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Abstract

Let A denote the space of analytic functions in the unit disc ∆ = {z ∈ C :
|z| < 1} with the normalization f(0) = f ′(0) − 1 = 0. We are interested in
the following problems: Find conditions on α ∈ C (Reα > −1) and µ > 0 so
that the subordination condition

zf ′′(z) + αf ′(z) ≺ α + µz, z ∈ ∆,

implies that f is starlike or convex in ∆. Define

P (α, δ) = {f ∈ A : there exists a |γ| < π/2 such that

Re eiγ(f ′(z) + αzf ′′(z)− δ) < 0}

for some α ∈ C with Reα ≤ −1. For a given α, we find a precise condition on
δ so that f ∈ P (α, δ) is univalent in ∆. Further, in this paper we also prove
several sufficient conditions for starlikeness and convexity for the convolution
f ∗ g when both (or one) of f, g belong(s) to the class

R̃(α, λ) = {f ∈ A : f ′(z) + αzf ′′(z) ≺ 1 + λz, z ∈ ∆},

where α ∈ C\{−1} with Reα ≥ −1.
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1 Introduction and main results

Let H denote the space of analytic functions in the unit disc ∆ = {z ∈ C : |z| < 1},
with the topology of local uniform convergence. We use two kinds of normalization
from the space H, namely

A = {f ∈ H : f(0) = f ′(0)− 1 = 0}, A′ = {f ∈ H : f(0) = 1}.
Let B denote the class of all functions ω ∈ H such that ω(0) = 0 and |ω(z)| < 1
on ∆. The concept of subordination has proved to be very useful in studies of
the range of values of analytic functions, see for example [L, p. 163-171]. Recall
that for f, g ∈ H, we say that the function f is subordinate to g, written f ≺ g, or
f(z) ≺ g(z), if and only if there exists a ω ∈ B such that f(z) = g(ω(z)) on ∆. It is a
well-known result that this implies in particular f(0) = g(0) and f(∆) ⊂ g(∆), and
that these two conditions are also sufficient for f(z) ≺ g(z) whenever g is univalent
in ∆. We remark that if f ∈ H, f(0) = 0 and satisfies |f(z)| ≤ M on ∆, then this
can equivalently be expressed in the form

f(z) = Mω(z), ω ∈ B,
and write

f(z) ≺Mz, z ∈ ∆.

We shall use either of these equivalent formulations according to our convenience.
For α real, 0 ≤ α < 1, a function f ∈ A is said to be in S∗(α), the space of

starlike functions of order α, if and only if

zf ′(z)

f(z)
≺ 1 + (1− 2α)z

1− z
, z ∈ ∆.

For α = 0, S∗(0) ≡ S∗ is the well-known space of normalized functions starlike
(univalent) with respect to origin. A function f ∈ A is said to be strongly starlike
of order α, α > 0, if and only if

zf ′(z)

f(z)
≺
(

1 + z

1− z

)α

, z ∈ ∆,

and is denoted by S(α). If α = 1, S(α) coincides with S∗ and if 0 < α < 1,
S(α) consists only of bounded starlike functions [BK] and therefore, the inclusion
S(α) ⊂ S∗ is proper. In fact, even starlike functions of higher order are not bounded.
A function f ∈ A is said to be in K(α) if and only if zf ′(z) ∈ S∗(α). As usual
K(0) ≡ K denotes the family of all convex functions in ∆. Also, for 0 < α ≤ 1, let

Sα = {f ∈ A :
zf ′(z)

f(z)
≺ 1 + αz, z ∈ ∆}

and
Kα = {f ∈ A : zf ′(z) ∈ Sα}.

We need the following space of functions for our first result, namely, Theorem 1.3:
For −1 6= α ∈ C with Reα ≥ −1, let

R̃(α, λ) = {f ∈ A : f ′(z) + αzf ′′(z) ≺ 1 + λz, z ∈ ∆}.
For convenience, we set R̃(0, λ) := Rλ and recall the following result.
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Lemma 1.1. For 0 < α ≤ 1, the inclusion

Rλ ⊂ S(α)

holds whenever

0 < λ ≤ 2 sin(πα/2)√
5 + 4 cos(πα/2)

.

This lemma is a special case of Corollary 1.7 from [PS1]. The interesting feature
of this result is the sharpness part which was left open in the authors paper [PS1].
However, the sharpness part was recently verified in [RRS, Corollary 1.2]. Another
result which will of interest in this connection is the following from [P3].

Lemma 1.2. For 0 < λ ≤ 1/2, we have the inclusion Rλ ⊂ S3λ/(2−λ).

A more general forms of these lemmas along with several interesting applications
may be found from the work of Ponnusamy [P3] and, Ponnusamy and Singh [PS1].

The basic operations that we shall encounter frequently is the usual Hadamard
product (or convolution) f ∗ g of two analytic functions f, g ∈ H:

f(z) =
∞∑

k=0

akz
k, g(z) =

∞∑

k=0

bkz
k ⇒ (f ∗ g)(z) =

∞∑

k=0

akbkz
k.

Note that f ∗ g is in H. We use the notation H1 ∗ H2 to denote the set of all f ∗ g
where f ∈ H1 and g ∈ H2. Here H1 and H2 are two subspaces of H. Now we are in
a position to state our preliminary but basic results on the class R̃(α, λ).

Theorem 1.3. We have

(i) The inclusion R̃(α, λ) ⊂ R̃(α′, λ′) holds whenever α 6= 0 (unless α′ = 0) and

λ′ =
λ

|α| |α+ 1| [|α− α′|+ |α′| |α+ 1|] .

In particular, if |α− α′| ≤ |α+ 1|(|α| − |α′|), then

R̃(α, λ) ⊂ R̃(α′, λ),

and if 0 ≤ α′ ≤ α, then
R̃(α, λ) ⊂ R̃(α′, λ).

Moreover, if Reα > −1, we have

R̃(α, λ) ⊂ Rλ′ , λ′ =
λ

|1 + α| .

In addition, for Reα > −1, we have R̃(α, λ) ⊂ S(β), if

0 < λ ≤ 2|1 + α| sin(πβ/2)√
5 + 4 cos(πβ/2)

. (1.1)
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(ii) The inclusion
R̃(α, λ) ∗ R̃(α′, λ′) ⊂ R̃(α, λ)

holds whenever λ′ ≤ 2|1+α′|. In particular, the space R̃(α, λ) is closed under
convolution when λ ≤ 2|1 + α|.

(iii) The inclusion R̃(α, λ) ∗ R̃(α′, λ′) ⊂ S(β) holds whenever 0 < β ≤ 1 and other
parameters are related by the inequality

0 <
λλ′

|(1 + α)(1 + α′)| ≤
4 sin(πβ/2)√

5 + 4 cos(πβ/2)
.

In particular,

(a) R̃(α, λ) ∗ R̃(α, λ) ⊂ S∗ if 0 <
λ

|1 + α| ≤
√

4√
5

(b) R̃(α, λ) ∗ R̃λ ⊂ S∗ if 0 <
λ√

|1 + α|
≤
√

4√
5
.

(iv) The inclusion R̃(α, λ)∗R̃(α′, λ′) ⊂ K′(β) holds whenever 0 < β ≤ 1 and other
parameters are related by the inequality

0 <
λλ′

|(1 + α)(1 + α′)| ≤
2 sin(πβ/2)√

5 + 4 cos(πβ/2)
.

Here K′(β) denotes the family of functions f such that zf ′(z) ∈ S(β). (Note
then K′(1) ≡ K). In particular, one has the inclusions

(a) R̃(α, λ) ∗ R̃(α, λ) ⊂ K if 0 <
λ

|1 + α| ≤
√

2√
5

(b) R̃(α, λ) ∗ R̃λ ⊂ K if 0 <
λ√
|1 + α|

≤
√

2√
5
.

As a consequence of Theorem 1.3, we also obtain the following corollary and its
proof will be outlined along with the proof of this theorem in Section 3.

Corollary 1.4. Let α ∈ C with Reα > −1. Then

(a) R̃(α, λ) ∗ R̃(α′, λ′) ⊂ S1 whenever 0 < λλ′ ≤ |(1 + α)(1 + α′)|,

(b) R̃(α, λ) ∗ R̃(α′, λ′) ⊂ K1 whenever 0 < 2λλ′ ≤ |(1 + α)(1 + α′)|.
In order to state and prove our remaining results we need a number of obser-

vations. We recall these in the appropriate places. For example, if p ∈ A′ is such
that Re p(z) > 1/2 in ∆, then using the Herglotz’ representation for p it follows
that for any analytic function F in ∆, the function p ∗ F takes values in the convex
hull of the image of ∆ under F . This observation immediately gives the following
implication for f, g ∈ A:

f ∈ R̃(α, λ) and Re

(
g(z)

z

)
>

1

2
⇒ f ∗ g ∈ R̃(α, λ).
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Next, we recall the following simple result from [P1, Equation (16)]. If p ∈ A′, then,
for each −1 6= α ∈ C with Reα ≥ −1, we have

p(z) + αzp′(z) ≺ 1 + λz =⇒ p(z) ≺ 1 +
λ

α + 1
z, z ∈ ∆. (1.2)

Lemma 1.5. Let p ∈ A′, α ∈ C with Reα ≤ −1 (α 6= −1), δ > 1 be such that

Re eiγ{p(z) + αzp′(z)− δ} < 0, z ∈ ∆, (1.3)

for some |γ| < π/2. Then

Re eiγ{p(z)− β} > 0, z ∈ ∆, (1.4)

where

β = β(δ,Reα) = 1− 2(δ − 1)
∫ 1

0

tRe α

1 + tRe α
dt. (1.5)

The estimate cannot be improved in general.

The proof of this lemma will be given in Section 3. Our next problem concerns
sufficiency conditions for starlike functions.

Problem 1.6. Let α be a complex number such that Reα ≥ −1 (α 6= −1), and µ
be a non-negative real number such that µ ≤ 2|1 + α|. Find conditions on α and µ
so that the subordination condition

zf ′′(z) + αf ′(z) ≺ α + µz, z ∈ ∆, (1.6)

implies that f is starlike or convex in ∆.

Affirmative answer to this problem is already known in the literature for exam-
ple in [PS1, S3] and [P3, Theorem 2]. At this place, it is appropriate to recall the
question of Mocanu [M] who showed that for 0 < µ ≤ 2/3, each function f satisfying
(1.6) with α = 0 is starlike in ∆. He asked for the largest µ for which the subordina-
tion condition (1.6) with α = 0 implies that f is starlike. This question was solved
by V.Singh [S2, S3], see also Corollary 1.13 for a sharp result in a stronger form.

Theorem 1.7. Let f ∈ A, α ∈ C with Reα ≥ −1 (α 6= −1), and µ be such that
0 < µ ≤ 2|1 + α|. Suppose that f ∈ A satisfies the condition (1.6). Then we have
the following: ∣∣∣∣∣

zf ′(z)

f(z)
− a

∣∣∣∣∣ < b(a, α, µ), z ∈ ∆,

where

|1− a| < b(a, α, µ) :=
1

2|1 + α| − µ
{|1− α− a|µ+ |1 + α|(2|1− a|+ µ)}.

In particular, if µ ≤ 2|1 + α|
1 + |α|+ |1 + α| then one has

∣∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣∣ < 1.
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For different choices of a ∈ C, we get different conclusions for the range of
zf ′(z)/f(z) in the right half plane. For example, we have

Corollary 1.8. Let α > −1, 0 < µ ≤ 2(1 +α) and that f ∈ A satisfy the condition
(1.6). Then, we have the following

(i)

∣∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣∣ <
µ(2α+ 1)

2(1 + α)− µ
. In particular, if µ ≤ 1, then f ∈ S1

(ii)

∣∣∣∣∣
zf ′(z)

f(z)
− 2

3

∣∣∣∣∣ <
|1− 3α|µ+ 2(1 + α) + 3µ(1 + α)

3(2(1 + α)− µ)
. In particular, if either α ∈

(−1, 1/3] with 0 < µ ≤ (1+α)/3 or α ∈ [1/3,∞) with 0 < µ ≤ (1+α)/(2+3α)
holds then ∣∣∣∣∣

zf ′(z)

f(z)
− 2

3

∣∣∣∣∣ <
2

3
.

Now, we are in a position to provide an improved version of Theorem 1.7 which
also provides solutions to Problem 1.6 in various forms as we see in the following
results.

Theorem 1.9. Assume the hypotheses of Theorem 1.7. Then f is convex in ∆
whenever µ satisfies the inequality

0 < µ ≤ 2(1 + Reα)

2(1 + Reα) + |2− α|+ |α| .

We have the following simple corollary when α is a real number.

Corollary 1.10. Let α > −1 and µ be such that

0 < µ ≤





1 + α

2 + α
for − 1 < α ≤ 2

1 + α

2α
for 2 ≤ α <∞.

If f ∈ A satisfies the condition (1.6) then f convex in ∆.

For α 6= 0, (1.6) can be rewritten as

f ′(z) +
1

α
zf ′′(z) ≺ 1 +

µ

α
z, z ∈ ∆,

and therefore, for example, if α > 0, then (1.6) is equivalent to f ∈ R̃(1/α, µ/α).
This observation, a simple computation and Corollary 1.10 yield the following

Corollary 1.11. If

0 < λ ≤





α(1 + α)

2
for 0 < α < 1

2

α(1 + α)

1 + 2α
for α ≥ 1

2

then we have R̃(α, λ) ⊂ K.
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We can obtain some further bounds on µ from the known results as we see in
the next theorem.

Theorem 1.12. Assume the hypotheses of Theorem 1.7. Then f ∈ S1 (in particular,
f is starlike) if

0 ≤ µ ≤ 1 + Reα

1 + |α|+ Reα
.

Moreover, f ∈ K1 (in particular, f is convex) if

0 ≤ 2µ ≤ 1 + Reα

1 + |α|+ Reα
.

Corollary 1.13. Let f ∈ A satisfy the condition |zf ′′(z)| < µ on ∆. Then we have

(a) f ∈ S1 for 0 < µ ≤ 1

(b) f ∈ K1 for 0 < µ ≤ 1/2.

Both the results are sharp.

Proof. The desired bound follows if we choose α = 0 in Theorem 1.12. Sharpness
part follows if we consider the function f(z) = z + (µ/2)z2. �

The following result improves Corollary 1.8.

Theorem 1.14. Let α > −1 and let f ∈ A satisfy the condition (1.6). If µ is such
that

0 < µ ≤





2(1 + α)

2 + α2/(1−α)
for − 1 < α 6= 1 <∞

4e2

1 + 2e2
for α = 1,

then f starlike in ∆. Moreover, if µ is such that

0 < µ ≤





(1 + α)

1 + α2/(1−α)
for − 1 < α 6= 1 <∞

2e2

1 + e2
for α = 1,

then we have ∣∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣∣ ≤ 1, z ∈ ∆.

Note that for α > 0, (1.6) is equivalent to f ∈ R̃(1/α, µ/α). Therefore, as in the
case of Corollary 1.11, a simple computation gives

Corollary 1.15. We have

(a) R̃(α, λ) ⊂ S∗ if

0 < λ ≤





2(1 + α)

2 + α2α/(1−α)
for 0 < α 6= 1 <∞

4e2

1 + 2e2
for α = 1,
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(b) R̃(α, λ) ⊂ S1 if

0 < λ ≤





(1 + α)

1 + α2α/(1−α)
for 0 < α 6= 1 <∞

2e2

1 + e2
for α = 1.

The proofs of Theorems 1.7, 1.9, 1.12 and 1.14 will be given in Section 3.

2 Sharp version of a problem of Ponnusamy

Let α ∈ C with Reα ≤ −1 (α 6= −1) and δ be a positive real number such that
δ > 1. Define

P (α, δ) = {f ∈ A : there exists a |γ| < π/2 such that Re eiγ(f ′(z)+αzf ′′(z)−δ) < 0}.

In [P2, p.185], the following result was proved, but without the rotation factor.

Theorem 2.1. Let α ∈ C with Reα < −2, and δ > −Reα/2. If f belongs to
P (α, δ), then Re eiγf ′(z) > 0 for all z ∈ ∆. In particular, each function in the
family P (α, δ) is univalent in ∆.

In [P2, p.185], it is also proved that (without the rotation factor)

P (α, δ) ⊂ P

(
α′,

δ(2 + α′) + (α− α′)

2 + α

)
, for − 2 > α > α′. (2.1)

Our first result gives a precise/sharp version of Theorem 2.1 in the following
form.

Theorem 2.2. Let f ∈ A, α ∈ C with Reα ≤ −1 (α 6= −1), δ > 1 and that

Re eiγ{f ′(z) + αzf ′′(z)} < δ cos γ, z ∈ ∆, (2.2)

for some |γ| < π/2. Then

Re eiγf ′(z) > β cos γ, z ∈ ∆,

where

β = 1− 2(δ − 1)
∫ 1

0

tRe α

1 + tRe α
dt. (2.3)

The estimate cannot be improved in general.

The proof of Theorem 2.2 is a consequence of Lemma 1.5 if we choose p(z) in
Lemma 1.5 as f ′(z). In particular, we have

Corollary 2.3. Let α ∈ C with Reα ≤ −1 (α 6= −1). Then functions in P (α, δ)
are univalent in ∆ whenever

1 < δ ≤ 1 +
1

2

(∫ 1

0

tRe α

1 + tRe α
dt

)−1

.

Proof. Let f ∈ P (α, δ). Then, by Theorem 2.2, the condition on δ implies that
the β in Theorem 2.2 satisfies β ≥ 0 and therefore, we have that Re eiγf ′(z) > 0 in
∆. Thus, each f ∈ P (α, δ) is univalent in ∆. �
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Suppose that −1 > α ≥ α′ and consider the equation

eiγ[f ′(z) + αzf ′′(z)] =

(
1− α′

α

)
eiγf ′(z) +

α′

α
eiγ [f ′(z) + αzf ′′(z)].

Now, we observe that if f ∈ P (α, δ) then, by Theorem 2.2, the last equation implies
that

Re eiγ{f ′(z) + α′zf ′′(z)} <
(

1− α′

α

)
β cos γ +

α′

α
δ cos γ,

where β is defined by (2.3) (note that Reα = α). The last inequality is equivalent
to state that

f ∈ P
(
α′,

(α− α′)β + α′δ

α

)
.

Using the definition of β, we find that

(α− α′)β + α′δ

α
=

(
1− α′

α

)
β +

α′

α
δ

= δ −
(

1− α′

α

)
(δ − β)

= δ −
(

1− α′

α

)
(δ − 1)

[
1 + 2

∫ 1

0

tα

1 + tα
dt
]
.

This observation gives the following inclusion theorem which improves (2.1).

Theorem 2.4. Let α, α′ ∈ R and −1 > α ≥ α′. Then, we have

P (α, δ) ⊆ P (α′, δ′), δ′ = δ − (δ − 1)

(
1− α′

α

) [
1 + 2

∫ 1

0

tα

1 + tα
dt
]
.

3 Proofs of main results

The proof of Theorem 1.3 relies on the following lemma.

Lemma 3.1. [RSt]. If f, g ∈ H, F, G ∈ K are such that f ≺ F , g ≺ G, then
f ∗ g ≺ F ∗G.

In this lemma, functions in K are not necessarily normalized.
Proof of Theorem 1.3. Let f ∈ A have the form f(z) = z+

∑∞
n=2 anz

n. Then,
by an elementary computation, we have

f ′(z) + αzf ′′(z) = 1 +
∞∑

n=1

(n+ 1)(nα + 1)an+1z
n = f ′(z) ∗ φα(z)

where

φα(z) =
∞∑

n=0

(nα + 1)zn.

It follows that

f ∈ R̃(α, λ) ⇐⇒ f ′(z) ∗ φα(z) ≺ 1 + λz, z ∈ ∆. (3.1)
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We have the inverse map ψα of φα defined by

ψα(z) := [φα(z)]−1 =
∞∑

n=0

zn

nα + 1

so that

(φα ∗ ψα)(z) =
1

1− z
.

Note that the function ψα(z) for Reα > −1 and the function 1+λz are both convex
in the unit disc ∆. Now, we let h(z) = (f ∗ g)(z). The proof of this theorem
essentially rely on the following equalities and the clever use of Lemma 3.1.

(a) h′(z) = f ′(z) ∗ g(z)
z

(b) zh′(z) = zf ′(z) ∗ g(z)

(c) h′(z) + zh′′(z) = f ′(z) ∗ g′(z), by (b),

(d) (h′(z) + zh′′(z)) ∗ φα(z) ∗ φα′(z) = [f ′(z) ∗ φα(z)] ∗ [g′(z) ∗ φα′(z)], by (c).

We use Lemma 3.1 frequently in this proof. Suppose that f ∈ R̃(α, λ) and g ∈
R̃(α′, λ′). Then, by (3.1), we have

f ′(z) ∗ φα(z) ≺ 1 + λz, z ∈ ∆.

Since g ∈ R̃(α′, λ′), by (1.2) with p(z) = g′(z)− 1, it follows that

g′(z) ≺ 1 +
λ′

1 + α′
z, z ∈ ∆,

which in turn (again by (1.2) with p(z) = (g(z)/z)− 1) implies that

g(z)

z
≺ 1 +

λ′

2(1 + α′)
z, z ∈ ∆.

(i) Let f ∈ R̃(α, λ). Consider the identity

α[f ′(z) + α′zf ′′(z)− 1] = (α− α′)[f ′(z)− 1] + α′[f ′(z) + αzf ′′(z)− 1]

which holds for all α and α′. It follows that

|α| |f ′(z) + α′zf ′′(z)− 1| < λ

(
|α− α′|
|α+ 1| + |α′|

)

and the desired inclusion is clear. Since f ∈ R̃(α, λ) implies that f ′(z) ≺ 1 + λ
1+α

z,
we have

R̃(α, λ) ⊂ Rλ/|1+α|.

Therefore, by Lemma 1.1, Theorem 1.3(i) follows.
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(ii) We want to show that h ∈ R̃(α, λ) whenever λ′ ≤ 2|1 + α′|. To do this, by
(a), it suffices to observe that

h′(z) ∗ φα(z) = f ′(z) ∗ φα(z) ∗ g(z)
z

≺ (1 + λz) ∗
(

1 +
λ′

2(1 + α′)
z,

)
, since f ′(z) ∗ φα(z) ≺ 1 + λz,

= 1 +
λλ′

2(1 + α′)
z

showing that h ∈ R̃(α, λ) whenever λ′ ≤ 2|1 + α′|.
(iii) From the last subordination result we obtain that

h′(z) = h′(z) ∗ φα(z) ∗ ψα(z)

≺
(

1 +
λλ′

2(1 + α′)
z

)
∗ ψα(z)

= 1 +
λλ′

2(1 + α)(1 + α′)
z

and the desired conclusion follows from Lemma 1.1.
(iv) We want to show that zh′ ∈ S(β), where β is as in Theorem 1.3(iv). To do

this, we use the identity (d), the Lemma 3.1, and the assumption that f ∈ R̃(α, λ)
and g ∈ R̃(α′, λ′). Because of these, by (d), it suffices to observe that

(h′(z) + zh′′(z)) ∗ φα(z) ∗ φα′(z) ≺ (1 + λz) ∗ (1 + λ′z) = 1 + λλ′z

so that, by Lemma 3.1, this subordination implies that

(zh′)′(z) = h′(z) + zh′′(z) ≺ (1 + λλ′z) ∗ ψα(z) ∗ ψα′(z) = 1 +
λλ′

(1 + α)(1 + α′)
z

and the desired conclusion follows from Lemma 1.1. �

Proof of Corollary 1.4 . Let f ∈ R̃(α, λ), g ∈ R̃(α′, λ′) and h = f ∗ g. From
the proof of Theorem 1.3(iii) and Lemma 1.2, it follows that h ∈ S3m/(2−m) with

m =
λλ′

2|(1 + α)(1 + α′)|

and the first part follows. Similarly, the second part follows from the proof of
Theorem 1.3(iv) because

(zh′)′(z) ≺ 1 +
λλ′

(1 + α)(1 + α′)
z.

�

Proof of Lemma 1.5. By hypothesis, we can write

eiγ{p(z) + αzp′(z)− δ} = eiγ(1− δ)P (z)
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where Re eiγP (z) > 0, and therefore,

p(z) + αzp′(z) = δ + (1− δ)P (z) (3.2)

which can be equivalently written in terms of their Maclaurin series expansion as

1 +
∞∑

n=1

an(p)zn + α

( ∞∑

n=1

nan(p)zn

)
= δ + (1− δ)

(
1 +

∞∑

n=1

an(P )zn

)
.

Comparing the coefficients of zn on both sides yields that

an(p)(1 + αn) = (1− δ)an(P ), n ≥ 1,

and, by (3.2), it follows that

p(z) = 1 +
∞∑

n=1

an(p)zn

= 1 +
∞∑

n=1

(
1− δ

1 + αn

)
an(P )zn

=

[
1 + (1− δ)

∞∑

n=1

(∫ 1

0
tαnzndt

)]
∗ P (z)

=
[
1 + (1− δ)

∫ 1

0

tαz

1− tαz
dt
]
∗ P (z).

The last equality may be rewritten as

eiγ

(
p(z)− β

1− β

)
=

[
1 +

(1− δ)

1− β

∫ 1

0

tαz

1− tαz
dt

]
∗ (eiγP (z)).

Thus, p(z) 6= β if and only if

1

2
< Re

[
1− (1− δ)

1− β

∫ 1

0

(−tαz)
1− tαz

dt

]
. (3.3)

This gives the condition that

δ − 1

1− β

∫ 1

0

tRe α

1 + tRe α
dt ≤ 1

2
(3.4)

or equivalently,

β ≤ 1− 2(δ − 1)
∫ 1

0

tRe α

1 + tRe α
dt (3.5)

which is true by (1.5). Moreover, because Re eiγP (z) > 0, (3.5) also guarantees that

Re eiγ{p(z)− β} > 0, z ∈ ∆,

and we complete the proof. �
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Proof of Theorem 1.7. Let f ∈ A satisfy the condition

zf ′′(z) + αf ′(z) ≺ α + µz, z ∈ ∆. (3.6)

By (1.2), it follows easily that

f ′(z) ≺ 1 +
µ

1 + α
z, z ∈ ∆, (3.7)

which in turn implies that

f(z)

z
≺ 1 +

µ

2(1 + α)
z, z ∈ ∆.

Therefore, ∣∣∣∣∣
f(z)

z
− 1

∣∣∣∣∣ ≤
µ|z|

2|1 + α| , and

∣∣∣∣∣
f(z)

z

∣∣∣∣∣ ≥ 1− µ|z|
2|1 + α| . (3.8)

Again, by the definition of subordination, we can rewrite (3.6) as

zf ′′(z) + αf ′(z) = α + µω(z), ω ∈ B, (3.9)

so that, by integration, we obtain

zf ′(z) + (α− 1)f(z) = αz + µz
∫ 1

0
ω(tz)dt.

It follows that

zf ′(z)− af(z) = (1− α− a)(f(z)− z) + (1− a)z + µz
∫ 1

0
ω(tz)dt

and therefore,

|zf ′(z)− af(z)| = |(1− α− a)| |(f(z)− z)|+ |(1− a)z| + µ
|z|2
2
.

Hence, because of (3.8), the last inequality shows that
∣∣∣∣∣
zf ′(z)

f(z)
− a

∣∣∣∣∣ ≤
∣∣∣∣∣
z

f(z)

∣∣∣∣∣

{
|1− α− a|

∣∣∣∣∣
f(z)

z
− 1

∣∣∣∣∣+ |1− a|+ µ
|z|
2

}

≤ 1

1− µ|z|
2|1+α|

{
|1− α− a|µ |z|

2|1 + α| + |1− a|+ µ
|z|
2

}

<
1

2|1 + α| − µ
{|1− α− a|µ+ |1 + α|(2|1− a|+ µ)}.

Thus for a = 1 this inequality simplifies to
∣∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣∣ <
µ(|α+ |1 + α|
2|1 + α| − µ

and we observe that
µ(|α+ |1 + α|
2|1 + α| − µ

≤ 1

is equivalent to µ ≤ 2|1 + α|/[1 + |α|+ |1 + α|]. The desired conclusion follows. �
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Proof of Theorem 1.9. Assume that f ∈ A satisfies the condition (3.6). Our
aim is to show that f is convex in ∆. Thus, for the proof of the convexity, by (3.9),
we compute

f ′(z) = 1 + µ
∫ 1

0
tα−1ω(tz)dt = 1 + µ

∞∑

n=1

1

n+ α
anz

n (3.10)

where

ω(z) =
∞∑

n=1

anz
n, φ(z) =

∞∑

n=1

zn

n+ α
.

It follows that

(zf ′(z))′ = 1 + µ
∞∑

n=1

n + 1

n+ α
anz

n

= 1 + µ
∞∑

n=1

1

n+ α
anz

n + µ
∞∑

n=1

n + α− α

n+ α
anz

n

= f ′(z) + µ
(
ω(z)− α

∫ 1

0
tα−1ω(tz)dt

)
.

In particular,

zf ′′(z) = µω(z)− µα
∫ 1

0
tα−1ω(tz)dt (3.11)

and

1 +
zf ′′(z)

f ′(z)
=
µ[ω(z)− α

∫ 1
0 t

α−1ω(tz)dt]

1 + µ
∫ 1
0 t

α−1ω(tz)dt
+ 1. (3.12)

Thus, for the convexity of f , we need to show that

1 +
zf ′′(z)

f ′(z)
6= −iT, for all real T .

By (3.12), it can be easily seen that, for the convexity of f , this is equivalent to
verify that

µ

1 + iT

{
ω(z)− α

∫ 1

0
tα−1ω(tz)dt +

∫ 1

0
tα−1ω(tz)dt

}
6= −1

and, by a simple computation, this is indeed equivalent to

µ

2

{[
ω(z) + (2− α)

∫ 1

0
tα−1ω(tz)dt

]
+

1− iT

1 + iT

[
ω(z)− α

∫ 1

0
tα−1ω(tz)dt

]}
6= −1.

For convenience, we define

M = sup
T∈R, ω∈B

∣∣∣∣
{[
ω(z) + (2− α)

∫ 1

0
tα−1ω(tz)dt

]
+

1− iT

1 + iT

[
ω(z)− α

∫ 1

0
tα−1ω(tz)dt

]}∣∣∣∣ .

Then, in view of the rotation invariance of B, f is convex if µM ≤ 2. Now, for
Reα > −1, we observe that

M ≤
∣∣∣∣ω(z) + (2− α)

∫ 1

0
tα−1ω(tz)dt

∣∣∣∣+
∣∣∣∣ω(z)− α

∫ 1

0
tα−1ω(tz)dt

∣∣∣∣

≤ 1 +
|2− α|

1 + Reα
+ 1 +

|α|
1 + Reα

=
2(1 + Reα) + |2− α|+ |α|

1 + Reα
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which shows that

M =
2(1 + Reα) + |2− α|+ |α|

1 + Reα
.

Therefore, f is convex whenever µM ≤ 2. The desired conclusion follows from the
hypotheses. �

Proof of Theorem 1.12. Recall (3.11)

zf ′′(z) = µω(z)− µα
∫ 1

0
tα−1ω(tz)dt

and therefore,

|zf ′′(z)| ≤ µ

(
1 +

|α|
1 + Reα

)
=
µ(1 + |α|+ Reα)

1 + Reα
:= m, say.

Thus, we can write

zf ′′(z) = mW (z), W ∈ B,

so that, by integration, we obtain

f ′(z) = 1 +m
∫ 1

0

W (tz)

t
dt

and

f(z) = z +mz
∫ 1

0

W (tz)

t
(1− t)dt.

Hence, as in [S3, Theorem 1], we compute

∣∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣∣ =
m|W (z)|∣∣∣1 +m
∫ 1
0

W (tz)
t
dt
∣∣∣
≤ m

1−m

and ∣∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣∣ =
m
∣∣∣
∫ 1
0 W (tz)dt

∣∣∣
∣∣∣1 +m

∫ 1
0

W (tz)
t

(1− t)dt
∣∣∣
≤ m/2

1−m/2
.

Note that m/(1−m) ≤ 1 if and only if 0 < m ≤ 1/2. This observation shows that
for 0 ≤ µ ≤ 1+Re α

1+|α|+Re α
, we have

∣∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣∣ < 1

and in particular, f is starlike in ∆. Similarly, for 0 ≤ µ ≤ 1+Re α
2(1+|α|+Re α)

, we have

∣∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣∣ < 1

and in particular, f is convex in ∆. �
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Proof of Theorem 1.14. In view of the representation (3.10), namely

f ′(z) = 1 + µ
∫ 1

0
tα−1ω(tz)dt,

it can be easily checked that for Reα > −1,

f(z)

z
=





1 +
µ

α− 1

∫ 1

0
(1− tα−1)w(tz)dt for α 6= 1

1 + µ
∫ 1

0
log(1/t)w(tz)dt for α = 1.

We need to consider the two cases α = 1 and α 6= 1 separately. Using the last two
equations we see that for α 6= 1,

zf ′(z)

f(z)
=

1 + µ
∫ 1
0 t

α−1w(tz)dt

1 + µ
α−1

∫ 1
0 (1− tα−1)w(tz)dt

. (3.13)

For the starlikeness of f , it suffices to show that

zf ′(z)

f(z)
6= iT, T ∈ R.

But, by (3.13), it can be easily seen that this is equivalent to verify that

µ

2

[∫ 1

0

{
tα−1 +

1− tα−1

α− 1

}
w(tz)dt +

1 + iT

1− iT

∫ 1

0

{
tα−1 − 1− tα−1

α− 1

}
w(tz)dt

]
6= −1

which is same as

µ

2

[∫ 1

0

{
1 + (α− 2)tα−1

α− 1

}
w(tz)dt+

1 + iT

1− iT

∫ 1

0

{
αtα−1 − 1

α− 1

}
w(tz)dt

]
6= −1.

Now, if we let

M = sup
T∈R, ω∈B

∣∣∣∣∣

∫ 1

0

{
1 + (α− 2)tα−1

α− 1

}
w(tz)dt+

1 + iT

1− iT

∫ 1

0

{
αtα−1 − 1

α− 1

}
w(tz)dt

∣∣∣∣∣ ,

(3.14)
then, in view of the rotation invariance of the class B, it is clear that f ∈ S∗ whenever
Mµ ≤ 2. Thus our aim is to find the value of M . We consider the positiveness of
the integrands in (3.14). If α > 1, then, for all t ∈ [0, 1], we find that

1 + (α− 2)tα−1

α− 1
> 0 ⇐⇒ 1− tα−1 + (α− 1)tα−1 > 0

and the later inequality clearly holds for all t ∈ [0, 1]. Again, for α > 1, we note
that

αtα−1 − 1

α− 1
> 0 ⇐⇒ αtα−1 − 1 > 0, i.e. t ≥ 1

α1/(α−1)
.

Similarly, if −1 < α < 1, then, for all t ∈ [0, 1], we obtain that

1 + (α− 2)tα−1

α− 1
> 0 ⇐⇒ 1− 1

t1−α
− 1− α

t1−α
< 0
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and the later inequality is clearly true for t ∈ [0, 1]. Also, for −1 < α < 1, we note
that

αtα−1 − 1

α− 1
> 0 ⇐⇒ αtα−1 − 1 < 0, i.e. t < α1/(1−α).

Next we deal the case α = 1. First we observe that

lim
α→1

1− tα−1

α− 1
= lim

α→1

1− e(α−1) log t

α− 1
= log(1/t).

Therefore, as α→ 1, we have

1− tα−1

α− 1
+ tα−1 → 1 + log(1/t) > 0 for all t ∈ [0, 1].

Similarly, as α→ 1, one has

1 + (α− 2)tα−1

α− 1
= tα−1 −

(
1− tα−1

α− 1

)
→ 1 + log t ≥ 0 for all t ∈ [1/e, 1].

For α > 1, using the above observations, we estimate that

M ≤
∫ 1

0

1 + (α− 2)tα−1

α− 1
tdt+

∫ 1

0

∣∣∣∣∣
αtα−1 − 1

α− 1

∣∣∣∣∣ tdt

=
1

α− 1

(
1

2
+
α− 2

α+ 1

)
+
∫ α1/(1−α)

0
t

(
1− αtα−1

α− 1

)
dt+

∫ 1

α1/(1−α)
t

(
αtα−1 − 1

α− 1

)
dt

=
1

α− 1

(
1

2
+
α− 2

α+ 1

)
+

1

α− 1

(
1

2
α2/(1−α) − α

α + 1
α(1+α)/(1−α)

)
+

1

α− 1

{
α

α+ 1

(
1− α(1+α)/(1−α)

)
− 1

2

(
1− α2/(1−α)

)}

=
2

α + 1
+
α2/(1−α)

1 + α

which shows that

M =
2

α + 1
+
α2/(1−α)

1 + α
. (3.15)

For α→ 1, we can easily obtain that

M =
2 + e−2

2
,

because

lim
α→1

α2/(1−α) = lim
α→1

exp(2/(1− α) log(1− (1− α)) = exp(−2).

For −1 < α < 1 (so that α− 1 < 0), it follows similarly that

M ≤ 1

α− 1

(
1

2
+
α− 2

α+ 1

)
+
∫ α1/(1−α)

0
t

(
1− αtα−1

α− 1

)
dt+

∫ 1

α1/(1−α)
t

(
αtα−1 − 1

α− 1

)
dt

=
2

α + 1
+
α2/(1−α)

1 + α
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and therefore, M is again given by (3.15). The first part follows.
Let us now proceed to the proof of our second part. To do this, using (3.13) and

also with the help of the positiveness of the integrand as described above, we deduce
that for α 6= 1,

∣∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣∣ ≤
µ
∣∣∣
∫ 1
0

(
tα−1 − 1−tα−1

α−1

)
w(tz)dt

∣∣∣
∣∣∣1 + µ

α−1

∫ 1
0 (1− tα−1)w(tz)dt

∣∣∣

≤
µ
∫ 1
0 t
∣∣∣αtα−1−1

α−1

∣∣∣ dt

1− µ
α−1

∫ 1
0 (t− tα)dt

=
µ
[

1
1−α

∫ α1/(1−α)

0 (αtα − t)dt +
∫ 1
α1/(1−α)

t−αtα

1−α
dt
]

1− µ
α−1

(
1
2
− 1

α+1

)

=
µ

1− µ
2(1+α)

[
1

1− α

{
α

α + 1
α(α+1)/(1−α) − α2/(1−α)

2

}

+
1

1− α

{
1

2
− α2/(1−α)

2
− α

α + 1
+

α

α + 1
α(α+1)/(1−α)

}]

=
µ

1− α


 1

1− µ
2(1+α)



[
α2/(1−α)(1− α)

2(α+ 1)
+

1− α

2(α + 1)
+
α2/(1−α)(1− α)

2(α+ 1)

]

=
µ

2(1 + α)


1 + 2α2/(1−α)

1− µ
2(1+α)


 .

Note that for α 6= 1,

µ

2(1 + α)


1 + 2α2/(1−α)

1− µ
2(1+α)


 < 1 ⇐⇒ µ ≤ 1 + α

1 + α2/(1−α)
.

The case for α = 1 is essentially the limiting case and we complete the proof. �

4 Conclusion

We conclude the paper with following observations. As for the starlikeness of the
class R̃(α, λ) for α > 0 is concerned, the following informations are known: For
α > 0, we have

(a) R̃(α, λ) ⊂ S∗ if 0 < λ ≤ 2(1 + α)/
√

5, see Theorem 1.3(i) and (1.1).

(b) R̃(α, λ) ⊂ S∗ if

0 < λ ≤





2(1 + α)

2 + α2α/(1−α)
for 0 < α 6= 1 <∞

4e2

1 + 2e2
≈ 1.873 for α = 1,

see Corollary 1.15(a). For α = 1 and α = 1/2, it is easy to see that the
inclusion (b) is better.
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(c) R̃(α, λ) ⊂ S1 if 0 < λ ≤ (1 + α)/2, see Theorem 1.3(i) and Lemma 1.2.

(d) R̃(α, λ) ⊂ S1 if 0 < λ ≤ α, see Theorem 1.3. We observe that for α ≥ 1, (d)
is better than (c).

(e) R̃(α, λ) ⊂ S1 if

0 < λ ≤





(1 + α)

1 + α2α/(1−α)
for 0 < α 6= 1 <∞

2e2

1 + e2
for α = 1,

see Corollary 1.15(b). Note that for α = 1, (e) is clearly better than (c) and
(d).

Apart from the above mentioned results, one can get additional information by
looking at the other possibilities. For example, if we add (3.10) and (3.11), we find
that

(zf ′(z))′ − 1 = µ
(
ω(z) + (1− α)

∫ 1

0
tα−1ω(tz)dt

)
(4.1)

so that

|(zf ′(z))′ − 1| ≤ µ

(
1 +

|1− α|
1 + Reα

)
. (4.2)

This observation shows that if f satisfies the condition (1.6) then f ∈ S1 if

µ

(
1 +

|1− α|
1 + Reα

)
≤ 1.

Equivalently, for α > 0, we have

R̃(α, λ) ⊂ S1

if

0 < λ ≤





α(1 + α

2
if 0 < α ≤ 1

1 + α

2
if α ≥ 1.

A comparison with (c) and (d) above shows that the last inclusion is not better.
On the other hand, if f satisfies the condition (1.6) then from (4.2) we see that f is
convex if

0 < µ ≤ 2(1 + Reα)

(1 + Reα + |1− α|)
√

5
(Reα > −1).

In particular, functions f satisfying the condition (1.6) are convex if

0 < µ ≤





α + 1√
5

if − 1 ≤ α ≤ 1

(1 + α)

α
√

5
if α ≥ 1.

(4.3)

In view of (4.3) and Corollary 1.10, a simple calculation shows the following:



530 S. Ponnusamy – V. Singh

Corollary 4.1. Functions f ∈ A satisfying the condition (1.6) are convex if

0 < µ ≤





1 + α

2 + α
for − 1 < α ≤

√
5− 2

1 + α√
5

for
√

5− 2 ≤ α ≤ 1

1 + α

α
√

5
for 1 ≤ α ≤ 2√

5−1

1 + α

2 + α
for 2√

5−1
≤ α ≤ 2

1 + α

2α
for α ≥ 2.

In particular, we have

Corollary 4.2. For α > 0, the inclusion R̃(α, λ) ⊂ K holds whenever

0 < λ ≤





α(1 + α)

2
for 0 < α ≤ 1

2

α(1 + α)

1 + 2α
for 1

2
≤ α ≤

√
5−1
2

α(1 + α)√
5

for
√

5−1
2
≤ α ≤ 1

1 + α√
5

for 1 ≤ α ≤ 1√
5−2

α(1 + α)

1 + 2α
for α ≥ 1√

5−2
.

Similarly, one can list down the conditions on α and λ for functions satisfying
the condition (1.6) or functions from R̃(α, λ) to be in K1.
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