Comparison of the product structures in
algebraic and in topological K-theory

Michel Matthey* Hervé Oyono-Oyono!

Abstract

The compatibility up to sign of the product structures in algebraic K-
theory and in topological K-theory of unital Banach algebras is established
in total degree < 2. This answers a question posed by Milnor.

1 Statement of the theorem and definition of the product struc -
tures in K -theories

As an application of the computations made in [7], we prove the following result.
1.1 Theorem. Let A and B be two unital Banach algebras. Then the diagram
* a
K29(4) @ K29(B) ~ K2%(A @7 B)
‘bp ® (bq (_1)pq$p+q
Kopio AGB)

K,(A) ® K,y(B)

commutes for p, ¢ > 0 satisfying p + q < 2. In other words, the external product
structures in algebraic and in topological K-theory of unital Banach algebras are
compatible in total degree < 2 , up to the sign (—1)P4. In particular, for commutative
unital Banach algebras, the internal product structures are also compatible in the
same range and up to the same sign.
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Let us explain the notations. For a unital Banach algebras A (always over C),
we denote by GL(A) the infinite matrix group with the usual direct limit topology,
by E(A) the group of infinite elementary matrices, which coincides with the com-
mutator subgroup [GL(A), GL(A)] of GL(A), and by St(A) the infinite Steinberg
group of A with standard generators (z;;(a))izj, «ca .- The algebraic and topological
K-theory groups are defined by :

o K§¥(A) = Ky(A) is the Grothendieck group of the underlying ring A
o K"(A):=GL(A)"™ = GL(A)/E(A);

o K (A) :=m(GL(A)) = GL(A)/ GL(A)y, where GL(A) is the arc component
of the identity in GL(A);

o K$¥(A) :=Ker (St(A)f»E(A)) , where the map St(A)f»E(A) takes the stan-
dard generator z;;(a) of St(A) to the elementary matrix e;;(a);

o Ky(A) :=m(GL(A)).

By Bott periodicity, we have, for any Banach algebra A, Ks(A) = Ky(A). We now
depict the canonical and natural maps ¢ = ¢;: K™ (A) — K;(A). Fori =0,
¢¢t is merely the identity of KJ'9(A), and the well-known inclusion E(A) € GL(A),
allows to define the map ¢7' taking, for u € GL(A), the class [u] in K{"(A) to
the class [u] in K;(A). Let us now describe ¢3'. Let GL(A)y be the universal
covering space of the topological group GL(A)y. As usual, we see the group GVL(A)O
as the set of homotopy classes (rel. to {0, 1}) of paths in GL(A)q (parameterized
by t € [0, 1]) emanating from T, with pointwise multiplication, and the projection
GL(A)o — GL(A)o is given by evaluation at + = 1, and has its kernel equal to
m(GL(A)p) = m(GL(A)) = K3(A). Consider the map St(A) — GL(A)q defined
on the standard generators of St(A) by

Vi mij(a) — [t eyt a)],

where a € A, t ranges over [0, 1], and the above brackets designate a homotopy
class. One can easily check that the images of the x;;(a)’s satisfy all the defining
relations of St(A), consequently, the map ¢ is a well-defined homomorphism. Now,
the diagram

0 K29(A) — St(A) —2— BE(A) 0
N
0 K;(A) —— GL(A)g — GL(A)q 0

commutes. Therefore, by restriction, 1) induces a homomorphism ¢ ; explicitly,

¢3': [3'7(A) — Kz(A) = m (GL(A))

HS xiSjS (CLS) — [eQWit = HS eisjs (t ' aS)] °
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1.2 Remark. Algebraic and topological K-groups in higher degree (p > 1) can be
defined by

K®9(A) := m,(BGL(A)") and K,(A) := m,_1(GL(A)) = m,(BGL(A)),

where GL°(A) stands for GL(A) made discrete.

(The definition of K% makes sense for any unital ring). The map B(Id):
BGL’(A) — BCL(A) induces at the level of fundamental groups a map taking
E(A) C GL°(A) to zero, since 1 (BGL(A)) = mo(GL(A)) = GL(A)/ GL(A)y and
E(R) C GL(A)y. Consequently, B(Id) induces a map B(Id)*: BGL’(A)*T —
BGL(A). For any p > 1, this allows to define a canonical and natural map

¢y o= my(B(Id)T): KM(A) — K,(A).

These definitions extend functorially to the non-unital situation. One can check
that for p =1 and 2, all these definitions coincide with the ones given above.

For two rings A and B (not necessarily unital), the external product in algebraic

K-theory (see [6]) is denoted by

K29(A4) @ K29(B) —— K%,(A @z B).
The internal product is defined for A commutative by composing the external prod-
uct with the homomorphism Kgfq(A ®z A) — Kgfq(A) , induced by the product
map p: A ®z; A — A (which is an ring homomorphism, precisely because A is
commutative). It will be denoted by x4 or by *. Note that this internal product is
graded-commutative (see Theorem 2.1.12 in [6]).

As noticed by Loday in [6], the internal product he defines at the level of the plus
construction (and of spectra) coincides, in total degree p + ¢ < 2, with the product
defined case by case by Milnor only up to sign. More precisely, both definitions
coincide, except for p = ¢ = 1, where Loday’s product is minus Milnor’s product
(see Proposition 2.2.3 in [6]): for z, y € K{"(A) with A commutative, the formula

rxay=—{z, y} € K39(A)

holds, where {z, y} is the Steinberg symbol of = by ¥ .

Let A®B denote the completed projective tensor product (over C) of two Banach
algebras A and B. For a Banach algebra A and for p > 1, the p-fold suspension of
A is defined by SPA := S(SP71A) = Cy(RP)®A ; note that it is not unital if so is A .

The p-fold suspension isomorphism is a natural isomorphism
o”: K, (A) — Ko(SPA).

(As a convenient notation, we also write S°A := A and 0° := Idg,4).) The equality
of functors Kg’9 = Ky and the suspension isomorphism uniquely define the external
cross product

Ky(A) ® Ko(B) = Kpiq(ASB) |
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in topological K-theory, by requiring commutativity in the diagram

Ko(SPA) © Ko(S9B) 2> Ko(SPA @y S1B) U Ko(SPH9(AGB))

with v: SPA ®z SIB — SPA ®c SI1B — SPA®RSIB = SPt(A®B) (compare
with 11.5.26 in [5]). As in the algebraic case, the internal product “U”, called
cup product, is defined for A commutative by composing with the homomorphism
K, (A®A) — K, ,(A), induced by the “completed product map” fi: AQA —
A (which is a Banach algebra morphism). Note that the cup product is graded-
commutative (compare with Propositions 11.4.10 and I1.5.27 in [5]). Finally, for
p>0, Qgp denotes the composition

Kglg(A ®z B) — Kglg<A ®c B) — KSIQ(A@)B) e, K,(A®B).

(Notice that v, in the above diagram is just QZSO .) This makes all the notations used
in Theorem 1.1 meaningful. Note that the statement amounts to the formula

0" 0 Gprglw xy) = (—1)1(0 0 6(a)) X (070 04() € Ko(S"H(ABB)),

for all z € K%(A) and y € K(B).
Before stating an important corollary of Theorem 1.1, for a compact Hausdorff
space X , we let
0,: K. (C(X)) — K *(X)

be the Swan-Serre isomorphism, where C'(X) is the commutative unital C*-algebra
of continuous complex valued functions on X , with the norm of uniform convergence.

1.3 Corollary. For a compact Hausdorff space X , the diagram

K9(C(X)) ® Ki'9(C(X)) ~ g (C(X)
b ® b, (—1),s,
Ky(C(X)) ® KyC(X)) — KpyoC(X))
Op ® 0, | = = Op1q
U

K?(X)® K™9(X)

commutes, for p, ¢ > 0 satisfying p + q < 2, where the bottom horizontal map is
the usual cup product in K-theory.

K~ (pt+a) ( X)

Proof. The product p: C(X)®z C(X) — C(X) yields a commutative diagram

alg
Kalg (C(X) R C(X)) KIH‘Q(M)

p+q

Ky, (C(X))

ptq
Op+q Op+q

Koo C(X)0(X)) ) g o))



Comparison of the product structures in algebraic and in topological K-theory 529

Consequently, commutativity of the upper square follows from Theorem 1.1. The
bottom square commutes, since the Swan-Serre isomorphism is a ring map. ]

1.4 Remark. i) Theorem 1.1 easily extends to the case of non-unital Banach
algebras, and Corollary 1.3 to the more general situation of Hausdorff locally
compact spaces, using the commutative C*-algebra Cy(X) .

ii) For the external cross product K?(X) ® K~9(Y) 2 K-®"*9(X x Y), the
result corresponding to Corollary 1.3 obviously holds (for Hausdorff locally
compact spaces).

iii) Corollary 1.3 was an open question in Milnor’s book [8] (see p. 67).

For the proof of Theorem 1.1, we can assume that p < q.

This paper is organized as follows. In Section 2, we prove Theorem 1.1 for p = 0.
The most difficult case, namely p = ¢ = 1, is dealt with in Section 3, applying results
of [7] (coping with the C*-algebra C*Z?* = C(T?)).

2 Thecases p=0

By direct computation, we prove Theorem 1.1 for p = 0.
Recall that the algebraic and the topological K-theory groups are Morita invari-
ant: for ¢ > 0 and n > 1, there are isomorphisms

K{'(A) 2 K" (M,(A)) and K;(A) = K,(M,(4)),
induced by the (non-unital) inclusion A — M, (A), a — (% 8) . In particular,
the products being natural, they are compatible with Morita equivalence. We can

therefore reduce to the case of idempotent (1 x 1)-matrices and invertible (1 x 1)-
matrices. Let = € K§(A) and y € K{"9(B). We have to show that

070 byl y) = 7 x (090 6y(y)) € Ko(SUAGB)).

Let = be the class of an idempotent € € A. For ¢ = 0, there is nothing to prove.
For ¢ = 1, suppose that y is the class of an invertible element u € B . By definition
of the *-product (see [8]), one has

Txy = [e®u+(1—e)®1} e K"(A®yB).

(The inverse of this matrix is e ® u™! + (1 — ) ® 1.) The suspension isomorphism
is given by

o =0 Ki(A) — Ky(SA), [v] — [tHRt-P-Rt_l] — {P},

where v € GL,(A), P := Diag(1,, O,), and R, = R;(v) is a homotopy (i.e. a path)
in GLy,(A) from Ty, to the matrix Diag(v, v™') which, by the Whitehead Lemma,
belongs to the arc component of Ty, in GLy,(A). The suspension isomorphism is
independent of the chosen homotopy. If R; is a path from T, to Diag(u, u~1), then
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Sy = e@Ry(u) + (1 — £)@1T; (tensor product of matrices) is a path from 11, = T,
to Diag (e@u + (1 —e)®1, e@u=t+ (1 — 5)®1) , so that
oo g (xHy) = [tHSt~Q~S;1} - [Q},
with Q := Diag(1®1, 020). On the other hand, letting P := Diag(1, 0),
v x (00 61(y)) = [t BB, P RY] ~ [0
=[t— &R, PR+ (1-2)&P| - [Q]

holds. Now, observe that the matrices S; - Q- S;* and e®(R;- P- R; ') + (1 — )®P
are equal (and not just equivalent). This proves Theorem 1.1 forp=0and ¢ =1.

2.1 Remark. We deduce from this computation that
x: Ko(A) @ K1(B) — Ki(A@B), [e] @ [u] — [e®u+ (I, — £)&1L,],

provided that € = £? € M,,(A) and u € GL,(B).

Now, let us prove Theorem 1.1 for p = 0 and ¢ = 2. Let z € Kglg(A); using
Morita invariance, we can assume that = is represented by an idempotent ¢ € A.
First, we give explicit formulas for the corresponding products by x in algebraic
and in topological Ky-theory. If A is commutative, following the definition given by
Milnor (see [8], p. 67), one easily checks that the product

zk: K§Y(A) — KS9(A), y— xxy
is given by the endomorphism (v, ), of Hy(E(R); Z) = K3%(A) induced by
Vo: E(A) — E(A), E,(A) 5 X +—e- X+ (1—¢)-1,.

We need to express the map (7,). explicitly on K4l (A) considered as the kernel
in the universal central extension 0 — K359(A) — St(4) - E(A) — 0. Let
X =Tl,ei.(as) € E,(A) (a finite product of elementary matrices). Since ¢ = &2,
one has clearly

e X+(1—-¢)-L,=]] (5~eisjs(as) +(1—¢)- ]In) =[] ei.;. (cas) -

s

This means that the map 7, is simply given by e;;(a) — e€;;(ca) . We can therefore
lift this map to St(A) by defining

Yo SH(A) — St(A), wij(a) — wii(ca) .

We obtain a commutative diagram

0 K9(A) — St(A) —2+ BE(A) 0
(V) s Ve Yo
¥
0 KM9(A) — St(A) —2— B(A) 0
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This shows that (v,). = Vo Koo () and gives a satisfactory description of the
product in question, namely

rx: K3(A) — K3(A), T[] i (as) — [ @i.(cas).
For A and B two unital rings, this generalizes to give
Tk Kglg<B) - Kglg A ®Z B H xls]s — Hxisjs (8 ® bs) :

Now, for a unital commutative Banach algebra A, we would like to describe the
product zU: Ky(A) — K3(A). First, observe that by definition of the cup product
and naturality of the suspension isomorphism, the diagram

Ko(A) x Fo(A) —2 Ky(as4) 2P| e,y
Ko(A) x K1 (54) 2+ Ky (5(a8A)) 2258 e (5.

~ >~

U R
Ko(A) x Ko(S?A) — Ko(S*(ARA))
commutes, where Sfi is induced by ji: A®A — A and is explicitly given by
Sii: S(ARA) — SA, (t— a(t)®b(t)) — (tr a(t)-b(t)).

The map Ky(A) = m(GL(A)) — K (SA), [e%it — v(t)] — [t . v(t)} is the
isomorphism indicated on the right above. This explicit description and the one of
the product Ky x K; — K given in Remark 2.1, allows to compute

zU: Ky(A) — Ks(A)

[627rit — T, €isj (t . as)} N [e2m‘t — I, Cisjs (t . 5%)} .
For two unital Banach algebras A and B, this generalizes to yield

zx: Ko(B) — KQ(A@)B)
|:627rit = HS eisjs (t : bs)i| L |:627rit — Hs eisjs (t ) €®b8):| :

We are now in position to prove Theorem 1.1 for p = 0 and ¢ = 2. For an
element y = [, z;,;.(bs) € K5(B), one has ¢y(y) = ﬁ%“ — Tl €5, (T - bs)] (see
Section 1 for the explicit description of ¢»). For z = [¢] € K§¥(A), withe =2 € A,
we deduce from the above considerations that

b K5¥(A®z B)— K§“(A®B) 2 Ky(A®B)
Hs 'Tisjs (8 ® bs) — Hs 'Tisjs <8®b3> — [QQMt = Hs eisjs (t : 5®bs>} )

=xxy

=xXp2(y)

i.e. oz *y) =2 X do(y), as was to be shown.
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3 Thecase p=¢g=1

In this section, we prove Theorem 1.1 for p = ¢ = 1. It is the most difficult
case, although the difficulty is not conspicuous here, since it is almost completely
contained in the lengthy computations of [7].

Here, we use the same notation for an invertible matrix and for its K/-theory
class. Roughly speaking, the following lemma tells us that we can restrict to the
commutative case and the internal products x4 and U.

3.1 Lemma. Let A and B be two unital Banach algebras, and let x € GL1(A) and
y € GL{(B) be two invertibles. Consider C' := (1, &, y) the unital Banach sub-
algebra of A®QB generated by & := x®1 and ¢ := 1®y. Denote by i the inclusion
of C in AQB, and by j: A ®; B — A®B the canonical map. Then, C is a
commutative unital Banach algebra and the following formulas hold :

i) j(wxy) =i(ixcg) € K3''(ADB);

i) $1(x) x $1(y) = i (61(2) U () € K>(ABB).

Proof. Recall that the products for algebraic K;-theory are given by

A A

zxy=—{r®1,1®y} and Txcy=—{2,9}.
Naturality of the Steinberg symbol yields
@1 10y)) = (@ 1), 00y} = i), L.G)} = (2 i),

establishing i). Using the suspension isomorphism (for z) and Remark 2.1, the
product ¢;(x) x ¢1(y) equals the homotopy class of the map taking e*™ to

. . . L -1
Xy o= ((R-P-R; )&y + (Iy— Ry - P-R7H®1) - (Poy + (I, — P)®1)
where P := Diag(1, 0), and Ry = Ry(z) is a homotopy in GLy(A) from 15 to
Diag(x, z~'). Similarly, ¢;(Z) U ¢1(9) is determined by
R R R o R -1
(Re(3)- Q- Ru(&)™" -+ (I — Ry(#) - Q- Ri(#)) ") - (Q- 9+ (1. — Q)
where @ := Diag(1®1, 0®0) . Since i, takes this element to X;, ii) follows. [

The final lemma deals with the case of internal products.

3.2 Lemma. Let A be a commutative unital Banach algebra. Then, for two in-
vertibles x, y € GL;(A), one has

2T *ay) = —P2({z, y}) = —1(z) Ui (y) € Ka(A).

Proof. The lemma is a consequence of the computations we made to prove the
main result in [7]. In fact, Proposition 6.1 in loc. cit. is precisely the content of
Lemma 3.2 for the particular Banach algebra C*Z? = C(T?) and for the product
a *c+72 b, where a and b are prescribed generators of Z?, viewed as unitaries in
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C*7Z2 . (Indeed, ¢ (a) Uy (D) is well-known to be the Bott element § of Ky(C*Z2) 2
K°(T?).) Now, we claim that by naturality and by classical results on the K-theory
of commutative Banach algebras, the general case follows. To prove this, we first
consider the sub-algebra

Ap = {(}\n nez € C

> < OO}
nel

of 'Z, where p > 1 is a real number. In other words, A, is the completion of the
algebra C[Z] for the norm

- Z pln\

nez

Z)\n-a"

ne”

where a is a prescribed generator of the group Z. So, A, is a unital Banach algebra
for this norm, with the following “universal property”: given u € GL;(A), where
A is any unital Banach algebra, one has 1 = [|1||a < ||u||a - |[u™!||a, therefore
pu = max{||u=Y|4, ||u||a} is > 1, and the inequalities

< STl N ST Il <

A n<0 n>0

Z)\n~u"

nez

Z)\n~a”

nez

Pu

imply that the algebra map v,: C[Z] — A, a — u extends uniquely to a uni-
tal Banach algebra morphism 7,: 4,, — A. Applying this result twice, by the
universal property of the projective tensor product of Banach algebras, we obtain a
unital Banach algebra morphism

Vg,y' Apx®-’4py — A, f@n+— Dx(g) ) Dy(n) .

It is clear that 7, ,(a) = and 7, ,(b) = v, where a and b designate the prescribed
generators of Z?, considered as elements of GL;(A,,®A,,) via the map Z[Z*] =
2(7) @2 2[) — Ay, 04,

In our context, the second important feature of the algebra A, is that it is dense
in 'Z and that the inclusions

A, 07 — vz

induce isomorphisms in topological K-theory, for any p > 1. For the second inclu-
sion, this follows from the Wiener Lemma (see [9], 11.6) and the Density Theorem
(see [3], Proposition 3, pp. 285-286), and the first is a consequence of the Oka Prin-
ciple in K-theory established by Bost in [2] (see Theorem 1.1.1 and Example 1.1.3
therein). This also follows from a theorem of Arens, Eidlin and Novodvorskii: let
B be a commutative unital Banach algebra, and let Spec(B) be its spectrum (it is
a compact Hausdorff space); then, the Gelfand transform

95. B — C(Spec(B))

is a natural morphism and induces an isomorphism in topological K-theory (see [2],
Theorem 1.3.2). Tt is clear that Spec(¢'Z) identifies with the unit circle S and is
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included in Spec(.A,), that correspondingly identifies with the closed annulus with
radii p~! and p. This inclusion is a homotopy equivalence, hence the isomorphism
incl, = (#/'2) "1 o g K.(A,) = K,(*Z) . Similarly, the inclusions A, QA,, —
707 = 11 7% — C*Z? induce isomorphisms

K. (A, ®A,,) — K.(('7*) = K.(C*Z?),

since for two commutative unital Banach algebras B; and By, there is a canonical
homeomorphism ([4], Proposition 1V.1.20)

Spec(B1®By) =2 Spec(B;) x Spec(By) .

We denote A,,®A,, simply by A. By naturality of the internal *-product, of
the cup product and of the maps ¢, and ¢, , we deduce from this argument that

¢ (axab) = —¢1'(a) U gi(b).

By naturality, ¢3(x x4 y) = —¢%(z) U ¢7(y) holds, as was to be shown. [

We thank Paul Jolissaint for pointing out a problem in a previous proof, and
Nigel Higson for suggesting to use the Banach algebra A, and for indicating Bost’s
article [2].

We now prove Theorem 1.1 for p = ¢ =1. Let z € K!'(A) and y € K{(B).
We have to establish that ¢y(z +y) = —¢1(x) X ¢1(y) . By Morita invariance of the
products, we can assume that © € GL;(A) and y € GL;(B). We have, with the
notations of Lemma 3.1,

~

Ga(z X y) = 0 ju(wxy) = 03%F 0 (@ xc ) = ix 0 ¢F (3 *c ) =
= —1l (¢1(52’) U ¢1@)) = —¢1(x) X d1(y),

AQB
2

where the first equality follows from the definition of qBQ, the second from Lemma
3.1, the third from naturality of ¢5, the fourth from Lemma 3.2 for C', and the last
one from Lemma 3.1 again.

Now, the proof of Theorem 1.1 is complete. [ |
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