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1 Introduction

Throughout k will be a local field of characteristic zero, i.e., k will be a finite
extension of the field of p-adic numbers Qp. Ok will be the ring of integers in k, κ its
residue field, and π a fixed uniformizing element, and v the corresponding valuation.

Let C be a geometrically connected smooth projective curve over k, the index
of C, I(C), is the greatest common divisor of the degrees of the divisors on C. For
curves over local fields other interpretations of the index exist. For instance an
important theorem of Roquette and Lichtenbaum (cf. [6]) tells us that

I(C) = #[ker(Br(k) → Br(k(C))] (RL)

with Br(k), Br(k(C)) the Brauer groups of respectively k and k(C).
Since the existence of a k-rational point implies clearly that the index is 1, the

determination of the index of a curve C is related to the basic diophantine question
whether or not the curve C has a k-rational point.

We like to determine the index of curves C defined by an affine equation of the
form Y 2 = h(X), with h(X) ∈ k[X]. There is always a rational point on such curves
in some quadratic extension of k, so for such curves the index is necessarily 1 or 2.
(This fact follows also from the other characterization, (RL), of the index. Namely

k(C) = k(X)(
√

h(X)) so the kernel of Br(k) → Br(k(C)) consists of quaternion
algebras only. And there is only one quaternion division algebra over the local field
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k.) It follows that I(C) = 1 if and only if C has a prime divisor of odd degree, so if
and only if C has an l-rational point in some odd degree extension l/k.

Since the index is an invariant of the isomorphism class of the curve one can
reduce the problem of determining the index to equations of type Y 2 = εf(X) with
f(X) a monic polynomial over Ok and ε ∈ Ok. Moreover if one multiplies ε by a
square the index does not change. If ε is a square the index is 1 (the point or points
at infinity will be k-rational points). This means that without loss of generality
one can assume that ε ∈ {α, π}, where α is a unit in Ok which is not a square.
(Equations Y 2 = απf(X) can then be dealt with by replacing the uniformizing
element π by απ.) So now we assume that the curve C is given by an equation
Y 2 = εf(X), f(X) monic over Ok and ε ∈ {α, π}. (Moreover we restrict to the case
deg f(X) > 2, the other cases being known, therefore the curves we consider are all
hyperelliptic curves.)

This note is a sequel to the papers [7], [8]. The starting point of these inves-
tigations was the fact that for certain polynomials f(X) the characterization (RL)
allows to find sufficient conditions for the index of C to be 2 (cf. [7, propositions 3.7,
3.10], proposition 1). For irreducible polynomials f(X) the conditions we obtained
depend only on the root field L = k(θ), with f(θ) = 0. We wondered whether or
not this was always the case. In [7] we were able to give necessary and sufficient
conditions for the index to be equal to 2 under the assumption that f(X) is an
irreducible polynomial such that the ramification index of its root field is a power of
2. These conditions show that the index depends on the πL-adic expansion of a root
θ of f(X). The proofs were based on norm calculations and an analysis of the parity
of the values v(f(x)), with x an element in an odd degree extension of k. These
techniques are algorithmic in nature, for instance in [8] using the same methods we
were able to determine the index for equations Y 2 = εf(X) with deg f(X) = 4,
f(X) not necessarily irreducible, (i.e., for equations that define elliptic curves over
the algebraic closure k). Results similar to ours were obtained by Poonen and Stoll
in [5, lemma 15,16]. They use these results to obtain information on the Tate-
Shafarevich group of the Jacobians of the curves. The problem to determine the
index of hyperelliptic curves also turns up in [1, lemma 4] where Colliot-Thélène
and Poonen investigate families of hyperelliptic curves. These papers motivated us
to investigate further whether or not we could improve the results obtained in [7].
It turned out that at least for equations of type Y 2 = πf(X), with f(X) a monic
irreducible polynomial over Ok, the index can be determined in the case the root
field L = k(θ) of f(X) is a tamely ramified extension of k, this is the main result of
this note (cf. theorem 6). The proof is based on a reduction to the results in [7] by
considering suitable Galois extensions of k.
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2 An application of the Roquette-Lichtenbaum theorem

From now on we assume that the curve C is defined by Y 2 = πf(X), with f(X) a
monic polynomial over Ok.

As announced in the introduction a sufficient condition for I(C) = 2 is stated
in [7], proposition 3.10 without proof. (Proposition 3.7 of the same paper gives a
similar statement for curves of type Y 2 = αf(X).) For the sake of completeness we
restate this result here with a proof. The proof is based on the theorem of Roquette
and Lichtenbaum, i.e., the characterization (RL) of the index of C.

Proposition 1. Let f(X) =
∏r

i=1 fi(X) with fi(X) different monic irreducible poly-
nomials over Ok. Let Li

∼= k[T ]/(fi(T )), i = 1, . . . , r. Let C be the smooth projective
geometrically connected curve defined by the equation Y 2 = πf(X).

i) If for all i = 1, . . . r, k(
√

α) ⊂ Li then I(C) = 2.

ii) If for all i = 1, . . . r, k(
√−απ) ⊂ Li then I(C) = 2.

Proof. Let Li = k(θi) with fi(θi) = 0, then

k(X) ⊂ k(
√

α)(X) ⊂ k(θi)(X) = Li.

Define the polynomials Pi(X) ∈ k(
√

α)[X] by Pi(X) := N
k(θi)(X)

k(
√

α)(X)(X − θi). Let σ be

the generator of the Galois group Gal(k(
√

α)/k), i.e., σ(
√

α) = −√α, then fi(X) =
Pi(X)σPi(X) so f(X) = P (X)σP (X) with P (X) =

∏r
i=1 Pi(X). Consider over k

the unique quaternion algebra D =
(

α, π

k

)

and put D(X) =
(

α, π

k

)

⊗k k(X). Then

D(X) is a quaternion algebra over k with as basis {1, I, J, K}; I2 = α, J2 = π, K =
IJ = −JI and K2 = −απ. Conjugating with J defines an inner automorphism
of D(X) which restricted to k(I) = k(

√
α) ⊂ D(X) is σ. Let P (X) ∈ k(

√
α)[X]

be the polynomial defined above. Consider JP (X) ∈ D(X). Then (JP (X))2 =
JP (X)JP (X) = JJJ−1P (X)JP (X) = J2P (X)σP (X) = πf(X). So πf(X) is a

square in D(X), i.e., we have an embedding k(X)(
√

πf(X)) ⊂ D(X). Since D(X)

is a quaternion division algebra over k(X), i.e., a central simple algebra of index 2

over k(X), this is equivalent with the fact that k(X)(
√

πf(X)) is a splitting field

for D(X). So the algebra D(X)⊗k k(X)(
√

πf(X)) ∼= D(X)⊗k k(C) is a full matrix

algebra over k(C) (cf. [2, Theorem 1.6.17]). It follows from the theorem of Roquette
and Lichtenbaum (cf. [6]) that I(C) = 2.

The proof of case (ii) is obtained in completely the same way. One considers the
inner automorphism K(−)K−1. �

Corollary 2. Let f(X) be a monic irreducible polynomial over Ok. Let L ∼=
k[T ]/(f(T )). Let C be the smooth projective geometrically connected curve defined
by the equation Y 2 = πf(X). Then the index I(C) = 2 in the following cases:

i) The maximal unramified extension un of k in L is of even degree.

ii) k(
√−απ) ⊂ L.

Proof. (ii) is immediate from the proposition.
(i) If [Lun : k] ∈ 2Z then since Lun/k is a cyclic Galois extension it contains

k(
√

α) as unique quadratic subextension. Now one can apply the theorem again. �
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Corollary 3. Let k be a dyadic field and f(X) a monic irreducible polynomial over
k defining a tamely ramified extension L = k[T ]/(f(T )) over k. Let C be the smooth
projective geometrically connected curve defined by the equation Y 2 = πf(X). Then
I(C) = 1 if and only if [L : k] is odd.

Proof. Since L/k is tamely ramified, the degree [L : Lun] is odd. So either [Lun : k]
is odd, i.e., f(X) is a polynomial of odd degree and then it has a zero in some odd
degree extension of k. This immediately implies that I(C) = 1. Or [Lun : k] is even
in which case the previous corollary implies that I(C) = 2. �

3 The main result

From now on f(X) will be a monic irreducible polynomial over Ok, defining a tamely
ramified extension L ∼= k[T ]/(f(T )) of k and C will be the smooth projective ge-
ometrically connected curve over k defined by the equation Y 2 = πf(X). From
the above it follows that the only case where we do not yet have an answer for the
index problem is the case in which neither k(

√
α) ⊂ L nor k(

√−απ) ⊂ L. In [7]
we showed that in this case the determination of the index is more subtle. Namely
we showed that in the case where the ramification index of L/k is a power of 2, the
index of C not only depends on L but also on a πL-adic expansion of a root θ of
f(X). This result can be generalized to tamely ramified extensions in general. We
fix our notation first (compare with [7, 2.3]).

Notations 4.

• f(X) is a monic irreducible polynomial over Ok of even degree, θ is a root of
f(X) in a fixed algebraic closure k of k.

• L = k(θ) is a tamely ramified extension with ramification index e(L/k) = 2md,
d odd, m ≥ 1

• Lun is the maximal unramified sub-extension of L/k and E/k the maximal
unramified sub-extension of odd degree. We have [L : k] = 2µδ, [L : Lun] =
2md and [E : k] = δ

d
.

(In the remaining cases we are considering in this note, we always have Lun =
E.)

• Ω is the set of Teichmüller representatives in the maximal unramified extension
kun ⊂ k of k. Ω is the set of Teichmüller representatives in Lun, i.e., Ω =
Ω ∩ Lun.

• α is a unit representing a non square in k. We choose α ∈ Ω (cf. [7, page 320]).

• We choose a uniformizing element πL ∈ L such that π2md
L = uπ, u ∈ Ω. This

is possible since L/Lun is totally and tamely ramified, cf. [4]. It follows that
NL

Lun
(πL) = −uπ (a minus sign since the ramification index e(L/k) is even).

We denote the element π2m

L ∈ L by d
√

uπ.
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• Let θ = a0 + a1πL + a2π
2
L + · · · be the πL-adic expansion of θ, where the

coefficients ai are taken in Ω (cf. [7, 2.3]). Define s = min{i|aiπ
i
L 6∈ E( d

√
uπ)},

θ0 =
∑s−1

i=0 aiπ
i
L and θ1 = θ − θ0.

Note first that in the case d = 1 the definition of θ0 and θ1 is exactly the same
as in [7]. Secondly if [Lun : k] is odd then Lun = E and so u ∈ E, this implies
that s = min{i|ai 6= 0 and i 6∈ 2mZ}.

Proposition 5. Suppose the notations are as fixed above. Assume that
√

α 6∈ L and√−απ 6∈ L then I(C) = 2 if and only if vL(θ − θ0) ∈ 2Z.

Proof. Since L is tamely ramified and its ramification index is even the local field k
is non-dyadic.

I. We assume that vL(θ − θ0) ∈ 2Z and we will show that I(C) = 2.

a)Assume some d
√

u ∈ Lun. This implies that d
√

π :=
π2

m

L
d
√

u
∈ L.

Since Lun and k( d
√

π) are linearly disjoint over k we have [Lun( d
√

π) : Lun] = d
and Lun( d

√
π) is the maximal unramified extension in L/k( d

√
π).

Let M = k(ζd)( d
√

π), ζd a primitive d-th root of unity.
Claim: For all odd degree extensions l/M and all x ∈ l, πf(x) has odd valuation

in l.
To proof the claim we consider the equation Y 2 = πgτ1gτ2 · · · gτr = πggτ2 · · · gτr ,

where Gal(M/k) = {τ1 = id, τ2, . . . , τr}, and g is the minimal polynomial of θ over
M . We want to apply the results of [7] to the extension (L(ζd) =)LM/M and its
conjugates (LM)τi (where the automorphism τi is extended to a k-embedding of
LM ↪→ k). So let us first collect the properties of these extensions.

• Since L/k is tamely ramified, p does not divide d which implies that k(ζd)
τi/k

is an unramified Galois extension. The ramification index of (LM)τ
i /M equals

the ramification index of L/Lun( d
√

π) so it is equal to 2m, m ≥ 1.

• (LM)τi = M(θτi) and θτi is a root of the irreducible polynomial gτi(X) over
M , a polynomial of even degree (since m 6= 1).

• (πL)τi is a uniformising element in (LM)τi and (πτi

L )2m

= ( d
√

uπ)τi , ( d
√

u)τi ∈ Ω

(remember that we are assuming d
√

u ∈ Lun) and N
(LM)τi

(LM)un
(πτi

L ) = −( d
√

uπ)τi .

• θτi = aτi
0 + aτi

1 πτi

L + aτi
2 (πτi

L )2 + · · · are the πL-adic expansion of the θτ
i ’s, with

the coefficients (ai)
τi in Ω.

Also s = min{j|ajπ
j
L 6∈ E( d

√
uπ)} = min{j|aj 6= 0 and j 6∈ 2mZ} = min{j|aτi

j 6=
0 and j 6∈ 2mZ}. It follows that s is the same for all θτi and that (θ0)

τi = (θτi)0

and (θ1)
τi = (θτi)1.

The assumption vL(θ1) ∈ 2Z then implies v(LM)τi (θ
τi
1 ) ∈ 2Z for all i = 1, . . . , r.

Let now l/M be an extension of odd degree and x ∈ l then [7, lemma 2.5 (ii)]
(see also the proof of proposition 3.9 in [7]) applied to the polynomials gτi, which are
irreducible over M , yields that gτi(x) ≡ 1 mod l∗2. Now π has odd valuation in M
since d is odd and k(ζd)/k is unramified (as we remarked above). So the valuation
of π in l is odd. It follows that for all odd degree extensions l/M and all x ∈ l,
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πg(x)gτ2(x) · · · gτr(x) has odd valuation in l, therefore it cannot be a square in l.
This proves our claim.

Consequently the curve defined by the affine equation y2 = πf(X) has no rational
point in any odd degree extension of M , so I(CM) = 2. Therefore also I(C) = 2 for
otherwise there is an extension l/k of odd degree such that C(l) 6= ∅. But lM/M is
also of odd degree since M/k is a Galois extension (cf. [3]), so CM(lM) 6= ∅ implying
I(CM) = 1, a contradiction.

b) To apply part a) we consider the unramified extension of odd degree Lun( d
√

u)/k.
We know (lemma 2.1 in [7]) that I(C) = I(CLun( d

√
u)). Let f(X) = p(X)pγ2(X) · · ·

pγt(X) be the factorization of f(X) over Lun( d
√

u), {id = γ1, γ2, . . . , γt} being the
Galois group of Lun( d

√
u)/k. We can apply the results of part (a) to the polynomials

pγi(X). Note that θγi is a root of pγi(X) and that we have (similar to observations
in part a) θγi

0 = (θ0)
γi and θγi

1 = (θ1)
γi . Also vL(θ − θ0) ∈ 2Z is equivalent with

vL( d
√

u)γi (θ
γi − θγi

0 ) ∈ 2Z for all γi.
So if vL(θ−θ0) ∈ 2Z the claim proven in part (a) implies that for all l/Lun( d

√
u)( d

√
π)

of odd degree, for all x ∈ l and for all i = 1, . . . , t the valuation of πgγi(x) as
an element of lM , with M = Lun( d

√
u, ζd, d

√
π), is odd. Then these elements also

have odd valuation as elements of l (Ml/l being unramified). Since t is odd it
follows that the valuation of πf(x) as an element of l is odd. This implies that
I(CLun( d

√
u)) = I(C) = 2.

Consequently we have shown that if vL(θ − θ0) ∈ 2Z then I(C) = 2.

II) Let us now assume that vL(θ1) 6∈ 2Z. We want to prove that I(C) = 1.
We claim that given the hypotheses

√
α 6∈ L,

√−απ 6∈ L and vL(θ1) 6∈ 2Z,
πf(θ0) is a square in Lun( d

√
u, d
√

π). If this is true then the curve C has a rational
point over the odd degree extension Lun( d

√
u, d
√

π), so I(C) = 1.
The calculation of the square class of πf(θ0) is implicitly in lemma 2.5 of [7].

For the sake of completeness we give it here explicitly for this special case.
Lun( d

√
u)/k is a Galois extension so f(X) =

∏

σ∈Gal(Lun( d
√

u)/k) gσ(X), with g(X)
the minimal polynomial of θ over Lun( d

√
u), it is a polynomial of even degree since

[Lun( d
√

u) : k] is odd. Lun( d
√

u) is an unramified extension over Lun, it follows that
L/Lun is linearly disjoint from Lun( d

√
u), so we can extend the σ’s to embeddings of

L( d
√

u) leaving the uniformising element πL invariant.
We can now determine the square class of gσ(θ0) (we abreviate in the calculations

N
L( d
√

u)

Lun( d
√

u, d
√

π)
simply with N):

gσ(θ0) = N(θ0 − θσ)
= N(θ0 − θσ

0 − θσ
1 )

If vL( d
√

u)(θ0 − θσ
0 ) < vL( d

√
u)(θ

σ
1 ) then θ0 − θσ

0 − θσ
1 = (θ0 − θσ

0 )(1 + z) with z ∈ πLOL.
The one-unit 1 + z is a square in L( d

√
u), this yields:

gσ(θ0) = N((θ0 − θσ
0 )(1 + z))

≡ N(θ0 − θσ
0 ) mod Lun( d

√
u, d
√

π)

≡ (θ0 − θσ
0 )[L( d

√
u):Lun( d

√
u, d
√

π)] mod Lun( d
√

u, d
√

π)∗2

≡ (θ0 − θσ
0 )2m

mod Lun( d
√

u, d
√

π)∗2

≡ 1 mod Lun( d
√

u, d
√

π)∗2
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Here we used the fact that Lun( d
√

u) is an unramified extension (k being non-dyadic),
this implies that Lun( d

√
u, d
√

π) is the maximal unramified extension in L( d
√

u, d
√

π)
and that the ramification index of L( d

√
u, d
√

π)/k is equal to e(L/k) = 2m, yielding
[L( d

√
u) : Lun( d

√
u, d
√

π)] = 2m ∈ 2Z.
If vL( d

√
u)(θ0 − θσ

0 ) ≥ vL( d
√

u)(θ
σ
1 ) then necessarily θ0 = θσ

0 . To see this note that

θ0 =
∑s−1

i=0 aiπ
i
L and θσ

0 =
∑s−1

i=0 aσ
i (πσ

L)i =
∑s−1

i=0 aσ
i πi

L. If θ0 6= θσ
0 then ai 6= aσ

i for
some i = 1, . . . , s− 1. But then v(θ0 − θσ

0 ) ≤ i ≤ v(θσ
1 ).

So in the case vL( d
√

u)(θ0−θσ
0 ) ≥ vL( d

√
u)(θ

σ
1 ) we have (again we denote N

L( d
√

u)

Lun( d
√

u, d
√

π)

simply with N)

gσ(θ0) = N(θσ
1 )

≡ N(asπL)s mod Lun( d
√

u, d
√

π)∗2

≡ N(as)N(πL) mod Lun( d
√

u, d
√

π)∗2

≡ −uσπ mod Lun( d
√

u, d
√

π)∗2

Here we used that N
L( d
√

u)

Lun( d
√

u, d
√

π)
(as) is a square since as ∈ Lun and [L( d

√
u) : Lun( d

√
u,

d
√

π)] = 2m is even. We used also our hypothesis that vL(θ1) = s is odd.
Now if, still under the assumption that vL( d

√
u)(θ0 − θσ

0 ) ≥ vL( d
√

u)(θ
σ
1 ), πgσ(θ0) is

not a square in Lun( d
√

u, d
√

π), then necessarily, since α represents the non-squares
in the odd degree extension Lun( d

√
u, d
√

π) of k, −uσ ≡ ασ(= α) or equivalently
−u ≡ α. This would imply

√−απ =
√

uπ ∈ L contrary to our assumptions.
So recapitulating what we found, for all σ ∈ Gal(Lun( d

√
u)/k) with θσ

0 6= θ0 we
have that gσ(θ0) is a square in Lun( d

√
u, d
√

π). For all σ’s with θσ
0 = θ0, i.e., for

all σ’s in H := Gal(Lun( d
√

u)/k(a0, . . . , as−1), we have that πgσ(θ0) is a square in
Lun( d

√
u, d
√

π). Note that there is an odd number t = #Gal(Lun( d
√

u)/k(a0, . . . , as−1))
of σ’s satisfying the latter property. We obtain

πf(θ0) ≡ (
∏

σ∈H πgσ(θ0))
(

∏

τ 6∈H gτ (θ0)
)

mod Lun( d
√

u, d
√

π)∗2

≡ 1 mod Lun( d
√

u, d
√

π)∗2

This proves our claim and so we obtain I(C) = 1 as desired. �

Corollary 2, corollary 3 and proposition 5 together cover the calculation of the
index for a curve C defined by Y 2 = πf(X), with f(X) an irreducible monic poly-
nomial over Ok such that a root of f(X) generates a tamely ramified extension of
k. We summarize the result in the following theorem.

Theorem 6. Let f(X) ∈ Ok[X] be a monic irreducible polynomial of degree 2µδ. Let
L = k(θ), with θ a root of f(X). Let the ramification index e(L/k) = 2md, be prime
to the characteristic of k, i.e., L/k is tamely ramified. Let C be the hyperelliptic
curve defined by the affine equation Y 2 = πf(X). Then

1) If k is dyadic then I(C) = 1 if and only if µ = 0, i.e., [L : k] is odd.

2) If k is non-dyadic then I(C) = 2 if and only if µ ≥ 1 (f(X) is of even degree)
and one of the following conditions hold: k(

√
α) ⊂ L, or k(

√−απ) ⊂ L or
vL(θ − θ0) ∈ 2Z (where θ0 is defined as in 4.)
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Remark 7. 1. It is not difficult to obtain from theorem 6 examples of equations
Y 2 = πf(X) for which the associated curves are of index 2 as well as examples of
such equations for which the curves have index 1. The idea is to look for an integral
primitive element θ in some tamely ramified extension of k of even degree having the
πL-adic expansion with the desired properties. Then one takes f(X) as the minimal
polynomial of θ. One can start even with a uniformizing element πL and look at
asπ

s
L for suitable s and as.
2. For hyperelliptic curves defined by an equation of the form Y 2 = πf(X)

our main result followed (at least partially) from the result we obtained in [7] (the
case where the ramification index e(L/k) is a power of 2). The reduction does not
immediately work for curves defined by equations Y 2 = αf(X) for different reasons.
First of all by going over to extensions k(ζd), ζd a d-root of unity, α becomes a
square. This already complicates things. But more seriously since cases where
Lun 6= E have to be considered, the definition of θ0 and θ1 does not behave well
under galois congugation, this is bad since the fact (cf. page 349) that s is the same
for the different θτi plays an essential role in the proof.
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