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Abstract

We are interested in the question whether every strongly locally ϕ-symmetric
contact metric space is a (κ, µ)-space. In this paper, we show that the answer
is positive for left-invariant contact metric structures on Lie groups.

1 Introduction

In K-contact and Sasakian geometry, local symmetry is a very strong condition: a
locally K-contact manifold is necessarily a space of constant curvature equal to 1
([12], [15]). The appropriate notion to consider in the Sasakian context was intro-
duced by T. Takahashi in [14]: he calls a Sasakian space (locally) ϕ-symmetric if its
Riemann curvature tensor R satisfies the condition

g((∇XR)(Y, Z)V, W ) = 0 (1)

for all vector fields X, Y , Z, V and W orthogonal to the characteristic vector field ξ,
where ∇ denotes the Levi Civita connection. He shows that this corresponds geo-
metrically to the fact that the characteristic reflections (i.e., reflections with respect
to the integral curves of ξ) are local automorphisms of the Sasakian structure. In
fact, it is already sufficient that the reflections are local isometries ([4]). In the
broader context of K-contact geometry, it was proved in [9] that a K-contact man-
ifold admitting locally isometric characteristic reflections is necessarily a (locally)
ϕ-symmetric Sasakian space.

Received by the editors October 2002.
Communicated by L. Vanhecke.
1991 Mathematics Subject Classification : 53D10, 53C25.
Key words and phrases : contact metric structures on Lie groups, (κ, µ)-contact metric spaces,

locally ϕ-symmetric contact metric spaces, isometric reflections.

Bull. Belg. Math. Soc. 10 (2003), 391–407



392 E. Boeckx

At least two generalizations of the notion of local ϕ-symmetry to the class of
contact metric spaces have appeared in the literature. The first one, in [3], de-
fines a locally ϕ-symmetric contact metric space to be one for which the curvature
property (1) holds. It is as yet unclear whether there is a geometric reality corre-
sponding to (1) in the contact metric setting. A second generalization was proposed
by the author and L. Vanhecke in [8]: they define a contact metric space to be lo-
cally ϕ-symmetric if its characteristic reflections are local isometries. This gives rise
to an infinite number of curvature restrictions (see further), including (1). Hence,
this second generalization is a priori more restrictive than the first. To distin-
guish between the two, we speak about weak local ϕ-symmetry (for the first one)
and strong local ϕ-symmetry (for the second). That the two classes do not agree
was shown explicitly in [7]: there, left-invariant contact metric structures on three-
dimensional non-unimodular Lie groups were constructed which are weakly, but not
strongly locally ϕ-symmetric. Quite recently, D. Perrone has presented another
three-dimensional contact metric space with this property, but which is moreover
not locally homogeneous ([13]).

The first examples of strongly locally ϕ-symmetric contact metric spaces (which
are not Sasakian) were found in [8]: these are the unit tangent sphere bundles of
spaces of constant curvature c, c 6= 1, equipped with their natural contact metric
structure. Later, this family of examples was extended further to include all (non)-
Sasakian contact metric (κ, µ)-spaces. These are contact metric manifolds for which
the Riemann curvature tensor R satisfies

R(X, Y )ξ = κ
(

η(Y )X − η(X)Y
)

+ µ
(

η(Y )hX − η(X)hY ) (2)

for some real numbers κ and µ and for all vector fields X and Y . Here h denotes, up
to a scaling factor, the Lie derivative of the structure tensor ϕ in the direction of ξ.
For convenience, we will call such contact metric spaces (κ, µ)-spaces. Note that
Sasakian spaces also satisfy (2) (κ = 1 and h = 0). The class of (κ, µ)-spaces was
introduced in [2], and there it was shown that the only unit tangent sphere bundles
with this curvature property are precisely those of spaces of constant curvature c
(with κ = c(2−c) and µ = −2c). That the (non-Sasakian) (κ, µ)-spaces are strongly
locally ϕ-symmetric was shown by the present author in [5], and also that they are all
locally homogeneous. Finally, a full local classification of (κ, µ)-spaces was realized
in [6]. In this classification, a prominent role is played by, on the one hand, the
unit tangent sphere bundles of spaces of constant curvature and, on the other hand,
special Lie groups equipped with specific left-invariant contact metric spaces.

Apart from the (non-Sasakian) contact metric (κ, µ)-spaces, not a single example
is known of a non-Sasakian strongly locally ϕ-symmetric space. This raises the
question whether there actually exist any. In dimension three, the answer is known:
G. Calvaruso, D. Perrone and L. Vanhecke have shown in [10] that the two classes
agree. In higher dimensions, the question is wide open.

In this paper, we make the first contribution to this problem. Inspired by the
role played by Lie groups in the classification of (κ, µ)-spaces, we investigate whether
there exist left-invariant contact metric structures on Lie groups which are strongly
locally ϕ-symmetric without being (κ, µ). The invariance allows to reduce the study
to one on the Lie algebra. Still, the calculations to be made are enormous. Only
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after detailed and explicit computations for the five- and seven-dimensional cases
did we acquire enough insight to treat the most general situation. We prove

Main Theorem. Every left-invariant contact metric structure on a Lie group which
is strongly locally ϕ-symmetric is a (κ, µ)-contact metric structure.

2 Strongly locally ϕ-symmetric contact metric spaces

In this section we collect the formulas and results we need on contact metric mani-
folds. We refer to [1] for a more detailed treatment. All manifolds in this note are
assumed to be connected and smooth.

An odd-dimensional differentiable manifold M 2n+1 has an almost contact struc-
ture if it admits a vector field ξ, a one-form η and a (1, 1)-tensor field ϕ satisfying

η(ξ) = 1 and ϕ2 = −id + η ⊗ ξ.

In that case, one can always find a compatible Riemannian metric g, i.e., such that

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y )

for all vector fields X and Y on M . (M, ξ, η, ϕ, g) is an almost contact metric man-
ifold. If the additional property dη(X, Y ) = g(X, ϕY ) holds, then (M, ξ, η, ϕ, g) is
called a contact metric manifold. As a consequence, the characteristic curves (i.e.,
the integral curves of the characteristic vector field ξ) are geodesics.

On a contact metric manifold M , we define the (1, 1)-tensor h by

hX =
1

2
(Lξϕ)(X)

where Lξ denotes Lie differentiation in the direction of ξ. The tensor h is self-adjoint,
hξ = 0, tr h = 0 and hϕ = −ϕh. The covariant derivative of ξ is given explicitly by

∇Xξ = −ϕX − ϕhX. (3)

If the vector field ξ on a contact metric manifold (M, ξ, η, ϕ, g) is a Killing vector
field, then the manifold is called a K-contact manifold. This is the case if and only
if h = 0. Finally, if the Riemann curvature tensor satisfies

R(X, Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ = η(Y )X − η(X)Y (4)

for all vector fields X and Y on M , then the contact metric manifold is Sasakian.
In that case, ξ is a Killing vector field, hence every Sasakian manifold is K-contact.

Recall that a contact metric space (M, ξ, η, ϕ, g) is called a (strongly) locally
ϕ-symmetric space if the local reflections with respect to the integral curves of ξ are
local isometries. This geometric property is reflected in an infinite list of curvature
conditions (see also [11]):

Proposition. Let (M, ξ, η, ϕ, g) be a contact metric manifold. If it is a (strongly)
locally ϕ-symmetric space, then the following infinite list of curvature conditions
hold:

g((∇2k
X···XR)(X, Y )X, ξ) = 0, (5)

g((∇2k+1
X···XR)(X, Y )X, Z) = 0, (6)

g((∇2k+1
X···XR)(X, ξ)X, ξ) = 0, (7)
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for all vectors X, Y and Z orthogonal to ξ and k = 0, 1, 2, . . . . Moreover, if (M, g) is
analytic, these conditions are also sufficient for the contact metric manifold to be a
locally ϕ-symmetric space.

Note that (6) for k = 0 is precisely the condition (1), implying that any strongly
locally ϕ-symmetric space is also weakly locally ϕ-symmetric.

3 Left-invariant contact structures on Lie groups

Let G2n+1 be a Lie group equipped with a left-invariant contact metric structure
(ξ, η, ϕ, g). By invariance, this structure is completely determined if we know it at
the identity element e of G. Conversely, if we take an appropriate structure on the
associated Lie algebra g ' TeG, then we can transport it by left translations to a
left-invariant structure on G.

Consider the operator h = 1
2
Lξϕ as acting on left-invariant vector fields. Since

it is symmetric with respect to the metric g and since hϕ = −ϕh, we can find an
orthonormal basis of g of the form {ξ, X1, . . . , Xn, Y1, . . . , Yn} satisfying

h(Xi) = λiXi, h(Yi) = −λiYi, ϕ(Xi) = Yi, ϕ(Yi) = −Xi

for i = 1, . . . , n and such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
In the rest of this section, we express the Lie bracket on g in terms of this specific

basis. We start from the general situation

[ξ, Xi] =
n

∑

k=1

(αikXk + βikYk) + xiξ,

[ξ, Yi] =
n

∑

k=1

(γikXk + εikYk) + yiξ,

[Xi, Xj] =
n

∑

k=1

(Ak
ijXk + Bk

ijYk) + xijξ, (8)

[Yi, Yj] =
n

∑

k=1

(Ck
ijXk + Dk

ijYk) + yijξ,

[Xi, Yj] =
n

∑

k=1

(ak
ijXk + bk

ijYk) + zijξ

where Ak
ij,B

k
ij, Ck

ij, Dk
ij, xij and yij are skew-symmetric in i and j. We now express

some of the necessary conditions on the coefficients of this bracket in order to obtain
a contact metric structure.

The conditions for an almost contact metric structure pose no restrictions on the
coefficients, but the additional one for a contact metric structure does. Indeed, the
equality

1

2
(Xη(Y )− Y η(X)− η([X, Y ])) = dη(X, Y ) = g(X, ϕY )

reduces for the case of left-invariant vector fields X and Y to the condition

g([X, Y ], ξ) = −2 g(X, ϕY ).

Using (8), this implies xi = yi = xij = yij = 0 and zij = 2 δij.
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Next, we express the fact that h(Xi) = λiXi using (8):

λiXi = h(Xi) =
1

2
(Lξϕ)Xi =

1

2
([ξ, ϕXi]− ϕ[ξ, Xi])

=
1

2

n
∑

k=1

(

(γik + βik)Xk + (εik − αik)Yk

)

.

Hence,
γik + βik = 2λi δik, εik − αik = 0. (9)

With (9), the corresponding conditions h(Yi) = −λiYi are already satisfied.
Finally, in the present situation, the equality (3) gives

∇Xi
ξ = −(1 + λi)Yi, ∇Yi

ξ = (1− λi)Xi. (10)

Using the Koszul formula for the covariant derivative in its simplified form for left-
invariant vector fields

g(∇XY, Z) =
1

2

(

g([X, Y ], Z)− g([X, Z], Y )− g([Y, Z], X)
)

, (11)

this yields

0 = 2g(∇Xi
ξ, Xj) = −(αij + αji),

−2δij(1 + λi) = 2g(∇Xi
ξ, Yj) = −(βij + γji + 2δij), (12)

2δij(1− λi) = 2g(∇Yi
ξ, Xj) = −(γij + βji − 2δij),

0 = 2g(∇Yi
ξ, Yj) = −(εij + εji).

Solving (9) and (12) for αij, βij, γij and εij and substituting in (8), we obtain

[ξ, Xi] =
n

∑

k=1

(αikXk + (λiδik + νik)Yk),

[ξ, Yi] =
n

∑

k=1

((λiδik − νik)Xk + αikYk),

[Xi, Xj] =
n

∑

k=1

(Ak
ijXk + Bk

ijYk), (13)

[Yi, Yj] =
n

∑

k=1

(Ck
ijXk + Dk

ijYk),

[Xi, Yj] =
n

∑

k=1

(ak
ijXk + bk

ijYk) + 2δijξ

where αij, Ak
ij, Bk

ij, Ck
ij en Dk

ij are skew-symmetric in i and j and νij is symmetric
in these indices.

Of course, one should still add conditions on these coefficients following from the
Jacobi identity for the Lie bracket. Since most of these are quadratic conditions in
the coefficients, we do not consider these now. We come back to them in Section 5.

Note. It may seem odd that we use the property (3) in order to arrive at the
form (13) for the Lie bracket. After all, this property is automatic as soon as we
have a contact metric structure. Indeed, the conditions (12) also follow from the
Jacobi identity for the bracket.
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4 The first curvature condition

Recall that we are looking for left-invariant strongly locally ϕ-symmetric contact
metric structures on Lie groups. The necessary condition (5) for k = 0 implies
that R(X, Y )ξ = 0 for all vector fields X and Y orthogonal to ξ. Expressing this
requirement in our present situation, starting from the Lie algebra defined by (13),
gives rise to a system of linear equations in the coefficients Ak

ij, Bk
ij, Ck

ij, Dk
ij, ak

ij

and bk
ij which can be solved explicitly. We describe this process in some more detail

now, giving the explicit solutions.

4.1 One index

Using again the Koszul formula (11) and (10), we calculate

0 = g(R(Xi, Yi)ξ, Xi) = (∇Xi
∇Yi

ξ −∇Yi
∇Xi

ξ −∇[Xi,Yi]ξ, Xi)

= g((1− λi)∇Xi
Xi + (1 + λi)∇Yi

Yi − g([Xi, Yi], Yi)∇Yi
ξ, Xi)

= (1 + λi)b
i
ii − (1− λi)b

i
ii = 2λib

i
ii,

0 = g(R(Xi, Yi)ξ, Yi) = 2λia
i
ii.

Hence,

• if λi > 0: ai
ii = bi

ii = 0;

• if λi = 0: ai
ii and bi

ii are arbitrary.

4.2 Two different indices

This time we look at the conditions of the form g(R(X, Y )ξ, Z) = 0 where X, Y, Z ∈
{Xi, Yi, Xj, Yj}, i < j, with both indices occurring. This gives rise to a list of
linear equations in the coefficients with two different indices. However, this system
subdivides into systems of five equations for only five coefficients. Since all the
subsystems are similar, we treat only the one involving Ai

ij, Ci
ij, bj

ii, bi
ij and bi

ji. This
subsystem corresponds to the conditions

0 = g(R(Xi, Yi)ξ, Xj),

0 = g(R(Xi, Xj)ξ, Yi),

0 = g(R(Yi, Yj)ξ, Yi),

0 = g(R(Xi, Yj)ξ, Xi),

0 = g(R(Xj, Yi)ξ, Xi),

or, after some calculations, using (10) and (11), to

M

















Ai
ij

Ci
ij

bj
ii

bi
ij

bi
ji

















=

















0
0
0
0
0

















(14)
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where

M =

















1− λi 0 1− λj 0 −(1 + λi)
2(1 + λi) −(1 + λj) 1 + λj −(1 + λj) 0

0 3λi + 1 1− λi 1− λi −2(1− λj)
2(1− λj) −(1 + λi) 1 + λi 3λi − 1 0

0 1 + λj 1 + λj 1 + λj −2(1− λi)

















.

The determinant of the matrix M is given by 64λi
2(λi + λj)(λi − λj). Keeping in

mind that λi ≥ λj ≥ 0, we have the following solutions for the system (14):

• if λi > λj ≥ 0:
Ai

ij = Ci
ij = bj

ii = bi
ij = bi

ji = 0;

• if λi = λj > 0:

Ci
ij = bi

ji = 0, Ai
ij = bi

ij = −bj
ii, bj

ii is arbitrary;

• if λi = λj = 0:

Ai
ij = bi

ji − bj
ii, Ci

ij = 2bi
ji − bi

ij − bj
ii, bj

ii, bi
ij and bi

ji are arbitrary.

Working similarly for the subsystems {Aj
ij, C

j
ij, b

i
jj, b

j
ji, b

j
ij}, {D

i
ij, B

i
ij, a

j
ii,

ai
ji, a

i
ij} and {Dj

ij, B
j
ij, a

i
jj, a

j
ij, a

j
ji}, we find

• if λi > λj > 0:

Aj
ij = Cj

ij = bi
jj = bj

ji = bj
ij = 0,

Di
ij = Bi

ij = aj
ii = ai

ji = ai
ij = 0,

Dj
ij = Bj

ij = ai
jj = aj

ij = aj
ji = 0;

• if λi > λj = 0:

Aj
ij = bj

ij = bi
jj = 0, Cj

ij = bj
ji, bj

ji is arbitrary,

Di
ij = Bi

ij = aj
ii = ai

ji = ai
ij = 0,

Dj
ij = ai

jj = aj
ji = 0, Bj

ij = −aj
ij, aj

ij is arbitrary;

• if λi = λj > 0:

Cj
ij = bj

ij = 0, Aj
ij = −bj

ji = bi
jj, bi

jj is arbitrary,

Bi
ij = ai

ij = 0, Di
ij = −ai

ji = aj
ii, aj

ii is arbitrary,

Bj
ij = aj

ji = 0, Dj
ij = aj

ij = −ai
jj, ai

jj is arbitrary;

• if λi = λj = 0:

Aj
ij = bi

jj − bj
ij, Cj

ij = bi
jj + bj

ji − 2bj
ij,

bi
jj, bj

ji and bj
ij are arbitrary,

Di
ij = aj

ii − ai
ij, Bi

ij = aj
ii + ai

ji − 2ai
ij,

aj
ii, ai

ij and ai
ji are arbitrary,

Dj
ij = aj

ji − ai
jj, Bj

ij = 2aj
ji − aj

ij − ai
jj,

ai
jj, aj

ji and aj
ij are arbitrary.
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4.3 Three different indices

As in the previous case, the conditions g(R(X, Y )ξ, Z) = 0 where X, Y, Z ∈ {Xi, Yi,
Xj, Yj, Xk, Yk}, i < j < k, and with three different indices occurring, lead to sub-
systems of twelve equations in twelve coefficients: {Ak

ij, A
j
ik, A

i
jk, C

k
ij, C

j
ik, C

i
jk, b

k
ij, b

k
ji,

bj
ik, b

j
ki, b

i
jk, b

i
kj} and {Dk

ij, D
j
ik, D

i
jk, B

k
ij, B

j
ik, B

i
jk, a

k
ij, a

k
ji, a

j
ik, a

j
ki, a

i
jk, a

i
kj}. Again, both

cases are quite similar. We do not give the equations explicitly here. It suffices to
say that the rank of the system is equal to

• 6 if λi = λj = λk = 0;

• 9 if λi = λj = λk > 0;

• 10 if λi > λj = λk = 0;

• 11 in all other cases.

The corresponding solutions are given by

• if λi = λj = λk = 0:

Ak
ij = bi

jk − bj
ik, Aj

ik = bi
kj − bk

ij, Ai
jk = bj

ki − bk
ji,

Ck
ij = bk

ji + bi
jk − bj

ik − bk
ij,

Cj
ik = bi

kj + bj
ki − bj

ik − bk
ij,

Ci
jk = bi

kj + bj
ki − bk

ji − bi
jk,

bk
ij, b

k
ji, b

j
ik, b

j
ki, b

i
jk and bi

kj are arbitrary,

Dk
ij = aj

ki − ai
kj, Dj

ik = ak
ji − ai

jk, Di
jk = ak

ij − aj
ik,

Bk
ij = aj

ki + ak
ji − ak

ij − ai
kj,

Bj
ik = aj

ki + ak
ji − ai

jk − aj
ik,

Bi
jk = ak

ij + ai
kj − ai

jk − aj
ik,

ak
ij, a

k
ji, a

j
ik, a

j
ki, a

i
jk and ai

kj are arbitrary;

• if λi = λj = λk > 0:

Ak
ij = bi

jk + bk
ij, Aj

ik = −bj
ki − bk

ij, Ai
jk = bj

ki + bi
jk,

Ck
ij = Cj

ik = Ci
jk = 0,

bk
ji = −bi

jk, bj
ik = −bk

ij, bi
kj = −bj

ki,

bk
ij, bj

ki and bi
jk are arbitrary,

Dk
ij = aj

ki + ak
ij, Dj

ik = −aj
ki − ai

jk, Di
jk = ak

ij + ai
jk,

Bk
ij = Bj

ik = Bi
jk = 0,

ak
ji = −aj

ki, aj
ik = −ai

jk, ai
kj = −ak

ij,

ak
ij, aj

ki and ai
jk are arbitrary;
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• if λi > λj = λk = 0:

Ai
jk = Ci

jk = bi
jk = bi

kj = 0,

Ak
ij = −Aj

ik = −bj
ik = bk

ij, Ck
ij = Cj

ik = bj
ki = bk

ji,

bk
ij and bk

ji are arbitrary,

Di
jk = Bi

jk = ai
jk = ai

kj = 0,

Dk
ij = −Dj

ik = aj
ki = −ak

ji, Bk
ij = Bj

ik = −aj
ik = −ak

ij,

ak
ij and ak

ji are arbitrary;

• otherwise:

Ak
ij = (λi + λj)(λi + λk)(λj + λk)(λi − λj)

2Aijk,

Aj
ik = −(λi + λj)(λi + λk)(λj + λk)(λi − λk)

2Aijk,

Ai
jk = (λi + λj)(λi + λk)(λj + λk)(λj − λk)

2Aijk,

Ck
ij = (λi + λj)(λi − λj)

2(λi − λk)(λj − λk)Aijk,

Cj
ik = (λi + λk)(λi − λj)(λi − λk)

2(λj − λk)Aijk,

Ci
jk = (λj + λk)(λi − λj)(λi − λk)(λj − λk)

2Aijk,

bk
ij = (λi + λj)

2(λj + λk)(λi − λj)(λi − λk)Aijk,

bk
ji = (λi + λj)

2(λi + λk)(λi − λj)(λj − λk)Aijk,

bj
ik = −(λi + λk)

2(λj + λk)(λi − λj)(λi − λk)Aijk,

bj
ki = (λi + λj)(λi + λk)

2(λi − λk)(λj − λk)Aijk,

bi
jk = −(λi + λk)(λj + λk)

2(λi − λj)(λj − λk)Aijk,

bi
kj = −(λi + λj)(λj + λk)

2(λi − λk)(λj − λk)Aijk,

Dk
ij = (λi + λj)(λi + λk)(λj + λk)(λi − λj)

2Dijk,

Dj
ik = −(λi + λj)(λi + λk)(λj + λk)(λi − λk)

2Dijk,

Di
jk = (λi + λj)(λi + λk)(λj + λk)(λj − λk)

2Dijk,

Bk
ij = (λi + λj)(λi − λj)

2(λi − λk)(λj − λk)Dijk,

Bj
ik = (λi + λk)(λi − λj)(λi − λk)

2(λj − λk)Dijk,

Bi
jk = (λj + λk)(λi − λj)(λi − λk)(λj − λk)

2Dijk,

ak
ij = −(λi + λj)

2(λi + λk)(λi − λj)(λj − λk)Dijk,

ak
ji = −(λi + λj)

2(λj + λk)(λi − λj)(λi − λk)Dijk,

aj
ik = −(λi + λj)(λi + λk)

2(λi − λk)(λj − λk)Dijk,

aj
ki = (λi + λk)

2(λj + λk)(λi − λj)(λi − λk)Dijk,

ai
jk = (λi + λj)(λj + λk)

2(λi − λk)(λj − λk)Dijk,

ai
kj = (λi + λk)(λj + λk)

2(λi − λj)(λj − λk)Dijk,

Aijk and Dijk are arbitrary.
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5 Jacobi identities

The results in the previous section have already reduced dramatically the number
of independent coefficients for the Lie bracket of a Lie group with a strongly locally
ϕ-symmetric left-invariant contact metric structure. We draw further conclusions by
expressing the Jacobi identity. Since our aim is to show that all the contact metric
structures are (κ, µ)-contact metric structures, we may suppose that λ1 > 0. Indeed,
otherwise we have h = 0 and the structure would be K-contact. But a K-contact
metric space with isometric characteristic reflections is necessarily Sasakian ([9]),
hence also a (κ, µ)-contact metric space.

For the rest of this section, we slightly change the notation in the following way:
we work with an orthonormal basis {ξ, X11, . . . , X1k1

, X21, . . . , X2k2
, . . . , Xt1, . . . , Xtkt

,
Y11, . . . , Y1k1

, . . . , Yt1, . . . , Ytkt
} such that

h(Xsi) = λsXsi, h(Ysi) = −λsYsi, ϕ(Xsi) = Ysi, ϕ(Ysi) = −Xsi

for s = 1, . . . , t, i = 1, . . . , ks and such that λ1 > λ2 > · · · > λt = 0. The indexing
of the coefficients in (13) will be changed accordingly.

5.1 The zero eigenvalue

Suppose first that h has a zero eigenvalue on ξ⊥. With the notation above, this
means kt > 0. We compute the coefficient of Y11 in

0 = [[Xtkt
, Ytkt

], X11] + [[Ytkt
, X11], Xtkt

] + [[X11, Xtkt
], Ytkt

].

We do this term by term. First, we have

[Xtkt
, Ytkt

] =
t

∑

s=1

ks
∑

i=1

(asi
tkt tkt

Xsi + bsi
tkt tkt

Ysi) + 2ξ

=
kt

∑

i=1

(ati
tkt tkt

Xti + bti
tkt tkt

Yti) + 2ξ,

g([[Xtkt
, Ytkt

], X11], Y11) = −
kt

∑

i=1

(ati
tkt tkt

B11
11 ti + bti

tkt tkt
b11
11 ti) + 2(λ1 + ν11 11)

= 2(λ1 + ν11 11),
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[Ytkt
, X11] = −

t
∑

s=1

ks
∑

i=1

(asi
11 tkt

Xsi + bsi
11 tkt

Ysi)

= −
k1
∑

i=1

a1i
11 tkt

X1i −
t−1
∑

s=2

ks
∑

i=1

asi
11 tkt

Xsi −
kt
∑

i=1

ati
11 tkt

Xti

−
k1
∑

i=1

b1i
11 tkt

Y1i −
t−1
∑

s=2

ks
∑

i=1

bsi
11 tkt

Ysi −
kt
∑

i=1

bti
11 tkt

Yti

=
k1
∑

i=2

2λ1
5D11 1i tkt

X1i

+
t−1
∑

s=2

ks
∑

i=1

λ1
3λs(λ1 + λs)D11 si tkt

Xsi −
kt

∑

i=1

atkt

11 tiXti

+
t−1
∑

s=2

ks
∑

i=1

λ1
3λs(λ1 − λs)A11 si tkt

Ysi +
kt−1
∑

i=1

btkt

11 tiYti,

g([[Ytkt
, X11], Xtkt

], Y11) =
k1
∑

i=2

2λ1
5D11 1i tkt

B11
1i tkt

+
t−1
∑

s=2

ks
∑

i=1

λ1
3λs(λ1 + λs)D11 si tkt

B11
si tkt

−
kt−1
∑

i=1

atkt

11 tiB
11
ti tkt

−
t−1
∑

s=2

ks
∑

i=1

λ1
3λs(λ1 − λs)A11 si tkt

b11
tkt si −

kt−1
∑

i=1

btkt

11 tib
11
tkt ti

=
t−1
∑

s=2

ks
∑

i=1

λ1
3λs(λ1 + λs)D11 si tkt

λ1λs
3(λ1 − λs)D11 si tkt

+
t−1
∑

s=2

ks
∑

i=1

λ1
3λs(λ1 − λs)A11 si tkt

λ1λs
3(λ1 + λs)A11 si tkt

=
t−1
∑

s=2

ks
∑

i=1

λ1
4λs

4(λ1
2 − λs

2)(D11 si tkt

2 + A11 si tkt

2)

and similarly

g([[X11, Xtkt
], Ytkt

], Y11) =
t−1
∑

s=2

ks
∑

i=1

λ1
4λs

4(λ1
2 − λs

2)(D11 si tkt

2 + A11 si tkt

2).

Hence, we obtain

λ1 + ν11 11 +
t−1
∑

s=2

ks
∑

i=1

λ1
4λs

4(λ1
2 − λs

2)(D11 si tkt

2 + A11 si tkt

2) = 0. (15)

Computing in an analogous way the X11-component of

0 = [[Xtkt
, Ytkt

], Y11] + [[Ytkt
, Y11], Xtkt

] + [[Y11, Xtkt
], Ytkt

],

we obtain

λ1 − ν11 11 −
t−1
∑

s=2

ks
∑

i=1

λ1
4λs

4(λ1
2 − λs

2)(D11 si tkt

2 + A11 si tkt

2) = 0. (16)

From (15) and (16), if follows that λ1 = 0, which is contrary to our assumption.
Hence, kt = 0 and zero is not an eigenvalue of h on ξ⊥.
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5.2 The number of eigenvalues

Suppose next that h has at least two different positive eigenvalues on ξ⊥, i.e., k2 > 0.
Calculating the Y11-component of

0 = [[X21, Y21], X11] + [[Y21, X11], X21] + [[X11, X21], Y21]

as before, we find

λ1 + ν11 11 =
t−1
∑

s=3

ks
∑

i=1

(λ1
2 − λ2

2)2(λ1
2 − λs

2)(λ2
2 − λs

2) · (17)

(

(λ2 + λs)
2A11 21 si

2 + (λ2 − λs)
2D11 21 si

2
)

,

while the X11-component of

0 = [[X21, Y21], Y11] + [[Y21, Y11], X21] + [[Y11, X21], Y21]

yields

λ1 − ν11 11 = −
t−1
∑

s=3

ks
∑

i=1

(λ1
2 − λ2

2)2(λ1
2 − λs

2)(λ2
2 − λs

2) · (18)

(

(λ2 − λs)
2A11 21 si

2 + (λ2 + λs)
2D11 21 si

2
)

.

Adding (17) and (18), we find the relation

λ1 = 2
t−1
∑

s=3

ks
∑

i=1

(λ1
2 − λ2

2)2(λ1
2 − λs

2)(λ2
2 − λs

2)λ2λs(A11 21 si
2 −D11 21 si

2).

On the other hand, we can play the same game with the roles of {X11, Y11} and
{X21, Y21} reversed. This leads, after some calculation, to

λ2 = 2
t−1
∑

s=3

ks
∑

i=1

(λ1
2 − λ2

2)2(λ1
2 − λs

2)(λ2
2 − λs

2)λ1λs(A11 21 si
2 −D11 21 si

2).

From the last two expressions, it follows that λ1/λ2 = λ2/λ1 or λ1
2 = λ2

2. But
since λ1 > λ2 > 0, this is impossible. Hence, k2 = 0 and h has only one positive
eigenvalue on ξ⊥.

5.3 (κ, µ)-spaces

So, we are left with the situation where we have an orthonormal basis {ξ, X1, . . . ,
Xn, Y1, . . . , Yn} for the Lie algebra g for which

h(Xi) = λXi, h(Yi) = −λYi, ϕ(Xi) = Yi, ϕ(Yi) = −Xi
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for i = 1, . . . , n and λ > 0. Using the results from Sections 3 and 4, the Lie bracket
can be written in the form

[ξ, Xi] =
n

∑

k=1

(αikXk + (λδik + νik)Yk),

[ξ, Yi] =
n

∑

k=1

((λδik − νik)Xk + αikYk),

[Xi, Xj] =
n

∑

k=1

Ak
ijXk, (19)

[Yi, Yj] =
n

∑

k=1

Dk
ijYk,

[Xi, Yj] =
n

∑

k=1

(ak
ijXk + bk

ijYk) + 2δijξ

where αij, Ak
ij en Dk

ij are skew-symmetric in i and j and νij is symmetric in these
indices. Moreover, for 1 ≤ i < j < k ≤ n, it holds

ai
ii = bi

ii = 0,

ai
ij = aj

ji = bi
ji = bj

ij = 0,

Ai
ij = bi

ij = −bj
ii, Aj

ij = −bj
ji = bi

jj,

Di
ij = −ai

ji = aj
ii, Dj

ij = aj
ij = −ai

jj,

bj
ii, bi

jj, aj
ii and ai

jj are arbitrary,

Ak
ij = bi

jk + bk
ij, Aj

ik = −bj
ki − bk

ij, Ai
jk = bj

ki + bi
jk,

bk
ji = −bi

jk, bj
ik = −bk

ij , bi
kj = −bj

ki,

Dk
ij = aj

ki + ak
ij, Dj

ik = −aj
ki − ai

jk, Di
jk = ak

ij + ai
jk,

ak
ji = −aj

ki, aj
ik = −ai

jk, ai
kj = −ak

ij ,

bk
ij, bj

ki, bi
jk, ak

ij, aj
ki and ai

jk are arbitrary.

Additionally, the coefficients have to satisfy the conditions arising from the Jacobi
identity for the Lie bracket.

First, we investigate under which conditions on the coefficients we obtain a (κ, µ)-
space, i.e., a space for which the curvature tensor satisfies

R(X, Y )ξ = κ
(

η(Y )X − η(X)Y
)

+ µ
(

η(Y )hX − η(X)hY
)

.

In Section 4, we have already looked at this condition for both X and Y orthogonal
to ξ. This leaves only the case R(X, ξ)ξ for X orthogonal to ξ. We compute:

R(Xi, ξ)ξ = −∇ξ∇Xi
ξ −∇[Xi,ξ]ξ

= (1 + λ)∇ξYi +
n

∑

k=1

(

αik∇Xk
ξ + (λδik + νik)∇Yk

ξ
)

= (1 + λ)([ξ, Yi] +∇Yi
ξ) +

n
∑

k=1

(

αik∇Xk
ξ + (λδik + νik)∇Yk

ξ
)

= ((1− λ2) + 2λ(1− νii)) Xi − 2λ
n

∑

k=1, k 6=i

νikXk
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and similarly

R(Yi, ξ)ξ = ((1− λ2)− 2λ(1− νii)) Yi + 2λ
n

∑

k=1, k 6=i

νikYk.

On the other hand, for a (κ, µ)-contact metric structure, we need

R(Xi, ξ)ξ = (κ + λµ)Xi, R(Yi, ξ)ξ = (κ− λµ)Yi.

The necessary and sufficient conditions for such a structure on the Lie group are
therefore given by

ν11 = · · · = νnn, νij = 0, i 6= j. (20)

If these hold, κ = 1 − λ2 and µ = 2(1 − ν11). We now show that both of these
conditions are consequences of the Jacobi identity, thereby proving the main result.

First, for i < j, we compute as previously the Yi-component of

0 = [[Xi, Yi], Xj] + [[Yi, Xj], Xi] + [[Xj, Xi], Yi] (21)

using the formulas (19) for the bracket:

[Xi, Yi] =
∑

k<i

ak
iiXk +

∑

i<k<j

ak
iiXk + aj

iiXj +
∑

j<k

ak
iiXk

+
∑

k<i

bk
iiYk +

∑

i<k<j

bk
iiYk + bj

iiYj +
∑

j<k

bk
iiYk + 2ξ,

g([[Xi, Yi], Xj], Yi) = −
∑

k<i

bk
iib

i
jk −

∑

i<k<j

bk
iib

i
jk − bj

iib
i
jj −

∑

j<k

bk
iib

i
jk + 2νji

= −
∑

k<i

bk
iib

i
jk +

∑

i<k<j

bk
iib

k
ji − bj

iib
i
jj −

∑

j<k

bk
iib

i
jk + 2νji,

[Yi, Xj] = −
∑

k<i

ak
jiXk − ai

jiXi −
∑

i<k<j

ak
jiXk − aj

jiXj −
∑

j<k

ak
jiXk

−
∑

k<i

bk
jiYk − bi

jiYi −
∑

i<k<j

bk
jiYk − bj

jiYj −
∑

j<k

bk
jiYk

=
∑

k<i

aj
kiXk + aj

iiXi −
∑

i<k<j

ak
jiXk +

∑

j<k

aj
kiXk

+
∑

k<i

bi
jkYk −

∑

i<k<j

bk
jiYk + bi

jjYj +
∑

j<k

bi
jkYk,

g([[Yi, Xj], Xi], Yi) = −
∑

k<i

bi
jkb

i
ik +

∑

i<k<j

bk
jib

i
ik − bi

jjb
i
ij −

∑

j<k

bi
jkb

i
ik

=
∑

k<i

bi
jkb

k
ii −

∑

i<k<j

bk
jib

k
ii + bi

jjb
j
ii +

∑

j<k

bi
jkb

k
ii,

[Xj, Xi] = −
∑

k<i

Ak
ijXk − Ai

ijXi −
∑

i<k<j

Ak
ijXk − Aj

ijXj −
∑

j<k

Ak
ijXk

= −
∑

k<i

(bi
jk + bk

ij)Xk + bj
iiXi +

∑

i<k<j

(bk
ji + bj

ik)Xk

− bi
jjXj −

∑

j<k

(bi
jk + bk

ij)Xk,
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g([[Xj, Xi], Yi], Yi) = −
∑

k<i

(bi
jk + bk

ij)b
i
ki +

∑

i<k<j

(bk
ji + bj

ik)b
i
ki

− bi
jjb

i
ji −

∑

j<k

(bi
jk + bk

ij)b
i
ki

= 0.

Hence, we obtain νji = 0 for i < j. So, the symmetric matrix (νij) is diagonal. To
show it is actually a multiple of the identity, we compute the Yj-component of (21).
It is given by

0 =
∑

k<i

bk
iib

k
jj +

∑

i<k<j

bk
iib

k
jj +

∑

j<k

bk
iib

k
jj + 2(λ + νjj)

+
∑

k<i

bi
jkb

k
ij +

∑

i<k<j

bk
jib

j
ik +

∑

j<k

bi
jkb

k
ij

−
∑

k<i

(bi
jk + bk

ij)b
j
ki + bj

iib
j
ii −

∑

i<k<j

(bk
ji + bj

ik)b
i
kj

+ bi
jjb

i
jj −

∑

j<k

(bj
ki + bi

jk)b
j
ki.

On the other hand, the Yi-component of

0 = [[Xj, Yj], Xi] + [[Yj, Xi], Xj] + [[Xi, Xj], Yj]

is given by

0 =
∑

k<i

bk
jjb

k
ii +

∑

i<k<j

bk
jjb

k
ii +

∑

j<k

bk
jjb

k
ii + 2(λ + νii)

+
∑

k<i

bk
ijb

i
jk +

∑

i<k<j

bj
ikb

k
ji +

∑

j<k

bk
ijb

i
jk

−
∑

k<i

(bi
jk + bk

ij)b
j
ki + bj

iib
j
ii −

∑

i<k<j

(bk
ji + bj

ik)b
i
kj

+ bi
jjb

i
jj −

∑

j<k

(bj
ki + bi

jk)b
j
ki.

Comparing the last two equalities, it follows νii = νjj.

Note that we have only used the first curvature condition to prove the main
result. We could therefore rephraze it as follows:

Proposition. Every left-invariant contact metric structure on a Lie group which
satisfies R(X, Y )ξ = 0 for all vector fields X and Y orthogonal to ξ is a (κ, µ)-
contact metric structure.

Proof. Since we used λ1 > 0 to prove the main theorem, we still have to look at the
case when the contact structure is K-contact. Then h = 0 or, equivalently, λi = 0
for i = 1, . . . , n. By (13), we have

[ξ, Xi] =
n

∑

k=1

(αikXk + νikYk),

[ξ, Yi] =
n

∑

k=1

(−νikXk + αikYk)
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where αij is skew-symmetric and νij is symmetric in the indices i and j. Using this,
a simple computation as above gives

R(Xi, ξ)ξ = Xi, R(Yi, ξ)ξ = Yi.

Together with the condition R(X, Y )ξ = 0 for all vector fields X and Y orthogonal
to ξ, it follows

R(X, Y )ξ = η(Y )X − η(X)Y

for arbitrary vector fields X and Y and the structure is Sasakian, hence (κ, µ). �
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