qg—1
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from which we obtain
(=Y +¢""" q—)X —¢"+¢"" ! =¢" +q" =0.

(b) For P = H(2n,q?) the result is:

<Y 4 ¢ — 1) <(q2m+2 - 1)((]2"71 +1) . q2n71 . X)

¢ —1 ¢ —1
In—2m—2 __ 1 2m __ 2m+2 2n—1
(4 =1 Y\ (e D™ +1)
¢ —1 ¢ —1 ¢ —1
2m—+2 1 An—2m—4 __ 1
_ 2+l 4 _ x4

which yields

(q2 _ ].)Y +q2n—2m—3(q2 _ 1)X o q2n—1 +q2n—2m—3 o q2m+2 + qu —=0.

Now consider the special case where 7, = (m,,_1,y) € M, for some y € P;.
In this case Y = 0 and we can determine X from the above equalities:

(a) For P = Wa,11(q) and P = Q~(2n + 1, ¢) we obtain

qm+1 -1

X = 4 q2mfn+1’ (7)

qg—1

here we put o := ¢ "1

(b) For P = H(2n,q¢*) we find
q2m+2 -1
¢ —1

Am—2n+3

X — + q4m72n+3’ (8)

and in this case a := ¢

The value of X tells us that every (m+1)-dimensional subspace of PG(k, t),
containing 7,, € M and not contained in 7}, has exactly a points in
common with M \ 7,,. From the definition of an m-system, it is known
that every (m + 1)-dimensional subspace of 7% which contains 7,,, has an
empty intersection with all elements of M \ {7,,}. Hence the union of all
tangent (m+1)-spaces of M at 7, is exactly - and thus has the dimension
required in SPG3’ of the alternative definition of an SPG regulus. As the
number of elements of an m-system, see (1), (4) and (5), is exactly the value
required in SPG4’, it follows that M satisfies SPG1, SPG2, SPG3’ and
SPG4’, so it is an SPG regulus in PG(k,t) with parameters

(a) for P =Wy,i1(q) or P =Q (2n+1,¢):

r=¢""+1, a=¢m"" and §=¢""+1;

(b) for P = H(2n, ¢*):

r = q2n+1 + 1’ a = q4m72n+3 and 0 — q2n72m71 + 1. n
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We mention two interesting corollaries of the previous theorem.

Corollary 2.2. For any m-system of P € {Wa11(q),Q (2n + 1,q),
H(2n,q*)} there holds that 2m + 1 > n.

Proof.
In (7) and (8), X > |m,,| must hold. The result follows. ]

Remark.
This inequality was already found by Hamilton and Mathon [2]. However
the proofs are distinct.

Corollary 2.3. If M is a 1-system of Q™ (7,q), then every line of Q™ (7, q)
meets M in 0, 1, 2 or ¢+ 1 points. If a line of Q=(7,q) contains q + 1
points of M, then it is necessarily a line of M.

Proof.
This follows immediately from the proof of Theorem 2.1, applied to 1-
systems of the quadric Q= (7, ¢q). n

3 semipartial geometries arising from the known m-sys-
tems

In [6], Thas shows that every SPG regulus gives rise to a semipartial ge-
ometry. Hence, by the previous theorem, every m-system of W, ,1(q),
Q (2n+ 1,q) or H(2n,¢?) also gives rise to a semipartial geometry. For
spreads of H(2n,q*) or Q= (2n + 1,q), this was already observed by Thas
in [6]. For arbitrary m-systems, the corresponding semipartial geometries
have the following parameters:

(a) for P =Wo,i1(q) or P =Q (2n+1,q):

s = qm+1 - 17 t = anrl’ a = q2mfn+1 and = qm+1<qm+1 - 1)7
(b) for P = H(2n,q¢?):
s = q2m+2 _ 1’ t = q2n+17 a = q4mf2n+3 and = q2m+2<q2m+2 _ 1)

For several values of m and n, these parameters are new. Unfortunately,
most of the known m-systems of the considered polar spaces do not yield
new semipartial geometries.

First we remark that a lot of examples of m-systems arise from a known
m-system in a small polar space by applying the so-called “trace trick”.
This means that the trace map is used to reduce the field while at the
same time increasing the dimension, see [3] for an algebraic approach to
the trace trick and [5] for a geometric explanation of this method. The
corresponding semipartial geometry is clearly isomorphic to the one aris-
ing from the initial m-system in the small polar space, so m-systems which
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are constructed with the trace trick never yield new semipartial geome-
tries. This observation highly reduces the number of candidates for new
semipartial geometries.

Of the hermitian polar space H(2n,¢?), only one m-system is known,
apart from those obtained by the trace trick from this one, namely the point
set of H(2,¢*) considered as an ovoid (or a spread) of H(2,q?*). The asso-
ciated semipartial geometry is well known and was introduced by Debroey
and Thas in [1]; it is often denoted by T3 (U).

For the elliptic quadric @~ (2n + 1, q), the situation is similar. First
we observe that for ¢ even, every m-system of Q~(2n + 1,q) is also an
m-system of Wy, 11(¢). This can be seen as follows. It is possible to embed
@~ (2n+1,q) in a parabolic polar space Q(2n + 2, q) such that the nucleus
of Q(2n + 2,q) is not contained in the ambient space PG(2n + 1,¢q) of
Q= (2n+ 1,q). Clearly, every m-system of Q~(2n + 1,q) is an m-system
of Q(2n + 2,q) as well. If we project Q(2n + 2,¢) from its nucleus onto
PG(2n+1, q), we obtain a symplectic polar space W, 11(q). Now it is easily
seen that the projection of the m-system of Q(2n + 2, q) is an m-system of
Wans1(q). As this m-system is completely contained in PG(2n + 1, ¢), it is
projected onto itself and this shows that every m-system of Q~(2n+ 1, q),
q even, is an m-system of Wy, .1(q). Hence we may omit the g even case.
If ¢ is odd, m-systems are only known for the small dimensions, except for
those which are constructed with the trace trick from the small ones. It is
known that @~ (5, ¢) has several non-isomorphic spreads, but the case of
spreads of elliptic quadrics was already discussed in [6]. Moreover, Q~ (5, q)
has no ovoids and the point set of QQ(3,q), considered as an ovoid of
Q~(3,q), yields the well known semipartial geometry 75(0), with O =
@~ (3,q). Consequently, nothing new arises here.

Finally, we consider the known m-systems of Wo,,11(¢). The semipartial
geometry corresponding to the regular spread of Wy, 1(q), that is, a spread
of Wap,11(q) which is regular considered as an n-spread of PG(2n+1, ¢q), was
given as an example in [6]. Other spreads of W, 11(q) are known and they
yield other semipartial geometries with the same parameters. Candidates
for new semipartial geometries are given by the m-systems of Wy, ,1(2),
n < 4, which were found by computer by Hamilton and Mathon in [2].
Some of these yield indeed new semipartial geometries, but their param-
eters are not new. Very recently, A. Offer ([4]) discovered a new class of
spreads of the hexagon H(22"), which yields a new class of 1-systems of the
parabolic quadric Q(6,2%"). By projection from the nucleus of Q(6,2%")
onto a H-dimensional subspace not containing the nucleus, a new class of
1-systems of W5(22") is obtained. These 1-systems are distinct from the
only previously known 1-system of Ws(q), which arises from H(2,q?) as
described in [5, Theorem 14] and the semipartial geometry of which is
isomorphic to Ty (U). Hence this new class of spreads of H(2%") implies
the existence of a new class of semipartial geometries for ¢ = 22", but
once again their parameters are not new. All other known m-systems of
Woni1(q) give rise to known semipartial geometries, as they are always ob-
tained from an m-system in a small polar space, the semipartial geometry
of which is well known.
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