
A proof of the Great Picard Theorem

Daniel Girela∗

Abstract

In this paper we present a simple and self contained proof of the great
Picard Theorem based on certain Harnack-type inequalities due to J. Lewis.

1 Introduction.

The classical “Little Picard Theorem”asserts that a nonconstant entire function
omits at most one complex value. This result was first proved by Picard and subse-
quently a number of different proofs have been given, the most recent being due to
J. Lewis [6].

Rickman [7] obtained an analogue of Picard’s theorem for entire quasiregular
mappings. He proved that a nonconstant entire quasiregular mapping in Rn can
omit only finitely many values. Rickman’s original proof of this result was obtained
via the “modulus method”. In [4], Eremenko and Lewis studied uniform limits
of certain A-harmonic functions in a ball of Rn where A satisfies certain elliptic
structure conditions and, as an application of their work, they obtained a completely
P.D.E. proof of Rickman’s theorem. Finally, J. Lewis proved in [6] that both Picard’s
theorem and Rickman’s theorem are rather easy consequences of a Harnack-type
inequality.

There is a stronger version of Picard’s theorem: “An entire function which is
not a polynomial takes every complex value, with at most one exception, infinitely
many times”.
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Actually, the latter theorem is true in a local situation:
“If z0 is a point of the Riemann sphere C∗ and f is a function which is holomor-

phic in a punctured neighborhood of z0 and has an essential singularity at z0 then
in every neighborhood of z0 the function f takes every complex value, with at most
one exception, infinitely many times”.

This is the so called “Great Picard Theorem”which is a remarkable strength-
ening of the Theorem of Casorati-Weierstrass (see e.g. [1, p. 129] or [3, p. 109])
which simply asserts that the image of every neighborhood of z0 is dense in C if f
has an essential singularity at z0.

Many proofs of the Great Picard Theorem are known. In this paper we shall
show that Lewis’ ideas can be used to obtain a new elementary one. Section 2 will
be devoted to recall the Harnack-type results which are the key ingredients in Lewis’
method. These results will be used in Section 3 to give a proof of the Great Picard
Theorem.

We finish this section fixing some notation. If R > 0 and w ∈ C then ∆(w,R) will
denote the open disc of center w and radius R, i. e., ∆(w, R) = {z ∈ C : |z−w| < R}.
The unit disc will be denoted by ∆, hence, ∆ = ∆(0, 1). If E is a subset of C then
E will denote the closure of E. Finally, if h is a real valued function defined in the
disc ∆(w, R) then we shall set

M(r, h, w) = sup
|z−w|<r

h(z), 0 < r < R.

2 Harnack-type results.

In this section we shall start recalling Harnack’s inequality for positive harmonic
functions. We must remark that we could state more general forms of this inequality,
however, we have preferred to state it in the simplest form which will be enough for
our purposes. The same commentary can be applied to some other results which will
be stated below. We cite chapter 3 of [2] and chapter 11 of [8] as general references
for this topic.

The Poisson kernel Pr(θ) = 1−r2

|1−reiθ|2 satisfies the simple inequality

1

3
≤ Pr(θ) ≤ 3, 0 < r ≤ 1

2
, θ ∈ R.

This inequality and the representation of harmonic functions in a disc as Poisson
integrals easily imply the so called Harnack’s inequality.

Harnack’s inequality. Let h be a positive harmonic function in the disc ∆(w,R).
Then

1

3
h(w) ≤ h(z) ≤ 3h(w), if |z − w| ≤ R

2
, (2.1)

or, equivalently,
1

3
h(w) ≤ M

(
R

2
, h, w

)
≤ 3h(w). (2.2)

Using this result we can prove the following Lemma of Lewis [6] which is a result
of Harnack type for (non necessarily positive) harmonic functions.
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Lemma 1 (Lewis). There exists a positive constant A such that if u is any
bounded harmonic function in the unit disc ∆ with u(0) = 0 then there exist w ∈ ∆
and r > 0 (which depend on u) such that

u(w) = 0, (2.3)

∆(w, 2r) ⊂ ∆, (2.4)

and

A−1M
(

1

2
, u, 0

)
≤ M(2r, u, w) ≤ AM(r, u, w). (2.5)

Let us remark that actually Lewis proved in [6] a form of this lemma for the so
called Harnack functions in Rn. Hence, we shall include a proof of the lemma in our
setting for the sake of completeness.

Proof of Lemma 1. Let u be a bounded harmonic function in ∆ with u(0) = 0.
Given z ∈ ∆, we define

δ(z) = 1− |z| = dist (z, ∂∆) . (2.6)

Let
E = {z ∈ ∆ : u(z) = 0},

F =
⋃

z∈E

∆

(
z,

δ(z)

4

)
.

Define

γ = sup{u(z) : z ∈ F} = sup
z∈E

M

(
δ(z)

4
, u, z

)
,

since u is bounded, γ < ∞. Choose w ∈ E such that

M

(
δ(w)

4
, u, w

)
≥ γ

2
, (2.7)

and take

r =
δ(w)

4
. (2.8)

We shall prove that the conclusion of Lemma 1 holds with this choice of w and r.
Since w ∈ E, we have that u(w) = 0. Also, (2.8) implies that ∆(w, 2r) ⊂ ∆.

Hence, it remains to prove (2.5). Notice that (2.7) is equivalent to

M(r, u, w) ≥ γ

2
. (2.9)

Let z ∈ ∆(0, 1
2
) with u(z) ≥ 0.

-If z ∈ F then u(z) ≤ γ ≤ 2M(r, u, w).
-If z /∈ F then, since 0 ∈ F and F is closed, we have that (using interval notation
to denote the segment connecting two points) there exists z′ ∈ [z, 0] ∩ F such that
[z, z′) ∩ F = ∅. Then, it is clear that u > 0 in [z, z′). In fact, we have that

u > 0, in ∆
(
ξ, 1

10

)
, for every ξ ∈ [z, z′). (2.10)
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Proof of 2.10. Let ξ ∈ [z, z′) and ξ′ ∈ ∆
(
ξ, 1

10

)
. Since ξ ∈ [0, z] and |z| < 1

2
, we

have that |ξ| < 1
2

which implies that δ(ξ) > 1
2
. Now,

δ(ξ′) ≥ δ(ξ)− |ξ − ξ′| ≥ 1

2
− 1

10
=

4

10
> 4|ξ − ξ′|,

hence,

|ξ − ξ′| < δ(ξ′)

4

which implies that u(ξ′) 6= 0 (because if u(ξ′) = 0 then ξ would belong to F ) and
then u(ξ′) > 0. This proves (2.10). �

Using (2.10) and Harnack’s inequality (2.2), we deduce that

M
(

1

20
, u, ξ

)
≤ 3u(ξ), for every ξ ∈ [z, z′]. (2.11)

Define

ξk = z′ +
z − z′

10
k, k = 0, 1, . . . , 10.

then, it is clear that ξ0 = z′, z10 = z, and that

ξk ∈ [z, z′) and |ξk − ξk−1| <
1

20
for every k.

Then, using (2.11) with ξ = ξk, and k = 9, 8, . . . , 1, 0 successively, we obtain

u(z) = u(z10) ≤ 3u(z9) ≤ · · · ≤ 3ku(z10−k) ≤ · · · ≤ 310u(z0) = 310u(z′).

Now, since z′ ∈ F , having in mind (2.9), we see that u(z′) ≤ γ < 2M(r, u, w) ≤
2M(2r, u, w) and, hence

u(z) ≤ 2× 310M(2r, u, w).

This proves the left hand side inequality of (2.5) with A = 2× 310.
To prove the other inequality we argue in a similar way. Take w′ ∈ ∆(w, 2r)

with u(w′) ≥ 0.
-If w′ ∈ F , then u(w′) ≤ γ ≤ 2M(r, u, w).
-If w′ /∈ F , then, since w ∈ F , there exists w1 ∈ (w′, w)∩F such that [w′, w1)∩F = ∅.
Then, arguing as before, we can prove that

u > 0, in ∆
(
ξ, r

5

)
, for every ξ ∈ [w′, w1),

which, using Harnack’s inequality as above, gives us

u(w′) ≤ 2× 310M(r, u, w).

Hence, we have the right hand side inequality of (2.5) also with A = 2 × 310. This
finishes the proof of Lemma 1. �

Harnack’s inequalities lead to important convergence theorems for harmonic
functions. Among them we shall mention the following which is basic in Lewis’
method.
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Proposition 1. Let {un}∞n=1 be a sequence of positive harmonic functions in the
unit disc ∆. Then there are only two possibilities: Either un(z) → ∞ for every
z ∈ ∆, or there exist a subsequence {unk

}∞k=1 of {un} and u, a function which is
harmonic in ∆, such that unk

→ u, as k → ∞, uniformly on every compact subset
of ∆.

Proposition 1 can be deduced from Harnack’s inequalities (see [2, p. 57]). Alter-
natively, it can also be deduced from Montel’s theorem on normal families. Indeed,
suppose that {un}∞n=1 is a sequence of positive harmonic functions in the unit disc ∆
and that there exists a point z0 ∈ ∆ such that un(z0) does not tend to∞. Then there
exist a constant M > 0 and a subsequence {unj

}∞j=1 of {un} such that unj
(z0) ≤ M

for every j. For every j, let vnj
denote the conjugate harmonic function of unj

,
normalized so that vnj

(z0) = 0, fnj
= unj

+ ivnj
and gnj

= fnj
− unj

(z0). Then, for
every j, gnj

is a function which is holomorphic in ∆ with gnj
(z0) = 0 and the image

of gnj
is contained in the half-plane {w ∈ C : Re w > −M}. Schwarz’s lemma easily

implies that the sequence {gnj
} is uniformly bounded in every compact subset of ∆.

Since unj
(z0) ≤ M for every j, the sequence {fnj

} is also uniformly bounded in every
compact subset of ∆ and then, using Montel’s theorem [3, p. 153], we deduce that
{fnj

} contains a subsequence which converges uniformly in every compact subset of
∆. Then the conclusion of Proposition 1 follows.

3 A proof of the Great Picard Theorem.

As we have already mentioned, the Great Picard Theorem can be proved in a number
of different ways. One of them is based on the so called Schottky’s theorem (see
e.g. [3, p. 298-301]) which asserts that for any α > 0 the family of those functions
f which are analytic in the unit disc ∆, omit the values 0 and 1 and such that
|f(0)| ≤ α is uniformly bounded in every compact subset of ∆. Using the results
stated in section 2 we shall prove the following proposition which is inspired by [4,
Th. 1] and implies a result which is slightly weaker than Schottky’s theorem but
which is enough to give a proof of the Great Picard Theorem.

Proposition 2. There exists a constant B > 1 such that if λ is any positive real
number and u1, u2 are two harmonic functions in ∆ satisfying

{z ∈ ∆ : u1(z) < −λ}
⋂
{z ∈ ∆ : u2(z) < −λ} = ∅, (3.1)

|u+
1 − u+

2 | ≤ λ, (3.2)

and
|uj(0)| ≤ λ, j = 1, 2, (3.3)

then

M
(

1

2
, uj, 0

)
≤ Bλ, j = 1, 2. (3.4)

To prove Proposition 2, it is clear that it suffices to consider functions u1 and u2

which are bounded. It is easy to see that if λ > 0 and u1, u2 are bounded harmonic
in ∆ which satisfy (3.1), (3.2) and (3.3) and

u(z) =
u1(z)− u1(0)

3λ
, v(z) =

u2(z)

3λ
, z ∈ ∆,
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then u and v are bounded and harmonic in ∆ and satisfy

{z ∈ ∆ : u(z) < −1}
⋂
{z ∈ ∆ : v(z) < −1} = ∅, (3.5)

|u+ − v+| ≤ 1, (3.6)

u(0) = 0, (3.7)

and
|v(0)| ≤ 1. (3.8)

Furthermore,

M
(

1

2
, u1, 0

)
≤ 3λM

(
1

2
, u, 0

)
+ λ

and

M
(

1

2
, u2, 0

)
≤ 3λM

(
1

2
, v, 0

)
.

Hence, it is clear that Proposition 2 follows from the following.

Proposition 3. There exists a constant B > 1 such that if u and v are two
bounded harmonic functions in ∆ which satisfy (3.5), (3.6), (3.7) and (3.8) then

M
(

1

2
, u, 0

)
≤ B (3.9)

and

M
(

1

2
, v, 0

)
≤ B.

Proof of Proposition 3. First of all, let us notice that, using (3.6) and (3.7), we have
that

M
(

1

2
, v, 0

)
≤ M

(
1

2
, v+, 0

)
≤ M

(
1

2
, u+, 0

)
+ 1 = M

(
1

2
, u, 0

)
+ 1.

Hence, it suffices to prove (3.9). We shall do this arguing by contradiction. Hence, let
us suppose that there exist two sequences {un}∞n=1 and {vn}∞n=1 of bounded harmonic
functions in ∆ satisfying

{z ∈ ∆ : un(z) < −1}
⋂
{z ∈ ∆ : vn(z) < −1} = ∅, (3.11)

|u+
n − v+

n | ≤ 1, (3.12)

un(0) = 0, (3.13)

and
|vn(0)| ≤ 1, (3.14)

for every n, and such that

mn = M
(

1

2
, un, 0

)
→∞, as n →∞. (3.15)
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Using Lemma 1, we deduce that for every n there exist zn ∈ ∆ and rn > 0 with
∆(zn, 2rn) ⊂ ∆ such that

un(zn) = 0 (3.16)

and

A−1mn ≤ Mn ≤ AM ′
n (3.17)

where, Mn = M(2rn, un, zn) and M ′
n = M(rn, un, zn). Notice that (3.15) and (3.17)

imply that

Mn →∞, as n →∞.

Define

Un(z) =
un(zn + 2rnz)

Mn

, Vn(z) =
vn(zn + 2rnz)

Mn

, z ∈ ∆.

The functions Un and Vn are bounded and harmonic in ∆ and satisfy

Un(0) = 0, (3.18)

M
(

1

2
, Un, 0

)
≥ A−1, (3.19)

|U+
n − V +

n | ≤
1

Mn

, (3.20)

and

{z ∈ ∆ : Un(z) <
−1

Mn

}
⋂
{z ∈ ∆ : Vn(z) <

−1

Mn

} = ∅. (3.21)

Furthermore, it is clear that Un ≤ 1 for every n. Hence, applying Proposition 1 to
the sequence {1 − Un} and having in mind (3.18), we deduce that a subsequence
{Unj

} of {Un} converges uniformly in every compact subset of ∆ to a function
U which is harmonic in ∆. Using (3.20), we see that the sequence {Vn} is also
uniformly bounded above and, hence, the sequence {Vnj

} contains a subsequence
which is uniformly convergent in every compact subset of ∆ to a function V which
is either harmonic in ∆ or identically equal to −∞ in ∆. In view of (3.18), (3.19),
(3.20) and (3.21), we see that

U(0) = 0, (3.22)

M
(

1

2
, U, 0

)
≥ A−1, (3.23)

U+ = V +, (3.24)

and

max (U, V ) ≥ 0. (3.25)

By (3.23) we see that there exists ξ ∈ ∆ such that U(ξ) > 0. Then (3.24) implies
that V is harmonic in ∆ and that U = V in a neighborhood of ξ, which implies
that U = V in ∆. Then (3.25) implies that U ≥ 0 in ∆ which, with (3.22) and the
maximum principle, implies that U ≡ 0 in ∆. This is a contradiction with (3.23).
Hence, this finishes the proof. �
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A proof of the Great Picard Theorem. Suppose that the Great Picard Theorem were
false. Then there would exist a point z0 ∈ C∗, a function f which is holomorphic
in a punctured neighborhood of z0 and has an essential singularity at z0 and two
complex numbers w1, w2 with w1 6= w2 such that the equations

f(z) = w1, f(z) = w2,

would have at most a finite number of solutions in some punctured neighborhood of
z0. By replacing this neighborhood by a smaller one, we can assume that

f(z) 6= w1, and f(z) 6= w2

for every z in a punctured neighborhood G of z0. Finally, composing f with simple
Möbius transformations, we can assume further that

z0 = ∞, w1 = 0, w2 = 1, G = {z ∈ C : |z| > R}.

Hence, we have seen that the Great Picard Theorem is equivalent to the following
result. �

Proposition 4. Let R > 0 and let f be a function which is analytic in G = {z ∈
C : |z| > R}. Suppose that 0, 1 /∈ f(G). Then ∞ is not an essential singularity of
f .

The proof of Proposition 4 that we are going to present will be based on Propo-
sition 2 and will use arguments which are similar to those used by Fuchs in chapter
V of [5] to deduce the Great Picard Theorem directly from Schottky’s theorem.

Proof of Proposition 4. Suppose that f satisfies the conditions of Proposition 4 and
further that ∞ is an essential singularity of f . Using the Casorati-Weierstrass
theorem, we deduce that, for every r > R, f({|z| > r}) is a dense subset of C.
Hence, there exists a sequence of numbers {rn}∞n=1 with

2R < r1 < r2 < · · · < rn < rn+1 < . . .

and rn → ∞, as n → ∞, such that for every n there exists zn ∈ C with |zn| = rn

and
e + 1 < |f(zn)| < e2. (3.26)

Set
u1(z) = log |f(z)|, u2(z) = log |f(z)− 1|, z ∈ G. (3.27)

Since f omits the values 0 and 1 in G, we see that u1 and u2 are harmonic functions
in G. It is easy to see that

|u+
1 − u+

2 | ≤ 1, (3.28)

and

max (u1, u2) ≥ log
1

2
. (3.29)

Take n ≥ 1. Notice that, since rn > 2R, we have ∆(z, rn

2
) ⊂ G for every z with

|z| = rn. Let N be a natural number so that

|1− e2πi/N | < 1

4
. (3.30)
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Define
zn,k = zne

2kπi/N , k = 0, 1, . . . , N, (3.31)

(so zn,0 = zn). Notice that

zn,k ∈ ∆
(
zn,k−1,

rn

4

)
, k = 1, 2, . . . N, (3.32)

and that the discs ∆
(
zn,k,

rn

4

)
, k = 0, 1, . . . , N − 1 cover the circle |z| = rn.

Define

uj,k(z) = uj

(
zn,k +

rn

2
z
)

, z ∈ ∆, k = 0, 1 . . . , N − 1, j = 1, 2. (3.33)

The functions uj,k are bounded and harmonic in ∆. Using (3.26), we see that

|uj,0(0)| ≤ 3, j = 1, 2, (3.34)

and, (3.28) and (3.29) imply
|u+

1,0 − u+
2,0| ≤ 3, (3.35)

and
{z ∈ ∆ : u1,0(z) < −3}

⋂
{z ∈ ∆ : u2,0(z) < −3} = ∅. (3.36)

Then, using Proposition 2, we deduce that

M
(

1

2
, uj,0, 0

)
≤ 3B, j = 1, 2,

which is equivalent

M
(

rn

4
, uj, zn,0

)
≤ 3B, j = 1, 2. (3.37)

In particular, since |zn,1 − zn,0| < rn

4
, we have that

|uj(zn,1)| ≤ 3B, j = 1, 2. (3.38)

Using (3.38), (3.28) and (3.29), we obtain that the functions u1,1 and u2,1 satisfy

|uj,1(0)| ≤ 3B, j = 1, 2,

|u+
1,1 − u+

2,1| ≤ 3B,

and
{z ∈ ∆ : u1,1(z) < −3B}

⋂
{z ∈ ∆ : u2,1(z) < −3B} = ∅.

Then, using again Proposition 2, we obtain

M
(

1

2
, uj,1, 0

)
≤ 3B2, j = 1, 2,

or, equivalently,

M
(

rn

4
, uj, zn,1

)
≤ 3B2, j = 1, 2.
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Repeating this process, after N steps, we obtain that setting M = 3BN ,

M
(

rn

4
, uj, zn,k

)
≤ M, j = 1, 2, k = 0, 1, . . . N − 1. (3.39)

Now, since the discs ∆
(
zn,k,

rn

4

)
cover the circle |z| = rn, (3.39) implies that

uj(z) ≤ M, if |z| = rn, j = 1, 2,

and, hence,
|f(z)| ≤ eM , if |z| = rn n = 1, 2, . . . .

Using the maximum principle in each of the rings rn ≤ |z| < rn+1, we deduce that
f is bounded in |z| > r1. This is a contradiction with the assumption that ∞ is an
essential singularity of f . Hence, the proof is complete. �
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