A note on the irreducible characters of the Hecke algebra $H_n(q)$

G. Iommi Amunátegui

Abstract

In this note we present a formula for the irreducible characters of the Hecke algebras $H_n(q)$ of type A_{n-1} , in terms of irreducible characters of the symmetric group corresponding to classes with a single cycle of length greater than one.

1 Introduction

A number of prescriptions for calculating the irreducible characters $_{q}\chi_{\mu}^{\lambda}$ of the Hecke algebras $H_{n}(q)$ of type A_{n-1} are known. Thus in the literature we may find:

- i) a purely combinatorial algorithm (ref. 1).
- ii) a procedure derived from the relation between the Ocneanu trace on $H_n(q)$ and the Schur functions (ref. 2).
- iii) a method using the properties of the fundamental invariant of $H_n(q)$ (ref. 3).
- iv) an improved version of the "Murnaghan–Nakayama" rule for the characters of the Hecke algebra (ref. 4).

The main purpose of this note is the construction of an algorithm for $_{q}\chi_{\mu}^{\lambda}$ whose components are the simple characters of S_{n} . Our approach relies on the A. Ram formula (ref. 5):

$${}_{q}\chi_{\mu}^{\lambda} = \frac{1}{(q-1)^{\ell(\mu)}} \sum_{\nu} \prod_{i} \frac{(q^{i}-1)^{n_{i}}}{i^{n_{i}}n_{i}!} \chi_{\nu}^{\lambda} \phi_{\nu}^{\mu}$$
 (1)

where $\ell(\mu)$ is the number of non-vanishing parts of the partition μ , χ^{λ}_{μ} and ϕ^{μ}_{ν} are, respectively, the simple and the induced characters of the symmetric group S_n . Hereafter, Section 2 is dedicated to recall some characteristics of the representations theory of S_n . Section 3 considers anew Ram's result. Finally, Section 4 contains our method for evaluating the characters of $H_n(q)$.

2 The Induced characters of the Symmetric Group S_n

Let n be a positive integer. The partitions of n are designated by $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ where $\lambda = \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k$ are positive integers with $n = \lambda_1 + \lambda_2 + \dots + \lambda_k$; p(n) is the number of partitions of n.

Let C be a class of the symmetric group S_n characterized by its cycle structure $(1^{\alpha}, 2^{\beta}, 3^{\gamma}, \ldots)$ This symbol denotes that the permutations in C contain α 1-cycles, β 2-cycles, γ 3-cycles, etc., where $n = \alpha + 2\beta + 3\gamma + \ldots$

 $\chi_{(1^{\alpha},2^{\beta},3^{\gamma},...)}^{\lambda}$ is an irreducible or simple character of S_n corresponding to the partition λ and to the class $(1^{\alpha},2^{\beta},3^{\gamma},...)$ and χ is the irreducible character table of S_n . The character tables of S_n for $n \leq 10$ may be found in ref. 6.

To each partition of n corresponds a subgroup S_{λ} of S_n given by the direct product $S_{\lambda_1} \times S_{\lambda_2} \times \ldots \times S_{\lambda_k}$. Such subgroups are called canonical or Young subgroups of S_n .

For each S_{λ_i} we have :

$$\alpha_i + 2\beta_i + 3\gamma_i + \dots = \lambda_i. \tag{2}$$

The character induced in S_n by the identity representation of a canonical subgroup is

$$\phi_{(1^{\alpha},2^{\beta},3^{\gamma},\dots)}^{\lambda} = \sum \frac{\alpha!}{\alpha_1!\alpha_2!\dots} \cdots \frac{\beta!}{\beta_1!\beta_2!\dots} \cdots \frac{\gamma!}{\gamma_1!\gamma_2!\dots} \cdots$$
(3)

where

$$\sum \alpha_i = \alpha, \qquad \sum \beta_i = \beta, \qquad \sum \gamma_i = \gamma, \dots$$
 (4)

The sum is over all the integer solutions of the system of equations (2) and (4). ϕ is the induced character table of S_n (for n=4, see ref. 7). The Tables χ and ϕ are of dimensions $p(n) \times p(n)$.

3 The Ram's formula revisited

The purpose of this section is the derivation of a special case of A. Ram's formula for the irreducible characters of $H_n(q)$. Note that in equation (1) n_1, n_2, n_3, \ldots correspond to $\alpha, \beta, \gamma, \ldots$ From the algorithm for the induced characters of S_n , we deduce the expression

$$\phi_{1^{\alpha} 2^{\beta}}^n = 1 \text{ for } \lambda = n.$$

Moreover, if $n = \mu$, from eq. (1) we obtain :

$${}_{q}\chi_{n}^{\lambda} = \frac{1}{q-1} \sum_{\nu} \prod_{i} \frac{(q^{i}-1)^{n_{i}}}{i^{n_{i}} n_{i}!} \chi_{\nu}^{\lambda}. \tag{5}$$

To a cycle of length m appearing p times we shall associate a Q-term defined by

$$Q_m^p = \begin{cases} (q-1)^{p-1} & m=1\\ \left(\frac{q^m-1}{q-1}\right)^p & m>1 \end{cases}$$
 (6)

where $\frac{q^m - 1}{q - 1} = q^{m-1} + q^{m-2} + \ldots + q + 1$.

For a class $(1^{n_1}, 2^{n_2}, 3^{n_3}, \ldots)$ the Q-terms combine according to

$$Q_1^r Q_2^{n_2} Q_3^{n_3} \dots$$

where $r = n_1 + n_2 + n_3 + \dots$

Hence

$$Q_1^r Q_2^{n_2} Q_3^{n_3} \dots = \frac{(q-1)^{n_1+n_2+n_3\dots}}{q-1} \cdot \frac{(q^2-1)^{n_2}}{(q-1)^{n_2}} \cdot \frac{(q^3-1)^{n_3}}{(q-1)^{n_3}} \dots$$

$$Q_1^r Q_2^{n_2} Q_3^{n_3} \dots = \frac{1}{q-1} \sum_i (q^i-1)^{n_i} \qquad \mu = n, \ell(n) = 1.$$

$$(7)$$

Finally, we have

$${}_{q}\chi_{n}^{\lambda} = \sum_{\nu} \frac{Q_{1}^{r} Q_{2}^{n_{2}} Q_{3}^{n_{3}}}{1^{n_{i}} n_{i} ! 2^{n_{2}} n_{2}! \cdots} \dots \chi_{\nu}^{\lambda}. \tag{8}$$

It must be pointed out that

- $q\chi_n^{\lambda}$ is valid for the irreducible characters of $H_n(q)$ corresponding to the classes with a single cycle of length n.
- In $_{q}\chi_{n}^{\lambda}$ the factor involving the induced character of S_{n} does not appear.

Let $\mu_1 = (1^{\alpha_1}, 2^{\beta_1}, 3^{\gamma_1}, \ldots), \mu_2 = (1^{\alpha_2}, 2^{\beta_2}, 3^{\gamma_2}, \ldots), \ldots, \mu_s = (1^{\alpha_s}, 2^{\beta_s}, 3^{\gamma_s}, \ldots)$ be s classes. From the combination $\mu_1 \mu_2 \ldots \mu_s$ results:

$$(1^{\alpha_1+\alpha_2+\ldots+\alpha_s}, 2^{\beta_1+\beta_2+\ldots+\beta_s}, 3^{\gamma_1+\gamma_2+\ldots+\gamma_s}, \ldots)$$

We shall focus our attention on $(1^{n-\ell}, \ell)$. If $n > \ell$, each partition of ℓ written as $(1^{\alpha}, 2^{\beta}, 3^{\gamma}, \ldots)$ yields the combination $(1^{n-\ell})$ $(1^{\alpha}, 2^{\beta}, 3^{\gamma}, \ldots)$. To clarify the point, we set n = 5 and $\ell = 3$.

Then $(1^2) \cdot (1^3) = (1^5)$, $(1^2) \cdot (1,2) = (1^3,2)$, $(1^2) \cdot (3) = (1^2,3)$. For a partition λ and the class $(1^{n-\ell}, \ell)$ the irreducible characters are given by

$${}_{q}\chi_{1^{n-\ell},\ell}^{\lambda} = \sum \frac{Q_1^r Q_2^{n_2} Q_3^{n_3}}{1^{n_1} n_1! 2^{n_2} n_2! \dots} \chi_{(1^{n-\ell}),(1^{n_1},2^{n_2},3^{n_3}\dots)}^{\lambda}. \tag{9}$$

The sum is over all the partitions of ℓ , $n > \ell$.

For example

$$_{q}\chi_{1^{2},3}^{\lambda} = \frac{\chi_{1^{5}}^{\lambda}}{6}(q-1)^{2} + \frac{\chi_{1^{3},2}^{\lambda}}{2}(q-1)(q+1) + \frac{\chi_{1^{2},3}^{\lambda}}{3}(q^{2}+q+1).$$

- If $n = \ell$ we recover equation (8)
- If $n \ge 1$ and $\ell = 0$, $q\chi_{1^n}^{\lambda} = \chi_{1^n}^{\lambda}$ (see App. A).

Table I and Table II display $_{q}\chi_{1^{n-\ell}\ell}^{\lambda}$ for $n \geq 2, 3, \ldots, 7$.

4 A product method for the irreducible characters of $H_n(q)$

Let λ be a partition of N and $(\lambda'), (\lambda''), (\lambda'''), \ldots$ subpartitions of λ i.e., $N = \lambda' + \lambda'' + \lambda''' + \ldots$ Besides let $\mu = (1^A, 2^B, 3^C, \ldots)$ be a class of $N, N = A + 2B + 3C + \ldots$ which stems from a combination of the classes $\mu', \mu'', \mu''', \ldots$ respectively. (In all these classes a single cycle has a length > 1).

Proposition

$$_{q}\chi_{\mu}^{\lambda} = (_{q}\chi_{\mu'}^{\lambda'}) \cdot (_{q}\chi_{\mu''}^{\lambda''}) \cdot (_{q}\chi_{\mu'''}^{\lambda'''}) \dots$$

Each factor of the right-hand side member of the expression is evaluated by means of (8) or (9).

By way of example we shall calculate the irreducible character $_{q}\chi_{3,2,1}^{\lambda}$ of $H_{6}(q)$ where λ is a partition of N=6.

(a) :
$${}_{q}\chi_{3,2,1}^{\lambda} = {}_{q}\chi_{3}^{\lambda'} \cdot {}_{q}\chi_{2,1}^{\lambda''} = {}_{q}\chi_{3,1}^{\lambda'''} \cdot {}_{q}\chi_{2}^{\lambda^{\iota\nu}} = {}_{q}\chi_{3}^{\lambda^{\nu}} \cdot {}_{q}\chi_{2}^{\lambda^{\nu\iota}} \cdot {}_{q}\chi_{1}^{\lambda^{\nu\iota\iota}}$$

 $\lambda' + \lambda'' = \lambda''' + \lambda^{\iota\nu} = \lambda^{\nu} + \lambda^{\nu\iota} + \lambda^{\nu\iota\iota} = 6.$

(b): Using the results of Table I, we get:

$$q\chi_{3,2,1}^{\lambda} = \frac{\chi_{16}^{\lambda}}{12}(q-1)^3 + 4\frac{\chi_{2,14}^{\lambda}}{12}(q-1)^2(q+1) + \frac{\chi_{2^2,1^2}^{\lambda}}{4}(q-1)(q+1)^2 + \frac{\chi_{3,1^3}^{\lambda}}{6}(q-1)(q^2+q+1) + \frac{\chi_{3,2,1}^{\lambda}}{6}(q+1)(q^2+q+1).$$

To particularize, let $\lambda = (5, 1)$. The irreducible characters of S_6 are in such a case:

$$\chi_{1^5}^{5,1} = 5; \quad \chi_{2,1^4}^{5,1} = 3; \quad \chi_{2^2,1^2}^{5,1} = 1; \quad \chi_{3,1^3}^{5,1} = 2 \quad \text{and} \quad \chi_{3,2,1}^{5,1} = 0.$$

Therefore:
$$_{q}\chi_{3,2,1}^{5,1} = \frac{24q^3 - 24q^2}{12} = 2q^3 - 2q^2$$
.

Proof: For briefness we are going to consider the case $(q\chi_{\mu'}^{\lambda'})(q\chi_{\mu''}^{\lambda''})$. By means of eq. (8), we may write:

$$({}_{q}\chi_{\mu'}^{\lambda'}) ({}_{q}\chi_{\mu''}^{\lambda''}) = \sum_{\nu} \frac{Q_1^r Q_2^{n_2} Q_3^{n_3} \dots}{1^{n_1} n_1! 2^{n_2} n_2! \dots} \chi_{\nu}^{\lambda'} \sum_{\rho} \frac{Q_1^R Q_2^{N_2} Q_3^{N_3} \dots}{1^{N_1} N_1! 2^{N_2} N_2! \dots} \chi_{\rho}^{\lambda''}$$

$$({}_{q}\chi_{\mu'}^{\lambda'}) ({}_{q}\chi_{\mu''}^{\lambda''}) = \sum_{\nu} \sum_{\rho} \frac{Q_1^{r+R} Q_2^{m_2} Q_3^{m_3} \dots}{1^{n_1+N_1} n_1! N_1! 2^{n_2+N_2} n_2! N_2! \dots} \chi_{\nu}^{\lambda'} \chi_{\rho}^{\lambda''}.$$

Let $m_i = n_i + N_i$; we have :

$$({}_{q}\chi_{\mu'}^{\lambda'}) ({}_{q}\chi_{\mu''}^{\lambda''}) = \sum \sum \frac{Q_1^{r+R} Q_2^{m_2} Q_3^{m_3} \dots}{1^{m_1} 2^{m_2} \dots n_1! N_1! n_2! N_2! \dots} \chi_{\nu}^{\lambda'} \chi_{\rho}^{\lambda''}.$$

Multiplying by $\sum_{i} \frac{m_1! m_2! \dots}{(n_i + N_i)!} = 1$

$$({}_{q}\chi_{\mu'}^{\lambda'}) ({}_{q}\chi_{\mu''}^{\lambda''}) = \sum_{\nu} \sum_{\rho} \frac{Q_{1}^{n+R} Q_{2}^{m_{2}} Q_{3}^{m_{3}} \dots}{1^{m_{1}} ! 2^{m_{2}} m_{2}! \dots} \chi_{\nu}^{\lambda'} \chi_{\rho}^{\lambda''} \sum_{i} \frac{m_{1}! m_{2}! \dots}{n_{1}! n_{2}! \dots N_{1}! N_{2}! \dots}$$

If we take into account a class $\mu = u'\mu''$, the sums involving the indices ν and ρ can be expressed as a single sum over the partitions ordered from $1^{\mu'+\mu''}$ to (μ',μ'') .

Remark that:

$$\sum_{i} \frac{m_{1}! m_{2}!}{n_{i}! N_{i}!} = \phi_{\mu}^{\mu', \mu''} \qquad \text{(see Sect. 2)}$$

and using expression (1), we obtain:

$$({}_{q}\chi_{\mu'}^{\lambda'}) ({}_{q}\chi_{\mu''}^{\lambda''}) = \frac{1}{(q-1)^2} \sum_{\mu} \prod_{j} \frac{(q^j-1)^{m_j}}{j^{m_j} m_j!} \chi_{\mu}^{\lambda} \phi_{\mu}^{(\mu',\mu'')}$$

that is:

$$(q\chi_{\mu'}^{\lambda'})(q\chi_{\mu''}^{\lambda''}) = q\chi_{(\mu',\mu'')}^{\lambda}.$$

The proof of the general case follows the same pattern.

26 G. I. Amunátegui

APPENDIX A

From eq. (1) we get:

$$_{q}\chi_{1^{n}}^{\lambda} = \frac{1}{(q-1)^{n}} \sum_{\nu} \prod_{i} \frac{(q^{i}-1)^{n_{i}}}{i^{n_{i}}n_{i}!} \chi_{\nu}^{\lambda} \phi_{\nu}^{1^{n}}$$

if
$$\nu = 1^n$$
, $\phi_{1^n}^{1^n} = n!$

Hence:
$$q\chi_{1^n}^{\lambda} = \frac{1}{(q-1)^n} n! \prod_i \frac{(q^i-1)^{n_i}}{i^{n_i}n_i!} \chi_{1^n}^{\lambda}$$

$$_{q}\chi_{1^{n}}^{\lambda} = \frac{n!}{(q-1)^{n}} \frac{(q-1)^{n}}{1^{n} n!} \chi_{1^{n}}^{\lambda} = \chi_{1^{n}}^{\lambda}.$$

References

- [1] J. van der Jeugt, An algorithm for the characters of the Hecke algebras $H_n(q)$ of type A_{n-1} , Journal of Physics A: Mathematical and General **24**, 3719-3724, 1991.
- [2] R.C. King and B.G. Wybourne, Representations and traces of the Hecke algebras of type A_{n-1} , Journal of Mathematical Physics, (33) 1, 4-14, 1992.
- [3] J. Katriel, B. Abdesselam and A. Chakrabarti, The fundamental invariant of the Hecke algebra $H_n(q)$ characterizes the representations of $H_n(q)$, S_n , $SU_q(N)$ and SU(N), Journal of Mathematical Physics, 36(9), 5139-5158, 1995.
- [4] Y. Roichman, A Recursive Rule for the Kazhdan-Lusztig characters, Advances in Mathematics, Vol. 129, No 1, 25-45, 1997.
- [5] Arum Ram, A Frobenius formula for the characters of the Hecke algebras, Inventiones mathematicae, 106, 461-488, 1991.
- [6] G. James and A. Kerber, *The Representation Theory of the Symmetric Group*, Addison-Wesley Pub. Comp., Reading, Massachusetts, 1981.
- [7] G. Iommi Amunátegui, The L-S coupling revisited: a general solution for the 4 electron system, Journal of Mathematical Physics, 36(10), 5246-5261, 1995.

TABLE I : IRREDUCIBLE CHARACTERS $_{q}\chi_{1^{n-\ell},\ell}^{\lambda}$

 $n \ge 2, \dots, 5$

$$_{q}\chi_{1^{n-2},2}^{\lambda}=\frac{\chi_{1^{n}}^{\lambda}}{2}(q-1)+\frac{\chi_{1^{n-2},2}^{\lambda}}{2}(q+1) \qquad \qquad n\geq 2$$

$$_{q}\chi_{1^{n-3},3}^{\lambda} = \frac{\chi_{1^{n}}^{\lambda}}{6}(q-1)^{2} + \frac{\chi_{1^{n-2},2}^{\lambda}}{2}(q-1)(q+1) + \frac{\chi_{1^{n-3},3}^{\lambda}}{3}(q^{2}+q+1) \qquad n \ge 3$$

$$q\chi_{1^{n-4},4}^{\lambda} = \frac{\chi_{1^n}^{\lambda}}{24}(q-1)^3 + \frac{\chi_{1^{n-2},2}^{\lambda}}{4}(q-1)^2(q+1) + \frac{\chi_{1^{n-4},2^2}^{\lambda}}{8}(q-1)(q+1)^2 + \frac{\chi_{1^{n-3},3}^{\lambda}}{3}(q^3-1) + \frac{\chi_{1^{n-4},4}^{\lambda}}{4}(q^3+q^2+q+1)$$

$$n \ge 4$$

$$q\chi_{1^{n-5},5}^{\lambda} = \frac{\chi_{1^{n}}^{\lambda}}{120}(q-1)^{4} + \frac{\chi_{1^{n-2},2}^{\lambda}}{12}(q-1)^{3}(q+1) + \frac{\chi_{1^{n-4},2^{2}}^{\lambda}}{8}(q-1)^{2}(q+1)^{2}$$

$$+ \frac{\chi_{1^{n-3},3}^{\lambda}}{6}(q^{3}-1)(q-1) + \frac{\chi_{1^{n-5},2,3}^{\lambda}}{6}(q^{3}-1)(q+1) \qquad n \ge 5$$

$$+ \frac{\chi_{1^{n-4},4}^{\lambda}}{4}(q^{4}-1) + \frac{\chi_{1^{n-5},5}^{\lambda}}{5}(q^{4}+q^{3}+q^{2}+q+1)$$

TABLE II : IRREDUCIBLE CHARACTERS $_{q}\chi_{1^{n-\ell}\ell}^{\lambda}$

 $n \ge 6, 7$

$$\begin{split} q\chi_{1^{n-6},6}^{\lambda} &= \frac{\chi_{1^{n}}^{\lambda}}{720}(q-1)^{5} + \frac{\chi_{1^{n-2},2}^{\lambda}}{48}(q-1)^{4}(q+1) + \frac{\chi_{1^{n-4},2^{2}}^{\lambda}}{16}(q-1)^{3}(q+1)^{2} \\ &+ \frac{\chi_{1^{n-6},2^{3}}^{\lambda}}{48}(q-1)^{2}(q+1)^{3} + \frac{\chi_{1^{n-3},3}^{\lambda}}{18}(q-1)^{2}(q^{3}+1) \\ &+ \frac{\chi_{1^{n-5},2,3}^{\lambda}}{6}(q^{2}-1)(q^{3}-1) + \frac{\chi_{1^{n-6},3^{2}}^{\lambda}}{18}(q^{3}-1)(q^{2}+q+1) \\ &+ \frac{\chi_{1^{n-4},4}^{\lambda}}{8}(q-1)(q^{4}-1) + \frac{\chi_{1^{n-6},2,4}^{\lambda}}{8}(q+1)(q^{4}-1) \\ &+ \frac{\chi_{1^{n-5},5}^{\lambda}}{5}(q^{5}-1) + \frac{\chi_{1^{n-6},6}^{\lambda}}{6}(q^{5}+q^{4}+q^{3}+q^{2}+q+1) \end{split}$$

$$\begin{split} q\chi^{\lambda}_{1^{n-7},7} &= \frac{\chi^{\lambda}_{1^{n}}}{5040}(q-1)^{6} + \frac{\chi^{\lambda}_{1^{n-2},2}}{240}(q-1)^{5}(q+1) + \frac{\chi^{\lambda}_{1^{n-4},2^{2}}}{48}(q-1)^{4}(q+1)^{2} \\ &+ \frac{\chi^{\lambda}_{1^{n-6},2^{3}}}{48}(q-1)^{3}(q+1)^{3} + \frac{\chi^{\lambda}_{1^{n-3},3}}{72}(q-1)^{3}(q^{3}-1) \\ &+ \frac{\chi^{\lambda}_{1^{n-5},2,3}}{12}(q^{2}-1)(q^{3}-1)(q-1) + \frac{\chi^{\lambda}_{1^{n-7},2^{2},3}}{24}(q^{2}-1)^{2}(q^{2}+q+1) \\ &+ \frac{\chi^{\lambda}_{1^{n-6},3^{2}}}{18}(q^{3}-1)^{2} + \frac{\chi^{\lambda}_{1^{n-4},4}}{24}(q-1)^{2}(q^{4}-1) \\ &+ \frac{\chi^{\lambda}_{1^{n-6},2,4}}{8}(q^{2}-1)(q^{4}-1) + \frac{\chi^{\lambda}_{1^{n-7},3,4}}{12}(q^{3}-1)(q^{3}+q^{2}+q+1) \\ &+ \frac{\chi^{\lambda}_{1^{n-5},5}}{10}(q-1)(q^{5}-1) + \frac{\chi^{\lambda}_{1^{n-7},2,5}}{10}(q^{2}-1)(q^{4}+q^{3}+q^{2}+q+1) \\ &+ \frac{\chi^{\lambda}_{1^{n-6},6}}{6}(q^{6}-1) + \frac{\chi^{\lambda}_{1^{n-7},7}}{7}(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1) \end{split}$$

Instituto de Física, Universidad Católica de Valparaíso Casilla 4059, Valparaíso, Chile