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Abstract

We consider a metric f–structure on a manifold M of dimension 2n + s.

We suppose that its kernel is paralellizable by global orthonormal vector fields

ξ1, . . . , ξs and that the dual 1–forms satisfy dηk = F where F is the associated

Sasaki 2–form and k = 1, . . . , s. We prove that if n is greater than one then

M cannot be flat. This is a generalization of a result by D.E.Blair proved for

contact metric manifolds. We also give a counterexample in the case n = 1.

1 Introduction

In recent years we have observed a rapid development of symplectic geometry and
then also of contact geometry. We are interested in the Riemannian aspect of contact
manifolds and their generalizations. Many results are due to the Japanese school.
As a main reference for contact Riemannian manifolds we refer to the books by D.E.
Blair [3, 4] and to the vast bibliography therein.

D.E. Blair proved that a contact metric manifold cannot be flat if its dimension
is 2n + 1 with n greater than one, cf. [2]. He also constructed an example of a
3–dimensional contact metric manifold with vanishing curvature tensor.

From the same point of view we study a certain generalization of a contact metric
structure, cf. [1, 9]. We consider a manifold M of dimension 2n+ s with n > 0 and
s > 0, equipped with an f–structure as introduced in [10], i.e. a tensor field ϕ of
type (1,1) such that ϕ3 + ϕ = 0. We suppose that the kernel of ϕ is a parallelizable
subbundle of TM . Hence there exist global vector fields ξ1, . . . , ξs which span the
kernel of ϕ. Let η1, . . . , ηs be their dual 1–forms. According to the definitions of [8],
the set consisting of M with the geometric structures (ϕ, ξ1, . . . , ξs, η

1, . . . , ηs, g), g
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a compatible metric, is called an almost S–manifold if dηk = F for all k = 1, . . . , s
where F is the Sasaki 2–form defined by g and ϕ. Examples of such manifolds may
be constructed using the suspension method [6] or using the pull-back of toroidal
bunldles, cf. [5, 8]. The almost S–structure may be also viewed as a Riemannian
almost CR–manifold of codimension s such that the orthogonal bundle is paralleliz-
able; however we shall not use this approach in the current paper.

In the present paper we extend the result proved in [2] to almost S–manifolds.
In Section 3 we obtain preparatory identities of the curvature tensor of an almost
S–manifold. Then in Section 4 we apply these identities to prove Theorem 4.1 which
says that an almost S–manifold of dimension 2n+ s cannot be flat if n > 1.

In Section 5 we consider the geometry of the pull-back of a fibration. Under
certain conditions on the fibration we get a natural structure of a Riemannian fibra-
tion on the pull-back bundle. Moreover we give conditions for the pull–back bundle
to be totally geodesically immersed in the original fibration. In Section 6 we use
the general construction on the pull-back bundle to obtain examples of flat almost
S–manifolds of dimension 2 + s, for all s > 0.

2 Preliminaries

Let M be a (2n + s)–dimensional manifold equipped with an f.pk–structure, that
is an f–structure ϕ with a parallelizable kernel. This means that there are s global
vector fields ξ1, . . . , ξs and 1–forms η1, . . . , ηs on M satisfying the following condi-
tions:

ϕ(ξi) = 0 , ηi ◦ ϕ = 0 , ϕ2 = −I +
s∑

j=1

ηj ⊗ ξj, ηi(ξj) = δi
j

for all i, j = 1, . . . , s. We denote by X (M) the module of differentiable vector fields
on M . On such a manifold there always exists a compatible Riemannian metric g,
in the sense that for each X, Y ∈ X (M)

g(X, Y ) = g(ϕX,ϕY ) +
s∑

j=1

ηj(X)ηj(Y ).

Fixed such a metric on M , let F be the Sasaki form of ϕ defined by F (X, Y ) =
g(X,ϕY ) forX, Y ∈ X (M). We denote byD the bundle Imϕ which is the orthogonal
complement of the bundle kerϕ =< ξ1, . . . , ξs >.

We assume also the following condition

F = dη1 = · · · = dηs . (2.1)

Then the metric f.pk–structure (ϕ, ξi, η
i, g) is called an almost S–structure and M

an almost S–manifold, cf. [8]. A metric f.pk–structure is said to be a K–structure
if F is closed and the structure is normal, i.e. N = [ϕ, ϕ] + 2

∑s
i=1 dη

i ⊗ ξi = 0,
where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. A normal almost S–manifold is called an
S–manifold. Let ∇ be the Levi-Civita connection of g. We recall some formulas
which will be used in the present paper, cf. [8],

∇ξi
ξj = 0 (2.2)

∇ξi
ϕ = 0 (2.3)
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for i, j ∈ {1, . . . , s} and

2g((∇Xϕ)Y, Z) = g(N(Y, Z), ϕX) + 2g(ϕY, ϕX)η(Z) (2.4)

−2g(ϕZ, ϕX)η(Y ).

where X, Y, Z ∈ X (M) and η =
∑s

j=1 η
j. We also consider the self-adjoint operators

hi :=
1

2
Lξi

ϕ (2.5)

where i = 1, . . . , s. In [8] many properties of these operators are proved. We list
below those which will be used in the paper.

For each i, j = 1, . . . , s

hiξj = 0; ηj ◦ hi = 0. (2.6)

Furthermore for each X ∈ X (M) and each i = 1, . . . , s

hi ◦ ϕ = −ϕ ◦ hi (2.7)

∇Xξi = −ϕX − ϕhiX (2.8)

so that

∇Xξi ∈ D. (2.9)

Moreover, for each X ∈ D and for each i, j = 1, . . . , s we have

ηj(∇ξi
X) = ηj([ξi, X]) = −2dηj(ξi, X) = −2F (ξi, X) = 0. (2.10)

Finally, for each X, Y ∈ D we have

(∇Xϕ)Y + (∇ϕXϕ)ϕY = 2g(X, Y )ξ (2.11)

where ξ =
∑s

j=1 ξj.

3 Curvature identities

Let (M,ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) be an almost S–structure and R its Riemannian

curvature tensor.

Proposition 3.1. For each i, k = 1, . . . , s and for each X ∈ X (M) the following
formulas hold

(∇ξi
hk)X = ϕ(RξiXξk) + ϕX + ϕhiX − ϕhkX − ϕ((hk ◦ hi)X) (3.1)

(∇ξi
hi)X = ϕ(RξiXξi) + ϕX − ϕh2

iX. (3.2)

Proof. From (2.2) and (2.8) we get

RξiXξk = −∇ξi
(ϕX)−∇ξi

(ϕhkX) + ϕ([ξi, X]) + ϕhk([ξi, X]) (3.3)

= −ϕ(∇Xξi)− ϕ((∇ξi
hk)X)− ϕhk(∇Xξi).

Then we apply ϕ to both sides of the above equation and get

ϕ(RξiXξk) = ∇Xξi + (∇ξi
hk)X + hk(∇Xξi)

= −ϕX − ϕhiX + (∇ξi
hk)X + ϕhkX + ϕ((hk ◦ hi)X),

due to (2.2), (2.3), (2.9) and (2.10). Then (3.1) follows immediately. When k = i
equation (3.1) becomes (3.2). �
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Corollary 3.1. For each i, k = 1, . . . , s and for each X ∈ X (M) we have

RξiXξk − ϕ(RξiϕXξk) = 2
(
(hk ◦ hi)X + ϕ2X

)
(i 6= k) (3.4)

RξiXξi − ϕ(RξiϕXξi) = 2
(
h2

iX + ϕ2X
)

(i = k). (3.5)

Proof. Equation (3.3) can be rewritten as

RξiXξk = −ϕ((∇ξi
hk)X) + ϕ2X − hiX + hkX + (hk ◦ hi)X.

On the other hand, from (3.1), (2.3) and (2.7), we have

−ϕ(RξiϕXξk) = ϕ((∇ξi
hk)X) + ϕ2X + hiX − hkX + (hk ◦ hi)X.

Finally, the last two equations give (3.4). Putting k = i we obtain (3.5). �

Corollary 3.2. If M is flat, then for each i, k = 1, . . . , s we have:

hk ◦ hi = −ϕ2 = I −
s∑

j=1

ηj ⊗ ξj. (3.6)

Corollary 3.3. If l ∈ {1, . . . , s} and if RξlXξl = 0 for each X ∈ D, then

h2
l = −ϕ2 = I −

s∑

j=1

ηj ⊗ ξj. (3.7)

Proposition 3.2. Let l ∈ {1, . . . , s} and suppose that the sectional curvature of
each 2–plane containing ξl vanishes. Then hl has rank 2n and D is decomposable in
two eigenspaces of hl. Moreover (3.7) holds.

Proof. Let X ∈ D. Taking the scalar product of (3.5) with X we obtain g(h2
lX +

ϕ2X,X) = 0. This implies ‖hlX‖ = ‖ϕX‖ = ‖X‖. If X is an eigenvector with
eigenvalue λ, then |λ|‖X‖ = ‖X‖ so that λ = ±1 and hence, due to (2.7), ϕX is
an eigenvector of eigenvalue −λ. Then the eigenvalues of hl are 0 with multiplicity
s and ±1 with multiplicity n. Consequently TM = V0 ⊕ V−1 ⊕ V1 where V0 = kerϕ
and V−1 ⊕ V1 = D. Obviously h2

l = −ϕ2. �

We shall denote by V l
+ and V l

−
the eigenspaces of hl relative to the eigenvalues 1

and −1 where l = 1, . . . , s.

Remark 3.1. The above result holds replacing, for a fixed l ∈ {1, . . . , s}, the con-
dition on the sectional curvature with the condition RξlXξl = 0 for each X ∈ D.

Proposition 3.3. If M is flat, then all the operators hi coincide.

Proof. Let i, j ∈ {1, . . . , s}. Since (3.6) implies h2
i = h2

j = hi ◦ hj = hj ◦ hi = −ϕ2

then hi = hj on D. On the other hand hiξk = 0 = hjξk for each k = 1, . . . , s and
then hi = hj. �
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In the flat case we shall denote by V+ and V− the eigenspaces with the eigenvalues
1 and −1 of all the hi’s.

Proposition 3.4. Let l ∈ {1, . . . , s} be such that for each 2–plane containing ξl, the
sectional curvature is zero and RXY ξl = 0 for all X, Y ∈ V l

−
; then the distribution

V l
−

is integrable.

Proof. If X, Y ∈ V l
−
, then from (2.8) it follows that ∇Xξl = ∇Y ξl = 0. Hence

0 = RXY ξl = −∇[X,Y ]ξl = −ϕ([X, Y ])− ϕhl([X, Y ])

and then applying ϕ, hl([X, Y ]) = −[X, Y ]. Namely, from (2.6) we have that
ηkhl([X, Y ]) = 0 and moreover ηk([X, Y ]) = −2dηk(X, Y ) = −2F (X, Y ) =
−2g(X,ϕY ) = 0, for all k = 1, . . . , s, since ϕX ∈ V l

+. �

Proposition 3.5. Let l ∈ {1, . . . , s}. Suppose that for each 2–plane containing ξl

the sectional curvature vanishes and RXY ξl = 0 for all X, Y ∈ V l
−
. Then, under the

supplementary assumption that RξkXξl = 0, for each k = 1, . . . , s and each X ∈ V l
−
,

the distribution V l
−
⊕ < ξ1, . . . , ξs > is integrable.

Proof. In this case ∇[ξk,X]ξl = −RξkXξl = 0, for X ∈ V l
−
. From (2.8) it follows

that ϕ([ξk, X]) +ϕhl([ξk, X]) = 0 and then hl([ξk, X]) = −[ξk, X] which means that
[ξk, X] ∈ V l

−
. Hence together with Proposition 3.4 we get the claim. �

Under the hypotheses of Proposition 3.5, since V l
−
⊕ < ξ1, . . . , ξs > is an inte-

grable distribution, there exist local coordinates u1, . . . , u2n+s such that

{
∂

∂un+1
, . . . ,

∂

∂u2n

,
∂

∂u2n+1
, . . . ,

∂

∂u2n+s

}

is a local basis of V l
−
⊕ < ξ1, . . . , ξs > . Then we consider local functions ρj

α, α =
1, . . . , n, j = n+ 1, . . . , 2n+ s such that the local vector fields

Xα =
∂

∂uα

+
2n+s∑

j=n+1

ρj
α

∂

∂uj

(3.8)

belong to V l
+. X1, . . . , Xn are linearly independent and hence they give a basis of V l

+.
From Proposition 3.5 we obtain [ ∂

∂uj
, Xα] ∈ V l

−
⊕ < ξ1, . . . , ξs > for α = 1, . . . , n and

j = n + 1, . . . , 2n + s. It follows that ξl is parallel along [ ∂
∂uj
, Xα]. In fact, locally

[ ∂
∂uj
, Xα] = X +

∑s
j=1 σ

jξj where X ∈ V l
−

and σ1, . . . , σs are differentiable functions.

Then, due to (2.2), we get

∇[ ∂
∂uj

,Xα]ξl = ∇Xξl +
s∑

j=1

σj∇ξj
ξl = 0.
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4 Flat almost S–manifolds

In this section we fix an almost S–manifold (M,ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) and we

suppose that M is flat. Hence we may apply the results of the previous section.

Lemma 4.1. Let X1, . . . , Xn be the local frame of V+ defined in (3.8) then the
following formulas hold for α, β, γ = 1, . . . , n

∇ϕXαϕXβ = 0 (4.1)

∇Xα(ϕXβ) = ∇Xβ
(ϕXα) (4.2)

g([Xα, ϕXβ], Xγ) = 0 (4.3)

Proof. We have already proved that for each i = 1, . . . , s, j = n + 1, . . . , n + s and
β = 1, . . . , n, ξi is parallel along [ ∂

∂uj
, Xβ]. Using (2.8) and R = 0 we get

0 = ∇[ ∂
∂uj

,Xβ ]ξi = ∇ ∂
∂uj

(∇Xβ
ξi)−∇Xβ

(∇ ∂
∂uj

ξi) = −2∇ ∂
∂uj

(ϕXβ).

Since ϕXα ∈ V− we immediately get (4.1). Using (3.8) we have [Xα, Xβ] ∈ V−⊕
< ξ1, . . . , ξs >. Furthermore:

g([Xα, Xβ], ξi) = −g(Xβ,∇Xαξi) + g(Xα,∇Xβ
ξi)

= −g(Xβ,−ϕXα − ϕhiXα)

+g(Xα,−ϕXβ − ϕhiXβ)

= 4g(Xβ, ϕXα) = 0

so that

[Xα, Xβ] ∈ V−. (4.4)

It follows that 0 = RXαXβ
ξi = −2(∇Xα(ϕXβ)−∇Xβ

(ϕXα)) from which we get (4.2).
Finally from (4.1), (2.8):

0 = RXαϕXβ
ξi = −∇[Xα,ϕXβ ]ξi = ϕ([Xα, ϕXβ]) + ϕhi([Xα, ϕXβ])

and then [Xα, ϕXβ]−
∑s

j=1 η
j([Xα, ϕXβ])ξj + hi([Xα, ϕXβ]) = 0. Taking the scalar

product with Xγ we get

g([Xα, ϕXβ], Xγ) = −g(hi([Xα, ϕXβ]), Xγ) = −g([Xα, ϕXβ], Xγ)

from which we obtain (4.3). �

Lemma 4.2. For each X, Y ∈ V+ the following formula holds:

(∇Xϕ)Y = 2g(X, Y )ξ. (4.5)

Proof. We observe first that ϕX1, . . . , ϕXn are linearly independent and thus give
a basis of V−. From (2.11) we have that for each α, β = 1, . . . , n

(∇Xαϕ)Xβ + (∇ϕXαϕ)(ϕXβ) = 2g(Xα, Xβ)ξ.
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Taking the scalar product with ϕXγ, γ = 1, . . . , n, and using (4.1) we obtain

g((∇Xαϕ)Xβ, ϕXγ) = −g((∇ϕXαϕ)(ϕXβ), ϕXγ)

= g(∇ϕXαXβ, ϕXγ)

= −g(Xβ,∇ϕXαϕXγ) = 0.

Hence (∇Xαϕ)Xβ is orthogonal to V−. Now, from (4.2) and (4.3) we have

g(∇XαϕXβ, Xγ)− g(ϕ(∇XαXβ), Xγ) = g((∇Xαϕ)Xβ, Xγ)

= −g((∇ϕXαϕ)ϕXβ, Xγ)

= g(∇ϕXαXβ, Xγ)

= g(∇Xβ
ϕXα, Xγ)

= g(∇XαϕXβ, Xγ)

so that g(ϕ(∇XαXβ), Xγ) = 0. Then g(∇XαXβ, ϕXγ) = 0, that is, ∇XαXβ is or-
thogonal to V−. It follows that

g((∇Xαϕ)Xβ, Xγ) = g(∇XαϕXβ, Xγ)

= −g(ϕXβ,∇XαXγ) = 0. (4.6)

Finally

g((∇Xαϕ)Xβ, ξi) = g(∇XαϕXβ, ξi)− g(ϕ(∇XαXβ), ξi)

= −g(ϕXβ,∇Xαξi) = g(ϕXβ, ϕXα + ϕ(hiXα))

= 2g(ϕXβ, ϕXα) = 2g(Xβ, Xα).

Hence equation (4.5) immediately follows. �

Lemma 4.3. For each α, β = 1, . . . , s we have ∇XαXβ ∈ V+ and then
[Xα, Xβ] = 0.

Proof. From the proof of Lemma 4.2 we get that ∇XαXβ is orthogonal to V−. Due
to (2.8) we have g(∇XαXβ, ξj) = −g(∇Xαξj, Xβ) = 0 for each j = 1, . . . , s. Finally
from (4.4) [Xα, Xβ] ∈ V+ ∩ V− and therefore vanishes. �

Theorem 4.1. If (M 2n+s, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) is a flat almost S–manifold,

then n cannot be greater than one.

Proof. Suppose n > 1. Then there exist α, γ ∈ {1, . . . , n} such that Xα, Xγ are
linearly independent. Let β ∈ {1, . . . , n}. We write (4.5) for Xα and Xβ, then we
take the covariant derivative with respect to Xγ and get

∇Xγ∇XαϕXβ − (∇Xγϕ)(∇XαXβ)− ϕ(∇Xγ∇XαXβ)

= 2Xγ(g(Xα, Xβ))ξ − 4sg(Xα, Xβ)ϕXγ .

Taking the scalar product with ϕXδ, for any δ ∈ {1, . . . , n} and using Lemmas 4.2
and 4.3 we get

g(∇Xγ∇XαϕXβ, ϕXδ)− g(ϕ(∇Xγ∇XαXβ), ϕXδ)

= −4sg(Xα, Xβ)g(ϕXγ, ϕXδ)
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that is:

g(∇Xγ∇XαϕXβ, ϕXδ)− g(∇Xγ∇XαXβ, Xδ) (4.7)

= −4sg(Xα, Xβ)g(Xγ, Xδ).

We interchange γ and α in equation (4.7) and then subtract one from the other.
Since M is flat, using Lemma 4.3 we obtain

−4s
(
g(Xα, Xβ)g(Xγ, Xδ)− g(Xγ, Xβ)g(Xα, Xδ)

)
= 0

and in particular for α = β and γ = δ we have g(Xα, Xα)g(Xγ, Xγ)−g(Xα, Xγ)
2 = 0

which contradicts the linear independence of Xα, Xγ. �

Remark 4.1. Theorem 4.1 holds a fortiori for S–manifolds.

Corollary 4.1. Let (M,ϕ, ξi, η
i, g) be a K–manifold of dimension 2n+s with n ≥ 2

and also s ≥ 2. Suppose that r of the ηi’s are closed, 1 ≤ r ≤ s, whereas dηi = F
for the remaining s− r. Then M cannot be flat.

Proof. It is known that in this case M is locally the product of an S–manifold M1

and a flat manifold M2, cf. [7, Remark 3]. Since from Theorem 4.1 M1 cannot be
flat we obtain the claim. �

5 On the pull–back of a Riemannian fibration

Let M ′, B′ and B be smooth manifolds. Let π′ : M ′ → B′ be a smooth locally
trivial, not necessarily vector, fibration and let u : B → B ′ be a smooth map. Then
we can consider the pull-back bundle π : M → B such that the following diagram

M
U

−−−→ M ′

π

y

yπ′

B
u

−−−→ B′

commutes; U is the canonical map from M to M ′ such that U(a, b) = b where
(a, b) ∈ M . We recall that (a, b) ∈ M if and only if u(a) = π ′(b). The standard
fibre of the pull–back bundle coincides with the standard fibre of π ′ : M ′ → B′

and the map U is a diffeomorphism when restricted to the fibres. Actually M is an
embedded submanifold of B ×M ′.

On the other hand the tangent maps dπ′ : TM ′ → TB′ and du : TB → TB′

allow us to define the pull–back vector bundle E → TB such that the following
diagram

E
U1−−−→ TM ′

π1

y

ydπ′

TB
du

−−−→ TB′

commutes. The bundle E is defined explicitly in the following way:

E =
⋃

(a,b)∈M

{
(v,X) ∈ TaB × TbM

′ | dua(v) = dπ′b(X)
}
.
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We have a canonical projection Π from E to M , such that Π(v,X) = (a, b) where
(v,X) ∈ TaB×TbM

′. Then it is easy to observe that Π : E →M is a vector bundle
with the fibre over (a, b) ∈M consisting of all pairs of vectors (v,X) ∈ TaB × TbM

′

such that dua(v) = dπ′b(X).

Proposition 5.1. The vector bundle Π : E → M is canonically isomorphic to the
tangent bundle of M .

Proof. Let (v,X) ∈ E(a,b) then v ∈ TaB and X ∈ TbM
′. There exists a curve

γ1 : (−ε, ε) → B such that γ1(0) = a and γ̇1(0) = v. Since π′ : M ′ → B′ is
also a submersion, there exists a curve γ2 : (−ε, ε) → M ′ such that γ2(0) = b
and γ̇2(0) = X and u(γ1(t)) = π′(γ2(t)) for all t ∈ (−ε, ε). Hence it follows that
γ(t) = (γ1(t), γ2(t)) is a curve in M which defines a tangent vector to M at the
point (a, b). Then we put Φ(v,X) := γ̇(0). This defines the canonical ismorphisms
of bundles Φ : E → TM over M . It is easy to obtain the inverse of Φ. If γ(t) =
(γ1(t), γ2(t)) : (−ε, ε) → M is a curve in M , then u(γ1(t)) = π′(γ2(t)) for all
t ∈ (−ε, ε). Hence du(γ̇1(0)) = dπ′(γ̇2(0)). Then the inverse of Φ is given by
Φ−1(γ̇(0)) = (γ̇1(0), γ̇2(0)). �

In what follows we shall use E as the representation of TM having in mind the
isomorphism Φ constructed above. Hence local sections of TM will be represented
by the pairs (v,X) where v is a local vector field on B and X is a local vector

field on M ′ such that for each (a, b) ∈M ∩
(
domain(v)× domain(X)

)
we have that

du(va) = dπ′(Xb).

Proposition 5.2. Suppose that (v,X), (w, Y ) are local vector fields on M then,
under the canonical identification Φ : E ∼= TM we have the following formula for
the Lie bracket

[(v,X), (w, Y )] = ([v, w], [X, Y ]).

Proof. We observe that M is naturally immersed in the product manifold B ×M ′.
Hence we can consider the induced monomorphism of bundles TM → TB × TM ′.
From the construction of the isomorphism Φ it follows that the following diagram

TM
Φ

−−−→ E
mono
−−−→ TB × TM ′

y

y

y

M M
injection
−−−−−→ B ×M ′

commutes. Moreover the map E ↪→ TB × TM ′ is just the inclusion determined by
the inclusion M ↪→ B ×M ′. Hence (v,X), (w, Y ) are vector fields on B ×M ′ such
that their restrictions to M are vector fields tangent to M . Thus the restriction
of the Lie bracket [(v,X), (w, Y )] to M gives the Lie bracket of (v,X) and (w, Y )
restricted to M . Hence our proposition follows. �

The fibration π : M → B determines its vertical bundle V(M) := ker dπ. Then
we have the following straightforward characterization

V(M) =
⋃

(a,b)∈M

{
(0, X) ∈ TaB × TbM

′ | dπ′b(X) = 0
}
. (5.1)
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From now on we suppose that: (M ′, h′), (B′, g′) are Riemannian manifolds; π′ :
(M ′, h′) → (B′, g′) is a Riemannian fibration; u : B → B ′ is a totally geodesic
immersion. Then we put h := c ·U ∗h′, g := c ·u∗g′, c being a fixed positive constant.
The tensors g, h are Riemannian metrics on B and M , respectively. The horizontal
bundle of π : M → B is given by

H(M)=
⋃

(a,b)∈M

{
(v,X) ∈ T(a,b)M |dπ′b(X) = dua(v), X is horizontal in TbM

′

}
.

According to the definition of h and to (5.1) the fibration π : (M,h) → (B, g) is
Riemannian; namely if (v,X), (w, Y ) ∈ H(a,b)(M), then we have that

h((v,X), (w, Y )) = ch′(X, Y ) = cg′(dπ′(X), dπ′(Y ))

= cg′(du(v), du(w)) = g(dπ(v,X), dπ(w, Y )).

Proposition 5.3. Let v, w be local vector fields on B and X, Y be local vector fields
on M ′ such that (v,X), (w, Y ) are tangent to the manifold M ⊂ B ×M ′, then we
have the following formula for the Levi–Civita connection of h

∇h
(v,X)(w, Y ) =

(
∇g

vw,∇
h′

XY
)

(5.2)

where ∇g, ∇h′

denote the Levi–Civita connections of (B, g) and (M ′, h′), respectively.

Proof. We assume that ṽ, w̃ are local vector fields on B ′ such that their restrictions
to the image of u give the vector fields u∗(v) and u∗(w). Since u is totally geodesic,

u∗(∇
g
vw) = ∇g′

ṽ
w̃. Since π′ is locally trivial, we may assume that π′

∗
(X) = ṽ and

π′
∗
(Y ) = w̃. Then we observe that

dπ′(∇h′

XY ) = ∇g′

ṽ
w̃ = du(∇g

vw)

which follows from the fact that π′ is a Riemannian fibration. This implies that
∇h

(v,X)(w, Y ) is tangent to the manifold M and then ∇h is a well defined connection
operator on the vector fields on M . Moreover, we have that

∇h
(v,X)(w, Y )−∇h

(w,Y )(v,X) =
(
∇g′

v w,∇
h′

XY
)
−

(
∇g′

wv,∇
h′

Y X
)

=
(
[v, w], [X, Y ]

)

= [(v,X), (w, Y )]

and then it follows that ∇h is torsionless. Finally we observe that U ∗(∇hh) =
c · U∗(∇h′

h′) = 0. Since U is an immersion, we get that ∇h is the Riemannian
connection of h. �

Corollary 5.1.

1. The map U : (M,h) → (M ′, h′) is a totally geodesic conformal immersion with
scaling constant equal to c ;

2. R = c · U∗R′ where R and R′ are Riemannian curvature tensors of h and h′,
respectively;
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3. if (M ′, h′) is of constant sectional curvature K ′, then (M,h) is of constant
sectional curvature 1

c
K ′; in particular if (M ′, h′) is flat, then (M,h) is also

flat.

Proof. Property 1 follows from (5.2). Then 2 and 3 follow immediately from 1 and
the definition of the metric tensor h. �

6 Examples

We shall discuss in more detail the following example.

Example 6.1 (cf. [2]). Let M0 = R
3 with its standard coordinates (x, y, z). Then

on M0 we consider the following geometric objects:

• the Riemannian metric tensor h0 := 1
4
gcan where gcan is the standard flat metric

on M0

• h0–orthonormal vector fields

ξ0 = 2 cos(z)
∂

∂x
+ 2 sin(z)

∂

∂y
, ζ0 = −2 sin(z)

∂

∂x
+ 2 cos(z)

∂

∂y
, 2

∂

∂z

• the forms

η0 :=
cos(z)

2
dx+

sin(z)

2
dy, dη0 =

sin(z)

2
dx ∧ dz −

cos(z)

2
dy ∧ dz

• the endomorphism ϕ0 ∈ End(TM0) such that

ϕ0(2
∂

∂z
) = −ζ0, ϕ0(ζ0) = 2

∂

∂z
, ϕ0(ξ0) = 0.

Then (M0, ξ0, η0, F0, h0) is a metric contact manifold i.e. F0 = dη0 where F0 is the
2–form associated to h0 and ϕ0. Clearly the sectional curvature of h0 vanishes.

We consider the action φ : R×M0 → M0 of the Lie group G := R on M0 given
by

φ(t, (x, y, z)) =
(
x + 2t cos(z), y + 2t sin(z), z

)
.

The infinitesimal transformation determined by 1 ∈ R ∼= Lie(G) is just the vector
field ξ0. We observe that the action φ preserves all given structures on M0 i.e. for
each t ∈ G we have that

(φt)
∗h0 = h0, (φt)∗ξ0 = ξ0, (φt)

∗η0 = η0, (φt)
∗ϕ0 = ϕ0, (φt)

∗F0 = F0. (6.1)

Moreover we have that iξ0F0 = 0. Since the action φ is free and proper, there
exists a natural structure of a smooth manifold on the quotient B0 := M0/G such
that π0 : M0 → B0 is a principal fibre bundle with structure group G. Since φ
acts by isometries, there exists a unique Riemannian metric g0 on B0 such that
π0 : (M0, h0) → (B0, g0) is a Riemannian fibration. From the invariance of the given
structures on M0 it follows that F0 is a tensorial 2–form and that it is projectable
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to a form Ω0 on B0. Moreover, from equations (6.1) it follows that ϕ0 is projectable
to a unique almost complex structure J0 on B0. It is easy to observe that all these
structures on B0 are compatible. This means that J0 is orthogonal with respect
to g0, and Ω0(X, Y ) = g0(X, J0(Y )) for each X, Y vector fields on B0. Hence
(B0, g0, J0) is a Riemann surface and its Kähler form is just Ω0. Moreover, we have
that π∗0Ω0 = F0. We will use this in the next example.

Remark 6.1. We observe that (B0, g0) is isometric to a helicoid. In fact if (µ, ν) are
global coordinates on a helicoid, then ψ : R

2 → B0 given by ψ(µ, ν) = [(−2µ sin(ν),
2µ cos(ν), ν)]G defines an isometry where the bracket [ ]G denotes the equivalence
class with respect to the action of G.

We extend the structures constructed in Example 6.1 to more general f.pk–
structures. We keep in mind the structures and notation of the previous example.

Example 6.2. Let s be a positive natural number. Then we put

M ′ :=

s︷ ︸︸ ︷
M0 × · · · ×M0, B

′ :=

s︷ ︸︸ ︷
B0 × · · · ×B0, π

′ :=

s︷ ︸︸ ︷
π0 × · · · × π0 .

The manifolds M ′ and B′ carry natural product Riemannian metric structures h′

and g′ respectively. Then the projection π′ : (M ′, h′) → (B′, g′) is a Riemannian
fibration. We denote by Pk : M ′ → M0 and pk : B′ → B0 the projections on the
k–th component, for k = 1, . . . , s. We put B := B0 and u : B → B′ the diagonal
map i.e. for each x ∈ B we have u(x) = (x, . . . , x) ∈ B ′. Since u is an immersion,
we can apply the construction of Section 5. In such a way we obtain the pull–back
bundle π : M → B of π′ : M ′ → B′ via the map u : B → B′. We also have the
immersion bundle map U : M →M ′ such that the following diagram

M
U

−−−→ M ′

π

y
yπ′

B
u

−−−→ B′

commutes. It is clear that M may be described as

M =
{
(a, b1, . . . , bs) ∈ B × (M ′)s | a = π′(b1) = · · · = π′(bs)

}

and U(a, b1, . . . , bs) = (b1, . . . , bs). For any (a, b1, . . . , bs) ∈ M the tangent fiber to
M is

{
(v,X1, . . . , Xs) ∈ TaB × Tb1M

′ × · · · × TbsM
′|v = dπ′(Xl), l = 1, . . . , s

}
.

We consider the constant c = 1
s2 and define the Riemannian metric tensors h :=

1
s2U

∗h′ and g := 1
s2u

∗g′ on M and B. From the general construction of Section 5
it follows that π : (M,h) → (B, g) is a Riemannian fibration. It is easy to observe
that g = 1

s
g0. On the other hand

h((v,X1, . . . , Xs), (w, Y1, . . . , Ys)) =
1

s2

(
h′(X1, Y1) + · · ·+ h′(Xs, Ys)

)
.

We define the supplementary structures on M and B which derive from the almost
S–structure on M0. We put
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• ηk := 1
s
(Pk ◦ U)∗η0 for k = 1, . . . , s ; these are 1–forms on M .

• ϕ ∈ End(TM) defined by

ϕ(v, (X1, . . . , Xs)) := (J0(v), (ϕ0(X1), . . . , ϕ0(Xs))).

• the actions φk : R×M →M , k = 1, . . . , s , such that

φk(t, (a, b1, . . . , bs)) := (a, b1, . . . , φ(st, bk), . . . , bs)

for each t ∈ R and (a, b1, . . . , bs) ∈M ; these actions define global vector fields
ξ1, . . . , ξs which are vertical with respect to the fibration π : M → B ;

• Ω := 1
s
Ω0 is a 2–form on B.

We observe that dU(ξk) = (0, 0, . . . , sξk, . . . , 0) for k = 1, . . . , s. Moreover ξ1, . . . , ξs
are h–orthonormal and [ξk = ηk for k = 1, . . . , s. Then for each k = 1, . . . , s we have

dηk =
1

s
d(Pk ◦ U)∗η0 =

1

s
(Pk ◦ U)∗dη0

=
1

s
(

=IdB︷ ︸︸ ︷
pk ◦ u ◦π)∗Ω0 = π∗Ω.

On the other hand for given vectors (v,X1, . . . , Xs), (w, Y1, . . . , Ys) tangent to M at
a point we have that

h((v,X1, . . . , Xs), ϕ(w, Y1, . . . , Ys)) =
1

s2

s∑

k=1

h0(Xk, ϕ(Yk))

=
s∑

k=1

dη0(Xk, Yk)

=
1

s2

s∑

k=1

π∗0Ω0(Xk, Yk)

=
1

s
Ω0(v, w)

= π∗Ω((v,X1, . . . , Xs), (w, Y1, . . . , Ys)).

Hence it follows that dηk = π∗Ω = h(−, ϕ(−)) for each k = 1, . . . , s and
(M,ϕ, ξ1, . . . , ξs, η

1, . . . , ηs, h) is an almost S–manifold. Since the map
u : (B, g) → (B′, g′) is totally geodesic and (M ′, h′) is flat, then from Corollary 5.1
we get that (M,h) is also flat.

Since dimM = 2+s, this example shows that the condition n > 1 in Theorem 4.1
is necessary.
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