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Abstract

We study the links between the topological complexity of an ω-context free

language and its degree of ambiguity. In particular, using known facts from

classical descriptive set theory, we prove that non Borel ω-context free lan-

guages which are recognized by Büchi pushdown automata have a maximum

degree of ambiguity. This result implies that degrees of ambiguity are really

not preserved by the operation W → W ω, defined over finitary context free

languages. We prove also that taking the adherence or the δ-limit of a finitary

language preserves neither ambiguity nor inherent ambiguity. On the other

side we show that methods used in the study of ω-context free languages can

also be applied to study the notion of ambiguity in infinitary rational relations

accepted by Büchi 2-tape automata and we get first results in that direction.

1 Introduction

ω-context free languages (ω-CFL) form the class CFLω of ω-languages accepted
by pushdown automata with a Büchi or Muller acceptance condition. They were
firstly studied by Cohen and Gold, Linna, Boasson, Nivat, [CG77] [Lin76] [BN80]
[Niv77], see Staiger’s paper for a survey of these works [Sta97a]. A way to study the
richness of the class CFLω is to consider the topological complexity of ω-context free
languages when the set Σω of infinite words over the alphabet Σ is equipped with the
usual Cantor topology. It is well known that all ω-CFL as well as all ω-languages
accepted by Turing machines with a Büchi or a Muller acceptance condition are
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analytic sets. ω-CFL accepted by deterministic Büchi pushdown automata are Π0

2
-

sets, while ω-CFL accepted by deterministic Muller pushdown automata are boolean
combinations of Π0

2
-sets. It was recently proved that the class CFLω exhausts the

finite ranks of the Borel hierarchy, [Fin01], that there exists some ω-CFL which are
Borel sets of infinite rank, [Fin03b], or even analytic but non Borel sets, [Fin03a].

Using known facts from Descriptive Set Theory, we prove here that non Borel ω-
CFL have a maximum degree of ambiguity: if L(A) is a non Borel ω-CFL which is
accepted by a Büchi pushdown automaton (BPDA) A then there exist 2ℵ0 ω-words
α such that A has 2ℵ0 accepting runs reading α, where 2ℵ0 is the cardinal of the
continuum.

The above result of the second author led the first author to the investigation of
the notion of ambiguity and of degrees of ambiguity in ω-context free languages,
[Fin03c]. There exist some non ambiguous ω-CFL of every finite Borel rank, but
all known examples of ω-CFL which are Borel sets of infinite rank are accepted by
ambiguous BPDA. Thus one can make the hypothesis that there are some links be-
tween the topological complexity and the degree of ambiguity for ω-CFL and such
connections were firstly studied in [Fin03c].
The operations W → Adh(W ) and W → W δ, where Adh(W ) is the adherence of the
finitary language W ⊆ Σ? and W δ is the δ-limit of W , appear in the characterization
of Π0

1
(i.e. closed)-subsets and Π0

2
-subsets of Σω, for an alphabet Σ, [Sta97a]. More-

over it turned out that the first one is useful in the study of topological properties
of ω-context free languages of a given degree of ambiguity [Fin03c]. We show that
each of these operations preserves neither unambiguity nor inherent ambiguity from
finitary to ω-context free languages. We deduce also from the above results that
neither unambiguity nor inherent ambiguity is preserved by the operation W → W ω.
This important operation is defined over finitary languages and is involved in the
characterization of the class of ω-regular languages (respectively, of ω-context free
languages) as the ω-Kleene closure of the class of regular (respectively, context free)
languages [Tho90] [PP02] [Sta97a] [Sta97b].

On the other side we prove that the same theorems of classical descriptive set theory
can also be applied in the case of infinitary rational relations accepted by 2-tape
Büchi automata. The topological complexity of infinitary rational relations has been
studied by the first author who showed in [Fin03d] that there exist some infinitary
rational relations which are not Borel. Moreover some undecidability properties
have been established in [Fin03e]. We then prove some first results about ambiguity
in infinitary rational relations.

The paper is organized as follows. In section 2, we recall definitions and results
about ω-CFL and ambiguity. In section 3, Borel and analytic sets are defined. In
section 4, we study links between topology and ambiguity in ω-CFL. In section 5,
we show some results about infinitary rational relations.
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2 ω-context free languages

We assume the reader to be familiar with the theory of formal languages and of ω-
regular languages, [Ber79] [Tho90] [Sta97a] [PP02]. We shall use usual notations of
formal language theory. When Σ is a finite alphabet, a non-empty finite word over
Σ is any sequence x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k, and k is an integer
≥ 1. The length of x is k, denoted by |x| . We write x(i) = ai and x[i] = x(1) . . . x(i)
for i ≤ k. We write also x[0] = λ, where λ is the empty word, which has no letter;
its length is |λ| = 0. Σ? is the set of finite words over Σ, and Σ+ is the set of finite
non-empty words over Σ. The mirror image of a finite word u will be denoted by
uR.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where ∀i ≥ 1 ai ∈ Σ. The set of ω-words over the alphabet Σ is denoted by Σω.
An ω-language over an alphabet Σ is a subset of Σω. For V ⊆ Σ?, the ω-power of
V is the ω-language V ω = {σ = u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V − {λ}}. LF (v)
is the set of finite prefixes (or left factors) of the word v, and LF (V ) = ∪v∈V LF (v)
for every language V of finite or infinite words.

We introduce now ω-context free languages via Büchi pushdown automata.

Definition 2.1. A Büchi pushdown automaton is a 7-tuple A = (K, Σ, Γ, δ, q0, Z0, F ),
where K is a finite set of states, Σ is a finite input alphabet, Γ is a finite pushdown
alphabet, q0 ∈ K is the initial state, Z0 ∈ Γ is the start symbol, F ⊆ K is the set of
final states, and δ is a mapping from K × (Σ∪{λ})×Γ to finite subsets of K ×Γ? .
If γ ∈ Γ+ describes the pushdown store content, the leftmost symbol will be assumed
to be on “top” of the store. A configuration of the BPDA A is a pair (q, γ) where
q ∈ K and γ ∈ Γ?.
For a ∈ Σ ∪ {λ}, γ, β ∈ Γ? and Z ∈ Γ, if (p, β) is in δ(q, a, Z), then we write
a : (q, Zγ) 7→A (p, βγ).
Let σ = a1a2 . . . an . . . be an ω-word over Σ. A run of A on σ is an infinite sequence
r = (qi, γi, εi)i≥1 where (qi, γi)i≥1 is an infinite sequence of configurations of A and,
for all i ≥ 1, εi ∈ {0, 1} and:

1. (q1, γ1) = (q0, Z0)

2. for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} satisfying
bi : (qi, γi) 7→A (qi+1, γi+1)
and ( εi = 0 iff bi = λ )
and such that a1a2 . . . an . . . = b1b2 . . . bn . . .

In(r) is the set of all states entered infinitely often during run r.
The ω-language accepted by A is

L(A) = {σ ∈ Σω | there exists a run r of A on σ such that In(r) ∩ F 6= ∅}

The class CFLω of ω-context free languages is the class of ω-languages accepted
by Büchi pushdown automata. It is also the ω-Kleene closure of the class CFL of
context free finitary languages, where for any family L of finitary languages, the
ω-Kleene closure of L, is: ω − KC(L) = {∪n

i=1Ui.V
ω
i | ∀i ∈ [1, n] Ui, Vi ∈ L}.
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If we omit the pushdown stack and the λ-transitions, we get the classical notion of
Büchi automaton. Recall that the class REGω of ω-regular languages is the class
of ω-languages accepted by finite automata with a Büchi acceptance condition. It
is also the ω-Kleene closure of the class REG of regular finitary languages, [Tho90]
[Sta97a] [PP02].

Notice that we introduced in the above definition the numbers εi ∈ {0, 1} in or-
der to distinguish runs of a BPDA which go through the same infinite sequence of
configurations but for which λ-transitions do not occur at the same steps of the com-
putations. We can now briefly recall some definitions of [Fin03c] about ambiguity.

We shall denote ℵ0 the cardinal of ω, and 2ℵ0 the cardinal of the continuum. It is
also the cardinal of the set of real numbers and of the set Σω for every finite alphabet
Σ having at least two letters.

Definition 2.2. Let A be a BPDA accepting infinite words over the alphabet Σ. For
x ∈ Σω let αA(x) be the cardinal of the set of accepting runs of A on x.

Lemma 2.3 ([Fin03c]). Let A be a BPDA accepting infinite words over the alpha-
bet Σ. Then for all x ∈ Σω it holds that αA(x) ∈ N ∪ {ℵ0, 2

ℵ0}.

Definition 2.4. Let A be a BPDA accepting infinite words over the alphabet Σ.

(a) If sup{αA(x) | x ∈ Σω} ∈ N ∪ {2ℵ0}, then αA = sup{αA(x) | x ∈ Σω}.

(b) If sup{αA(x) | x ∈ Σω} = ℵ0 and there is no word x ∈ Σω such that αA(x) =
ℵ0, then αA = ℵ−

0 .
(ℵ−

0 does not represent a cardinal but is a new symbol that we introduce to
conveniently speak of this situation).

(c) If sup{αA(x) | x ∈ Σω} = ℵ0 and there exists (at least) one word x ∈ Σω such
that αA(x) = ℵ0, then αA = ℵ0

Notice that for a BPDA A, αA = 0 iff A does not accept any ω-word.
N∪{ℵ−

0 ,ℵ0, 2
ℵ0} is linearly ordered by the relation < defined by ∀k ∈ N, k < k+1 <

ℵ−
0 < ℵ0 < 2ℵ0 . Now we can define a hierarchy of ω-CFL:

Definition 2.5. For k ∈ N ∪ {ℵ−
0 ,ℵ0, 2

ℵ0} let
CFLω(α ≤ k) = {L(A) | A is a BPDA with αA ≤ k}
CFLω(α < k) = {L(A) | A is a BPDA with αA < k}
NA−CFLω = CFLω(α ≤ 1) is the class of non ambiguous ω-context free languages.
For every integer k such that k ≥ 2, or k ∈ {ℵ−

0 ,ℵ0, 2
ℵ0},

A(k) − CFLω = CFLω(α ≤ k) − CFLω(α < k)
If L ∈ A(k) − CFLω with k ∈ N, k ≥ 2, or k ∈ {ℵ−

0 ,ℵ0, 2
ℵ0}, then L is said to be

inherently ambiguous of degree k.

Recall that one can define in a similar way the degree of ambiguity of a finitary
context free language. If M is a pushdown automaton accepting finite words by
final states (or by final states and topmost stack letter) then αM ∈ N or αM = ℵ−

0

or αM = ℵ0. However every context free language is accepted by a pushdown
automaton M with αM ≤ ℵ−

0 , [ABB96]. We shall denote, with similar notations as
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above, the class of non ambiguous context free languages by NA − CFL and the
class of inherently ambiguous context free languages of degree k ≥ 2 by A(k)−CFL.
Then A(ℵ−

0 ) − CFL is usually called the class of context free languages which are
inherently ambiguous of infinite degree, [Her97].

Now we can state some links between cases of finite and infinite words.

Proposition 2.6 ([Fin03c]). Let V ⊆ Σ? be a finitary context free language and d

be a new letter not in Σ, then the following equivalence holds for all k ∈ N ∪ {ℵ−
0 }:

V.dω is in CFLω(α ≤ k) iff V is in CFL(α ≤ k)

3 Borel and analytic sets

We assume the reader to be familiar with basic notions of topology which may be
found in [Mos80] [LT94] [Kec95] [Sta97a] [PP02].
For a finite alphabet X we shall consider Xω as a topological space with the Cantor
topology. The open sets of Xω are the sets in the form W.Xω, where W ⊆ X?. A
set L ⊆ Xω is a closed set iff its complement Xω − L is an open set.
Define now the hierarchy of Borel sets of finite ranks:

Definition 3.1. The classes Σ0

n
and Π0

n
of the Borel hierarchy on the topological

space Xω are defined as follows:
Σ0

1
is the class of open sets of Xω.

Π0

1
is the class of closed sets of Xω.

And for any integer n ≥ 1:
Σ0

n+1
is the class of countable unions of Π0

n
-subsets of Xω.

Π0

n+1
is the class of countable intersections of Σ0

n
-subsets of Xω.

The Borel hierarchy is also defined for transfinite levels, but we shall not need them
in the present study. The class of Borel subsets of Xω is the closure of the class of
open subsets of Xω under complementation and countable unions (hence also under
countable intersections) There are also some subsets of Xω which are not Borel. In
particular the class of Borel subsets of Xω is strictly included into the class Σ1

1
of

analytic sets which are obtained by projection of Borel sets.
Notice that if Σ and Γ are two finite alphabets then the product Σω × Γω can be
identified with the space (Σ× Γ)ω and we always consider in the sequel that such a
space Σω × Γω is equipped with the Cantor topology.

Definition 3.2. A set A ⊆ Σω is an analytic set if there is a finite alphabet Γ and
a Borel set B ⊆ Σω × Γω such that A = {α ∈ Σω | ∃β ∈ Γω (α, β) ∈ B}.
A set C ⊆ Σω is coanalytic if its complement Σω − C is analytic. The class of
analytic sets is denoted Σ1

1
and the class of coanalytic sets is denoted Π1

1
.

Recall also the notion of completeness with regard to reduction by continuous func-
tions. For an integer n ≥ 1, a set F ⊆ Xω is said to be a Σ0

n
(respectively, Π0

n
,

Σ1

1
, Π1

1
)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

n

(respectively, E ∈ Π0

n
, E ∈ Σ1

1
, E ∈ Π1

1
) iff there exists a continuous function

f : Y ω → Xω such that E = f−1(F ).
Σ0

n
(respectively, Π0

n
)-complete sets, with n an integer ≥ 1, are thoroughly charac-

terized in [Sta86].
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4 Topology and ambiguity in ω-context free languages

Let Σ and X be two finite alphabets. If B ⊆ Σω × Xω and α ∈ Σω, the section in
α of B is Bα = {β ∈ Xω | (α, β) ∈ B} and the projection of B on Σω is the set
PROJΣω(B) = {α ∈ Σω | Bα 6= ∅} = {α ∈ Σω | ∃β (α, β) ∈ B}.

We are going to prove the following lemma which will be useful in the sequel:

Lemma 4.1. Let Σ and X be two finite alphabets having at least two letters and B

be a Borel subset of Σω × Xω such that PROJΣω(B) is not a Borel subset of Σω.
Then there are 2ℵ0 ω-words α ∈ Σω such that the section Bα has cardinality 2ℵ0.

Proof. Let Σ and X be two finite alphabets having at least two letters and B be a
Borel subset of Σω × Xω such that PROJΣω(B) is not Borel.

In a first step we shall prove that there are uncountably many α ∈ Σω such that the
section Bα is uncountable.

Recall that by a Theorem of Lusin and Novikov, see [Kec95, page 123], if for all
α ∈ Σω, the section Bα of the Borel set B was countable, then PROJΣω(B) would
be a Borel subset of Σω.

Thus there exists at least one α ∈ Σω such that Bα is uncountable. In fact we have
not only one α such that Bα is uncountable.

For α ∈ Σω we have {α} × Bα = B ∩ [{α} × Xω]. But {α} × Xω is a closed hence
Borel subset of Σω × Xω thus {α} × Bα is Borel as intersection of two Borel sets.

If there was only one α ∈ Σω such that Bα is uncountable, then C = {α} × Bα

would be Borel so D = B − C would be borel because the class of Borel sets is
closed under boolean operations.
But all sections of D would be countable thus PROJΣω(D) would be Borel by Lusin
and Novikov’s Theorem. Then PROJΣω(B) = {α} ∪ PROJΣω(D) would be also
Borel as union of two Borel sets, and this would lead to a contradiction.

In a similar manner we can prove that the set U = {α ∈ Σω | Bα is uncountable }
is uncountable, otherwise U = {α0, α1, . . . αn, . . .} would be Borel as the countable
union of the closed sets {αi}, i ≥ 0.
For each n ≥ 0 the set {αn}×Bαn

would be Borel, and C = ∪n∈ω{αn}×Bαn
would

be Borel as a countable union of Borel sets. So D = B − C would be borel too.
But all sections of D would be countable thus PROJΣω(D) would be Borel by Lusin
and Novikov’s Theorem. Then PROJΣω(B) = U ∪PROJΣω(D) would be also Borel
as union of two Borel sets, and this would lead to a contradiction.

So we have proved that the set {α ∈ Σω | Bα is uncountable } is uncountable.

On the other hand we know from another Theorem of Descriptive Set Theory that
the set {α ∈ Σω | Bα is countable } is a Π1

1
-subset of Σω, see [Kec95, page 123].

Thus its complement {α ∈ Σω | Bα is uncountable } is analytic. But by Suslin’s
Theorem an analytic subset of Σω is either countable or has cardinality 2ℵ0, [Kec95,
p. 88]. Therefore the set {α ∈ Σω | Bα is uncountable } has cardinality 2ℵ0.

Recall now that we have already seen that, for each α ∈ Σω, the set {α} × Bα

is Borel. We can then infer that Bα itself is Borel by considering the function
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h : Xω → Σω × Xω defined by h(σ) = (α, σ) for all σ ∈ Xω. The function
h is continuous and Bα = h−1({α} × Bα). So Bα is Borel because the inverse
image of a Borel set by a continuous function is a Borel set. Again by Suslin’s
Theorem Bα is either countable or has cardinality 2ℵ0 . From this we deduce that
{α ∈ Σω | Bα is uncountable } = {α ∈ Σω | Bα has cardinality 2ℵ0} has cardinality
2ℵ0. �

We can now infer some results for ω-context free languages.

Theorem 4.2. Let L(A) be an ω-CFL accepted by a BPDA A such that L(A) is
an analytic but non Borel set. The set of ω-words, which have 2ℵ0 accepting runs by
A, has cardinality 2ℵ0.

Proof. Let A = (K, Σ, Γ, δ, q0, Z0, F ) be a BPDA such that L(A) is an analytic but
non Borel set.

To an infinite sequence r = (qi, γi, εi)i≥1, where for all i ≥ 1, qi ∈ K, γi ∈ Γ+ and
εi ∈ {0, 1}, we associate an ω-word r̄ over the alphabet X = Γ ∪ K ∪ {0, 1} defined
by

r̄ = q1.γ1.ε1.q2.γ2.ε2 . . . qi.γi.εi . . .

Then to an infinite word σ ∈ Σω and an infinite sequence r = (qi, γi, εi)i≥1, we
associate the couple (σ, r̄) ∈ Σω × (Γ ∪ K ∪ {0, 1})ω.

Recall now that Π0

2
-subsets of a Cantor set Σω are characterized in the following

way. For W ⊆ Σ? the δ-limit W δ of W is the set of ω-words over Σ having infinitely
many prefixes in W : W δ = {σ ∈ Σω | ∃ωi such that σ(1) . . . σ(i) ∈ W}. Then a
subset L of Σω is a Π0

2
-subset of Σω iff there exists a set W ⊆ Σ? such that L = W δ,

[Sta97a] [PP02].

It is then easy to see that the set

R = {(σ, r̄) | r̄ is the code of an accepting run of A over σ}

is a Π0

2
-subset of Σω × Xω = (Σ × X)ω. In fact we have R = (R′)δ ∩ (R′′)δ where

R′ ⊆ (Σ × X)+ is the set of couples of words (u, v) in the form:

u = a1.a2. . . . ap

v = q1.γ1.ε1.q2.γ2.ε2 . . . qn.γn.εn

where for each i ∈ [1, p] ai ∈ Σ, for each i ∈ [1, n] qi ∈ K, γi ∈ Γ+ and εi ∈ {0, 1}.
Moreover |u| = |v|, εn = 1, and

1. (q1, γ1) = (q0, Z0)

2. for each i ∈ [1, n − 1], there exists bi ∈ Σ ∪ {λ} satisfying
bi : (qi, γi) 7→A (qi+1, γi+1)
and ( εi = 0 iff bi = λ )
and such that b1b2 . . . bn−1 is a prefix of u = a1.a2. . . . ap.



714 O. Finkel – P. Simonnet

And R′′ ⊆ (Σ × X)+ is the set of couples of words (u, v) ∈ Σ+ × X+ such that
|u| = |v| and the last letter of v is an element q ∈ F .

In particular R is a Borel subset of Σω × Xω. But by definition of R it turns out
that PROJΣω(R) = L(A) so PROJΣω(R) is not Borel. Thus Lemma 4.1 implies
that there are 2ℵ0 ω-words α ∈ Σω such that Rα has cardinality 2ℵ0 . This means
that these words have 2ℵ0 accepting runs by the Büchi pushdown automaton A. �

Example 4.3. Let Σ = {0, 1} and d be a new letter not in Σ and

D = {u.d.v | u, v ∈ Σ? and (|v| = 2|u|) or (|v| = 2|u| + 1) }

D ⊆ (Σ ∪ {d})? is a context free language. Let g : Σ → P((Σ ∪ {d})?) be the
substitution defined by g(a) = a.D. As W = 0?1 is regular, g(W ) is a context free
language, thus (g(W ))ω is an ω-CFL. It is proved in [Fin03a] that (g(W ))ω is Σ1

1
-

complete. In particular (g(W ))ω is an analytic non Borel set. Thus every BPDA
accepting (g(W ))ω has the maximum ambiguity and (g(W ))ω ∈ A(2ℵ0) − CFLω.

On the other hand we can prove that g(W ) is a non ambiguous context free language.

For that purpose consider a (finite) word x ∈ g(W ); then x ∈ g(0n.1) for some
integer n ≥ 0. Therefore x may be written in the form

x = 0.u1.d.v1.0.u2.d.v2 . . . 0.un.d.vn.1.un+1.d.vn+1

where ui.d.vi ∈ D holds for all i ∈ [1, n + 1]. It is easy to see that the length |vn+1|
and the word vn+1 are determined by the word x: vn+1 is the suffix of x following
the last letter d of x, and |vn+1| = 2|un+1| (if |vn+1| is even) or |vn+1| = 2|un+1| + 1
(if |vn+1| is odd) thus |un+1| is determined by |vn+1| hence un+1 is also determined.
Next one can see that vn also is fixed by x (the word vn.1.un+1 is the segment of x

which is located between the nth and the (n + 1)th occurrences of the letter d in x

and knowing un+1 gives us vn).
We can similarly prove by induction on the integer k that the words vn+1−k and
un+1−k, for k ∈ [0, n], are uniquely determined by x.
Therefore the word x admits a unique decomposition in the above form. We can then
easily construct a pushdown automaton (and even a one counter automaton) which
accepts the language g(W ) and which is non ambiguous. So the language g(W ) is a
non ambiguous context free language.

The above example shows that the ω-power of a non ambiguous context free language
may have maximum ambiguity. Conversely consider the context free language V =
V1 ∪ V2 ⊆ {a, b, c}? where V1 = {anbncp | n ≥ 1, p ≥ 1} and V2 = {anbpcp | n ≥
1, p ≥ 1}. V1 and V2 are deterministic context free, hence they are non ambiguous
context free languages. But their union V is an inherently ambiguous context free
language [Mau69]. V ? is a context free language which is inherently ambiguous of
infinite degree (and it is proved in [Naj98] that it is even exponentially ambiguous
in the sense of Naji and Wich, see also [Wic99] about this notion). Let then L =
V ? ∪ {a, b, c}. The language L is still a context free language which is inherently
ambiguous of infinite degree and Lω = {a, b, c}ω is an ω-regular language hence it
is a non ambiguous ω-context free language.
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We have then proved that neither unambiguity nor inherent ambiguity is preserved
by the operation L → Lω:

Proposition 4.4.

1. There exists a non ambiguous context free finitary language L such that Lω is
in A(2ℵ0) − CFLω.

2. There exists a context free finitary language L, which is inherently ambiguous
of infinite degree, such that Lω is a non ambiguous ω-context free language.

We can also consider the above mentioned language g(W ) in the context of code
theory. We have proved that g(W ) is a non ambiguous context free language. By
a similar reasoning we can prove that g(W ) is a code, i.e. that every (finite) word
y ∈ g(W )+ has a unique decomposition y = x1.x2 . . . xn in words xi ∈ g(W ).
On the other side g(W ) is not an ω-code, i.e. some words z ∈ g(W )ω have several
decompositions in the form z = x1.x2 . . . xn . . . where for all i ≥ 1 xi ∈ g(W ). In
fact we can get a much stronger result, using Lemma 4.1:

Fact 4.5. There are 2ℵ0 ω-words in g(W )ω which have 2ℵ0 decompositions in words
in g(W ).

Proof. We can fix a recursive enumeration θ of the set g(W ). So the function
θ : N → g(W ) is a bijection and we denote ui = θ(i).
Let now D be the set of couples (σ, x) ∈ {0, 1}ω × (Σ ∪ {d})ω such that:

1. σ ∈ (0?.1)ω, so σ may be written in the form

σ = 0n1.1.0n2.1.0n3 .1 . . . 0np.1.0np+1.1 . . .

where ∀i ≥ 1 ni ≥ 0, and

2.
x = un1

.un2
.un3

. . . unp
.unp+1

. . .

D is a Borel subset of {0, 1}ω × (Σ∪ {d})ω because it is accepted by a deterministic
Turing machine with a Büchi acceptance condition [Sta97a]. On the other hand
PROJ(Σ∪{d})ω(D) = g(W )ω is not Borel and Lemma 4.1 implies that there are 2ℵ0

ω-words x in g(W )ω such that Dx has cardinality 2ℵ0 . This means that there are
2ℵ0 ω-words x ∈ g(W )ω which have 2ℵ0 decompositions in words in g(W ).
We can say that the code g(W ) is really not an ω-code ! �

The result given by Theorem 4.2 may be compared with a general study of topo-
logical properties of transition systems due to Arnold [Arn83a]. If we consider a
BPDA as a transition system with infinitely many states, Arnold’s results imply
that every non ambiguous ω-CFL is a Borel set. On the other side deterministic
ω-CFL have not a great topological complexity, because they are boolean combina-
tions of Π0

2
-sets. We know some examples of non ambiguous ω-CFL of every finite

Borel rank, but none of infinite Borel rank. These results led the first author to the
following question: are there some more links between the topological complexity
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of an ω-CFL and the ambiguity of BPDA which accept it? In [Fin03c] the well
known notions of degrees of ambiguity for CFL are extended to ω-CFL and such
supposed connections are investigated. In particular, using results of Duparc on the
Wadge hierarchy, which is a great refinement of the Borel hierarchy [Dup01], it is
proved that for each k such that k is an integer ≥ 2 or k = ℵ−

0 and for each integer
n ≥ 1, there exist in A(k)−CFLω some Σ0

n
-complete ω-CFL and some Π0

n
-complete

ω-CFL.
In the proofs of these results is used the operation W → Adh(W ) where for a finitary
language W ⊆ Σ?, Adh(W ) = {σ ∈ Σω | LF (σ) ⊆ LF (W )} is the adherence of W .
We recall that a set L ⊆ Σω is a closed set of Σω iff there exists a finitary language
W ⊆ Σ? such that L = Adh(W ).
It is well known that if W is a context free language, then Adh(W ) is in CFLω.
Moreover every closed (deterministic ) ω-CFL is the adherence of a (deterministic )
context free language, [Sta97a].
So the question of the preservation of ambiguity by the operation W → Adh(W )
naturally arises.

Proposition 4.6. Neither unambiguity nor inherent ambiguity is preserved by tak-
ing the adherence of a finitary context free language.

Proof. (I) We are firstly looking for a non ambiguous finitary context free language
which have an inherently ambiguous adherence. Let then the following finitary
language over the alphabet {a, b, c, d}:

L1 = {anbncp.d2i | n, p, i are integers ≥ 1} ∪ {anbpcp.d2i+1 | n, p, i are integers ≥ 1}

L1 is the disjoint union of two deterministic (hence non ambiguous) finitary context
free languages thus it is a non ambiguous CFL because the class NA−CFL is closed
under finite disjoint union. It is easy to see that the adherence of L1 is

Adh(L1) = {aω}
⋃

a+.bω
⋃
{anbn | n ≥ 1}.cω

⋃
(V1 ∪ V2).d

ω

where V1 = {anbncp | n ≥ 1, p ≥ 1} and V2 = {anbpcp | n ≥ 1, p ≥ 1}. Then it
holds that Adh(L1) ∩ a+.b+.c+.dω = (V1 ∪ V2).d

ω = V.dω, where V = V1 ∪ V2.
By proposition 2.6, the ω-context free language V.dω is inherently ambiguous because
V is inherently ambiguous [Mau69]. Thus Adh(L1) is inherently ambiguous because
otherwise V.dω would be non ambiguous because the class NA − CFLω is closed
under intersection with ω-regular languages [Fin03c], and a+.b+.c+.dω is an ω-
regular language.

(II) We are now looking for an inherently ambiguous context free language which
have a non ambiguous adherence. We shall use a result of Crestin, [Cre72]: the
language C = {u.v | u, v ∈ {a, b}+ and uR = u and vR = v} is a context free
language which is inherently ambiguous (of infinite degree). In fact C = L2

p where
Lp = {v ∈ {a, b}+ | vR = v} is the language of palindromes over the alphabet {a, b}.
Consider now the adherence of the language C. Adh(C) = {a, b}ω holds because
every word u ∈ {a, b}? is a prefix of a palindrome (for example of the palindrome
u.uR) hence it is also a prefix of a word of C. Thus C is inherently ambiguous
and Adh(C) is a non ambiguous ω-context free language because it is an ω-regular
language. �
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We have seen that closed sets are characterized as adherences of finitary languages.
Similarly we have already seen, in the proof of Theorem 4.2, that Π0

2
-subsets of Σω

are characterized as δ-limits W δ of finitary languages W ⊆ Σ?.
Recall that W ∈ REG implies that W δ ∈ REGω. But there exist some context
free languages L such that Lδ is not in CFLω; see [Sta97a] for an example of such a
language L. In the case W ∈ CFL and W δ ∈ CFLω, the question naturally arises
of the preservation of ambiguity by the operation W → W δ. The answer is given
by the following:

Proposition 4.7. Neither unambiguity nor inherent ambiguity is preserved by tak-
ing the δ-limit of a finitary context free language.

Proof. (I) Let again L1 be the following finitary language over the alphabet {a, b, c, d}:

L1 = {anbncp.d2i | n, p, i are integers ≥ 1} ∪ {anbpcp.d2i+1 | n, p, i are integers ≥ 1}

L1 is a non ambiguous CFL. And the δ-limit of the language L1 is (L1)
δ = (V1 ∪

V2).d
ω = V.dω. We have already seen that this ω-language is an inherently am-

biguous ω-CFL.

(II) Consider now the inherently ambiguous context free language V = {anbncp |
n, p ≥ 1} ∪ {anbpcp | n, p ≥ 1}. Its δ-limit is V δ = {an.bn | n ≥ 1}.cω. It is easy to
see that V δ is a deterministic ω-CFL hence it is a non ambiguous ω-CFL. �

5 Topology and ambiguity in infinitary rational relations

Infinitary rational relations are subsets of Σω × Γω, where Σ and Γ are finite alpha-
bets, which are accepted by 2-tape Büchi automata.
We are going to see in this section that some above methods can also be used in the
case of infinitary rational relations.

Definition 5.1. A 2-tape Büchi automaton (2-BA) is a sextuple T = (K, Σ, Γ, ∆, q0, F ),
where K is a finite set of states, Σ and Γ are finite alphabets, ∆ is a finite subset
of K × Σ? × Γ? × K called the set of transitions, q0 is the initial state, and F ⊆ K

is the set of accepting states.
A computation C of the 2-tape Büchi automaton T is an infinite sequence of transi-
tions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F and
infinitely many integers i ≥ 0 such that qi = qf .
The input word of the computation is u = u1.u2.u3 . . .

The output word of the computation is v = v1.v2.v3 . . .

Then the input and the output words may be finite or infinite.
The infinitary rational relation R(T ) ⊆ Σω × Γω accepted by the 2-tape Büchi au-
tomaton T is the set of couples (u, v) ∈ Σω × Γω such that u and v are the input
and the output words of some successful computation C of T .
The set of infinitary rational relations will be denoted RATω.
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One can define degrees of ambiguity for 2-tape Büchi automata and for infinitary
rational relations as in the case of BPDA and ω-CFL.

Definition 5.2. Let T be a 2-BA accepting couples of infinite words of Σω × Γω.
For (u, v) ∈ Σω×Γω, let αT (u, v) be the cardinal of the set of accepting computations
of T on (u, v).

Lemma 5.3. Let T be a 2-BA accepting couples of infinite words (u, v) ∈ Σω ×Γω.
Then for all (u, v) ∈ Σω × Γω it holds that αT (u, v) ∈ N ∪ {ℵ0, 2

ℵ0}.

The proof that a value between ℵ0 and 2ℵ0 is impossible follows from Suslin’s The-
orem because one can obtain the set of codes of accepting computations of T on
(u, v) as a section of a Borel set (see proof of next theorem) hence as a Borel set. A
similar reasoning was used in the proof of Lemma 2.3, [Fin03c].

Definition 5.4. Let T be a 2-BA accepting couples of infinite words (u, v) ∈ Σω×Γω.

(a) If sup{αT (u, v) | (u, v) ∈ Σω × Γω} ∈ N ∪ {2ℵ0}, then αT = sup{αT (u, v) |
(u, v) ∈ Σω × Γω}.

(b) If sup{αT (u, v) | (u, v) ∈ Σω ×Γω} = ℵ0 and there is no (u, v) ∈ Σω ×Γω such
that αT (u, v) = ℵ0, then αT = ℵ−

0 .

(c) If sup{αT (u, v) | (u, v) ∈ Σω × Γω} = ℵ0 and there exists (at least) one couple
(u, v) ∈ Σω × Γω such that αT (u, v) = ℵ0, then αT = ℵ0

The set N ∪ {ℵ−
0 ,ℵ0, 2

ℵ0} is linearly ordered as above by the relation <.

Definition 5.5. For k ∈ N ∪ {ℵ−
0 ,ℵ0, 2

ℵ0}, let
RATω(α ≤ k) = {R(T ) | T is a 2 − BA with αT ≤ k}
RATω(α < k) = {R(T ) | T is a 2 − BA with αT < k}
NA − RATω = RATω(α ≤ 1) is the class of non ambiguous infinitary rational
relations.
For every integer k ≥ 2, or k ∈ {ℵ−

0 ,ℵ0, 2
ℵ0},

A(k) − RATω = RATω(α ≤ k) − RATω(α < k) is the class of infinitary rational
relations which are inherently ambiguous of degree k.

As for ω-context free languages, one can use Lemma 4.1 to prove the following result.

Theorem 5.6. Let R(T ) ⊆ Σω ×Γω be an infinitary rational relation accepted by a
2-tape Büchi automaton T such that R(T ) is an analytic but non Borel set. The set
of couples of ω-words, which have 2ℵ0 accepting computations by T , has cardinality
2ℵ0.

Proof. It is very similar to proof of Theorem 4.2. Let R(T ) ⊆ Σω×Γω be an infinitary
rational relation accepted by a 2-tape Büchi automaton T = (K, Σ, Γ, ∆, q0, F ). We
assume also that R(T ) is an analytic but non Borel set. To an infinite sequence

C = (q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .
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where for all i ≥ 0, qi ∈ K, for all i ≥ 1, ui ∈ Σ? and vi ∈ Γ?, we associate an
ω-word C̄ over the alphabet X = K ∪ Σ ∪ Γ ∪ {e}, where e is an additional letter.
C̄ is defined by:

C̄ = q0.u1.e.v1.q1.u2.e.v2.q2 . . . qi.ui+1.e.vi+1.qi+1 . . .

Then the set

{(u, v, C̄) ∈ Σω×Γω×Xω | C̄ is the code of an accepting computation of T over (u, v)}

is accepted by a deterministic Turing machine with a Büchi acceptance condition
thus it is a Π0

2
-set. We can conclude as in proof of Theorem 4.2. �

The first author showed that there exist some Σ1

1
-complete, hence non Borel, infini-

tary rational relations [Fin03d]. So we can deduce the following result.

Corollary 5.7. There exist some infinitary rational relations which are inherently
ambiguous of degree 2ℵ0.

Remark 5.8. Looking carefully at the example of non Borel infinitary rational rela-
tion given in [Fin03d], we can find a rational relation S over finite words such that
S is non ambiguous and Sω is non Borel. So S is a finitary rational relation which is
non ambiguous but Sω has maximum ambiguity because Sω ∈ A(2ℵ0) − RATω holds
by Theorem 5.6.

Moreover the question of the decidability of ambiguity for infinitary rational relations
naturally arises. It can be solved, using another recent result of the first author.

Proposition 5.9 ([Fin03e]). Let X and Y be finite alphabets containing at least
two letters, then there exists a family F of infinitary rational relations which are
subsets of Xω × Y ω, such that, for R ∈ F , either R = Xω × Y ω or R is a Σ1

1
-

complete subset of Xω × Y ω, but one cannot decide which case holds.

Corollary 5.10. Let k be an integer ≥ 2 or k ∈ {ℵ−
0 ,ℵ0}. Then it is undecidable to

determine whether a given infinitary rational relation is in the class RATω(α ≤ k)
(respectively RATω(α < k)).
In particular one cannot decide whether a given infinitary rational relation is non
ambiguous or is inherently ambiguous of degree 2ℵ0.

Proof. Consider the family F given by Proposition 5.9 and let R ∈ F .
If R = Xω×Y ω then R is obviously non ambiguous but if R is a Σ1

1
-complete subset

of Xω × Y ω then by Theorem 5.6 the infinitary rational relation R is inherently
ambiguous of degree 2ℵ0. But one cannot decide which case holds and this ends the
proof. �
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