On the Linkage of Quaternion Algebras

T. Y. Lam

For quaternion division algebras B, C over a field F (of any characteristic), a well-known theorem of Albert [1] and Sah [6] states that the following conditions are equivalent:
(1) $B \otimes_{F} C$ is not a division algebra;
(2) B and C have a common quadratic splitting field;
(3) some quadratic field extension of F can be embedded (over F) in both B and C.

In the case where F has characteristic 2, there is a further refinement of this theorem, due to Draxl, which states that the above conditions are also equivalent to ${ }^{1}$:
(4) B and C have a common separable quadratic splitting field;
(5) some quadratic separable field extension of F can be embedded in both B and C.

Draxl's original proof in [3] was not easy (for me) to follow. Subsequent proofs of the equivalence of (1)-(5) using more advanced tools (respectively, algebraic geometry and the theory of Clifford algebras) appeared in this Bulletin in Tits [7] and Knus [5]. While teaching a course in the theory of division rings, I stumbled upon a short and completely elementary proof of Draxl's part of the above theorems. This proof is recorded below in order to make Draxl's result more easily accessible to non-experts. It has also been known for some time that (4) and (5) are no longer equivalent to (1)-(3) if the word "separable" is replaced by "inseparable". This will

[^0]be demonstrated as well by an example that is simpler and easier to verify than the ones in Baeza [2: p. 134] and Knus [5: pp. 335-336].

Throughout the following, we assume $\operatorname{char}(F)=2$. Recall that, for $a \in F$ and $b \in$ $F^{*},[a, b)_{F}$ denotes the F-quaternion algebra generated by i, j with the relations $i^{2}+i+a=0, j^{2}=b$, and $i j=j(i+1)$. The following three standard isomorphisms for quaternion algebras will be useful:
(6) $[a, b)_{F} \cong[a+b, b)_{F}$;
(7) $[a, b)_{F} \cong\left[a+x^{2}+x, b\right)_{F}$ for any $x \in F$. In particular, $\left[x^{2}+x, b\right)_{F} \cong[0, b)_{F} \cong$ $\mathbb{M}_{2}(F)$. (8) $[a, b)_{F} \cong[a, b d)_{F}$ whenever $d=x^{2}+x y+a y^{2} \neq 0$.
Here, (6) follows by considering the generating set $\{i+j, j\}$, and (7), (8) follow similarly by considering the generating sets $\{i+x, j\}$ and $\{i, x j+y k\}$ (where $k=i j$).

We shall also need the following basic observation on quadratic subfields in a quaternion algebra B (see, e.g. [4: p. 104]):
(9) A separable field extension $F[t] /\left(t^{2}+t+a\right)$ embeds in B iff $B \cong[a, *)_{F}$. An inseparable field extension $F[t] /\left(t^{2}-b\right)$ embeds in B iff $B \cong[* *, b)_{F}$.

This observation leads us naturally to the notion of linkage. We say that two quaternion algebras B, C are left-linked if $B \cong[a, x)_{F}$ and $C \cong[a, y)_{F}$ for suitable $a \in F$ and $x, y \in F^{*}$, and right-linked if $B \cong[z, b)_{F}$ and $C \cong[w, b)_{F}$ for suitable $b \in F^{*}$ and $z, w \in F$. ¿From (9), we see that, if B, C are division algebras, "left-linked" means that they have a common separable quadratic subfield, and "right-linked" means that they have a common inseparable quadratic subfield.

We shall now prove Draxl's Theorem. (4) \Leftrightarrow (5) being a standard fact on splitting fields, our task at hand is only to prove $(3) \Rightarrow(5)$. In view of the above interpretations of linkage, this implication will follow as soon as we prove the following

Proposition. If two quaternion algebras B, C are right-linked, then they are leftlinked.

Proof. Write $B \cong[z, b)_{F}$ and $C \cong[w, b)_{F}$, where $z, w \in F$ and $d \in F^{*}$. Let $x \in F$ be the unique element solving the linear equation $z+b(x+z)=w$. We may assume that $x^{2}+x+z \neq 0$ (for otherwise B splits by (7), and hence $B \cong[w, 1)_{F}$ is left-linked to C). By (8) and (6),

$$
\begin{equation*}
B \cong\left[z, b\left(x^{2}+x+z\right)\right)_{F} \cong\left[z+b\left(x^{2}+x+z\right), *\right)_{F} \cong\left[w+b x^{2}, *\right)_{F} . \tag{10}
\end{equation*}
$$

If $x=0$, this shows that B is left-linked to C. If $x \neq 0$, then by (8) and (6) again, $C \cong[w, d)_{F} \cong\left[w, b x^{2}\right)_{F} \cong\left[w+b x^{2}, d x^{2}\right)_{F}$, which is left-linked to B by (10).

Note that the proof of the Proposition is actually algorithmic: it gives an explicit construction of a left linkage from any given right linkage. We finish by showing, however, that the converse of the Lemma is not true; that is, left linkage is in general weaker than right linkage. In the language of algebras, this means that
it is possible for two quaternion division F-algebras to have a common separable quadratic extension of F, but no common inseparable quadratic extension.

Example. Over the rational function field $F=\mathbb{F}_{2}(x, y)$, consider the quaternion algebras $B=[1, x)_{F}$ and $C=[1, y)_{F}$. These are left-linked, both containing the separable quadratic extension E / F where $E=\mathbb{F}_{4}(x, y)$. We claim that B, C are not right-linked (so they do not contain a common inseparable quadratic field extension). To see this, assume instead that $B \cong[*, b)_{F}$ and $C \cong[* *, b)_{F}$, for some $b \in F^{*}$. Then, both B and C have a nonscalar element with square b. A short calculation using the given presentations of B and C leads to the following equations:

$$
b=h_{1}^{2}+x\left(f_{1}^{2}+f_{1} g_{1}+g_{1}^{2}\right)=h_{2}^{2}+y\left(f_{2}^{2}+f_{2} g_{2}+g_{2}^{2}\right)
$$

where $\left(f_{i}, g_{i}\right) \neq(0,0) \in F^{2}$. Setting $h=h_{1}+h_{2}$, we get

$$
\begin{equation*}
h^{2}=x\left(f_{1}^{2}+f_{1} g_{1}+g_{1}^{2}\right)+y\left(f_{2}^{2}+f_{2} g_{2}+g_{2}^{2}\right) \tag{11}
\end{equation*}
$$

After clearing denominators, we may assume that $f_{i}, g_{i} \in \mathbb{F}_{2}[x, y]$, and with

$$
\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(g_{1}\right), \operatorname{deg}\left(f_{2}\right), \operatorname{deg}\left(g_{2}\right)\right\}
$$

chosen as small as possible. Setting $y=0$ in (11), we have

$$
h(x, 0)^{2}=x\left[f_{1}(x, 0)^{2}+f_{1}(x, 0) g_{1}(x, 0)+g_{1}(x, 0)^{2}\right] .
$$

Since $f_{i}(x, 0)$ and $g_{i}(x, 0)$ are monic (if nonzero), the RHS has odd degree, while the LHS has even degree. Thus, we must have $f_{1}(x, 0)=g_{1}(x, 0)=0$, so we can write $f_{1}=y f_{3}$ and $g_{1}=y g_{3}$. Similarly, $f_{2}=x f_{4}$ and $g_{2}=x g_{4}$, and hence $h=x y h_{3}$. Cancelling $x y$ from (11) gives

$$
\begin{equation*}
x y h_{3}^{2}=y\left(f_{3}^{2}+f_{3} g_{3}+g_{3}^{2}\right)+x\left(f_{4}^{2}+f_{4} g_{4}+g_{4}^{2}\right) \tag{12}
\end{equation*}
$$

Repeating the argument gives $f_{3}=x f_{5}, g_{3}=x g_{5}, f_{4}=y f_{6}, g_{4}=y g_{6}$, and now (12) gives

$$
h_{3}^{2}=x\left(f_{5}^{2}+f_{5} g_{5}+g_{5}^{2}\right)+y\left(f_{6}^{2}+f_{6} g_{6}+g_{6}^{2}\right),
$$

which contradicts the minimal choice of $\left\{f_{1}, g_{1}, f_{2}, g_{2}\right\}$ in (11).
Note that B, C here are necessarily division algebras, for, if say B was not a division algebra, then $B \cong \mathbb{M}_{2}(F) \cong[0, y)_{F}$ would have been right-linked to $C=[1, y)_{F}$.

References

[1] A. A. Albert: Tensor products of quaternion algebras, Proc. Amer. Math. Soc. 35(1972), 65-66.
[2] R. Baeza: Quadratic Forms over Semilocal Rings, Lecture Notes in Math., Vol. 655, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[3] P. K. Draxl: Über gemeinsame separabel-quadratische Zerfällungskörper von Quaternionalgebren, Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 16(1975), 251-259.
[4] P. K. Draxl: Skew Fields, London Math. Soc. Lecture Notes Series, Vol. 81, Cambridge Univ. Press, 1983.
[5] M.-A. Knus: Sur la forme d'Albert et le produit tensoriel de deux algèbres de quaternions, Bull. Soc. Math. Belg. 45(1993), 333-337.
[6] C. H. Sah: Symmetric bilinear forms and quadratic forms, J. Algebra 20(1972), 144-160.
[7] J. Tits: Sur les produits tensoriels de deux algèbres de quaternions, Bull. Soc. Math. Belg. 45(1993), 329-331.

Author's Email Address:
lam@math.berkeley.edu

[^0]: ${ }^{1}$ Of course, (4), (5) are also equivalent to (1)-(3) in case $\operatorname{char}(F) \neq 2$, since all quadratic extensions of F are separable in that case. But this would hardly qualify as a "refinement".

 Received by the editors August 2001.
 Communicated by M. Van den Bergh.
 1991 Mathematics Subject Classification : 16Kxx, 16K20, 17C60.
 Key words and phrases : Linkage, division algebra, quaternion algebra, splitting field, separable, inseparable.

