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Abstract

The paper deals with the local Cauchy problem for first order partial

functional differential systems. A general class of difference methods is con-

structed. The convergence of explicit difference schemes is proved by means

of consistency and stability arguments. It is assumed that the given functions

satisfy nonlinear estimates of Perron type with respect to functional variables.

Differential systems with deviated variables and differential integral problems

can be obtained from a general case by specializing the given operators. The

results are illustrated by numerical examples.

1 Introduction

For any metric spaces X and Y we denote by C(X, Y ) the class of all continuous
functions from X into Y . We will use vectorial inequalities with the understanding
that the same inequalities hold between their corresponding components. We denote
by Mk×n the space of all real k × n matrices. For x = (x1, . . . , xn) ∈ Rn, p =
(p1, . . . , pk) ∈ Rk and X ∈ Mk×n, X = [xij]i=1,...,k, j=1,...,n, we put

||x|| =
n
∑

i=1

|xi|, ||p|| = max{|pi| : 1 ≤ i ≤ k},
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||X|| = max{
n
∑

j=1

|xij| : 1 ≤ i ≤ k}.

Unless otherwice noted, we use in the paper the above norms and they are denoted
by the same symbol || · ||. Let E be the Haar pyramid

E =
{

(t, x) = (t, x1, . . . , xn) ∈ R1+n : t ∈ [0, a], x ∈ [−b + Mt, b−Mt]
}

where a > 0, b = (b1, . . . , bn), M = (M1, . . . , Mn) ∈ Rn
+, R+ = [0, +∞), and b > Ma.

Write

E0 = [−r0, 0]× [−b, b], Et = (E0 ∪ E) ∩ ([−r0, t]×Rn), 0 < t ≤ a,

where r0 ∈ R+, and

St = [−b, b] for t ∈ [−r0, 0], St = [−b + Mt, b−Mt] for t ∈ [0, a].

Set Ω = E × C(E0 ∪ E, Rk) and assume that

% : Ω → Mk×n, % = [%ij]i=1,...,k, j=1,...,n,

f : Ω → Rk, f = (f1, . . . , fk) ϕ : E0 → Rk, ϕ = (ϕ1, . . . , ϕk)

are given functions. We consider the system of differential functional equations

∂tzi(t, x) =
n
∑

j=1

%ij(t, x, z) ∂xj
zi(t, x) + fi(t, x, z), 1 ≤ i ≤ k, (1)

with the initial condition

z(t, x) = ϕ(t, x) for (t, x) ∈ E0. (2)

Let us denote by z|Et
, 0 ≤ t ≤ a, the restriction of the function z : E0 ∪ E → Rk

to the set Et. The function % : Ω → Mk×n is said to satisfy the Volterra condition if
for each (t, x) ∈ E and for z, z̄ ∈ C(E0 ∪ E, Rk) such that

z|Et
= z̄|Et

we have %(t, x, z) = %(t, x, z̄).

Note that the Volterra condition for % means that the value of % at the point (t, x, z)
of the space Ω depends on (t, x) and on the restriction of z to the set Et. In the
same way we define the Volterra condition for f . In the paper we assume that %

and f satisfy the Volterra condition and we consider classical solutions of the above
problem.

Numerical methods for nonlinear first order partial differential functional equa-
tions were considered by many authors and under various assumptions. Difference
methods for initial boundary value problems were studied in [7], [11]. Initial prob-
lems on the Haar pyramid and a general class of difference schemes with suitable
interpolating operators were considered in [6], [12], [16]. The convergence of differ-
ence methods for functional parabolic problems was studied in [10], [13] - [15]. The
main problem in these investigations is to find a difference functional problem which
is stable and satisfies consistency conditions with respect to the original problem.
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The method of difference inequalities or simple theorems on reccurent inequalities
are used in the investigations of the stability.

The numerical method of lines for partial differential functional equations was
considered in [17], [18]. By using a discretization with respect to the spatial vari-
able, the partial differential equation with a functional dependence is replaced by
a sequence of ordinary functional differential equations with initial conditions. The
proof of the convergence of the method of lines is based on differential inequalities
techniques. For further bibliographic information concerning numerical methods for
partial functional differential equations see the survey paper [2] and the monograph
[8].

The results given in [6], [7], [11] for nonlinear functional differential problems are
not applicable to quasilinear systems of the form (1). In the paper we prove that
there is a class of difference methods for (1), (2) which are convergent. The stability
of the methods is investigated by using a theorem on recurrent inequalities. We give
a few numerical examples.

Differential systems with deviated variables and differential integral systems can
be obtained by specializing the operators % and f . Existence results for quasilinear
hyperbolic problems are given in [1], [3], [5], [8]. For bibliography on applications of
functional partial differential equations see the monograph [8] and the survey paper
[9].

2 Discretization

We denote by F(A, B) the class of all functions defined on A and taking values in
B, where A and B are arbitrary sets. Let N and Z be the sets of natural numbers
and integers respectively. For x, x̄ ∈ Rn, x = (x1, . . . , xn), x̄ = (x̄1, . . . , x̄n), we write
x ∗ x̄ = (x1x̄1, . . . , xnx̄n). We define a mesh on the set E0 ∪ E in the following way.
Let h = (h0, h

′) where h′ = (h1, . . . , hn) stand for steps of the mesh. Denote by ∆
the set of all h = (h0, h

′) such that there exist Ñ0 ∈ Z and N = (N1, . . . , Nn) ∈
Zn with the properties: Ñ0h0 = r0 and N ∗ h′ = b. We assume that ∆ 6= ∅ and
that there exists a sequence {h(j)}, h(j) ∈ ∆, such that limj→+∞ h(j) = 0. We define
nodal points as follows:

t(i) = ih0, x(m) = m ∗ h′, x(m) = (x
(m1)
1 , . . . , x(mn)

n )

where (i, m) ∈ Z1+n. Define N0 ∈ N as follows: N0h0 ≤ a < (N0 + 1)h0.

Let

R1+n
h = {(t(i), x(m)) : (i, m) ∈ Z1+n}

and

Eh = E ∩R1+n
h , E0.h = E0 ∩R1+n

h ,

E ′

h = { (t(i), x(m)) ∈ Eh : (t(i) + h0, x
(m)) ∈ Eh }.

For a function z : E0.h ∪ Eh → Rk we write z(i,m) = z(t(i), x(m)). Now we formulate
a difference problem corresponding to (1), (2). Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn,
1 ≤ j ≤ n, where 1 is the j-th coordinate and let w : E0.h ∪ Eh → R. We consider
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difference operators δ0, δ = (δ1, . . . , δn) defined in the following way:

δ0w
(i,m) =

1

h0

(

w(i+1,m) − Aw(i,m)
)

, Aw(i,m) =
1

2n

n
∑

j=1

(

w(i,m+ej) + w(i,m−ej)
)

,

(3)

δjw
(i,m) =

1

2hj

(

w(i,m+ej) − w(i,m−ej)
)

, 1 ≤ j ≤ n. (4)

For a function z = (z1, . . . , zk) : E0.h ∪ Eh → Rk we write

δ0z
(i,m) =

(

δ0z
(i,m)
1 , . . . , δ0z

(i,m)
k

)

.

Put Ωh = E ′

h × F(E0.h ∪ Eh, R
k) and assume that

%h : Ωh → Mk×n, %h = [ %h.ij ]
i=1,...,k, j=1,...,n

,

fh : Ωh → Rk, fh = (fh.1, . . . , fh.k), ϕh : E0.h → Rk, ϕh = (ϕh.1, . . . , ϕh.k)

are given functions. Let the operator Fh = (Fh.1, . . . , Fh.k) be defined by

Fh.ν[ z ](i,m) =
m
∑

j=1

%h.νj( t(i), x(m), z ) δjz
(i,m)
ν + fh.ν( t(i), x(m), z ), 1 ≤ ν ≤ k. (5)

We will approximate classical solutions of problem (1), (2) by means of solutions of
the difference problem

δ0z
(i,m) = Fh[ z ](i,m), (6)

z(i,m) = ϕ
(i,m)
h on E0.h. (7)

We assume that the steps of the mesh satisfy the condition h′ ≤ Mh0. Now we
formulate the Volterra condition for the operator Fh. Put

Ei.h = { (t(j), x(m)) ∈ E0.h ∪ Eh : j ≤ i }

where 0 ≤ i ≤ N0. The function %h is said to satisfy the Volterra condition if for
each (t(i), x(m)) ∈ E ′

h and for z, z̄ ∈ F(E0.h ∪ Eh, R
k) such that z = z̄ on Ei.h we

have
%h(t(i), x(m), z) = %h(t(i), x(m), z̄).

In the same way we define the Volterra condition for fh.

If %h and fh satisfy the Volterra condition then the relation h′ ≤ Mh0 implies
that there exists exactly one solution uh = (uh.1, . . . , uh.k) : E0.h ∪ Eh → Rk of
problem (6), (7). Indeed, suppose that there is a solution of the above problem on
Ei.h, 0 ≤ i < N0, and (t(i+1), x(m)) ∈ Eh. Then condition h′ ≤ Mh0 implies that

(t(i), x(m+ej )), (t(i), x(m−ej)) ∈ E0.h ∪ Eh for 1 ≤ j ≤ n.

It follows from (3)-(7) that u
(i+1,m)
h can be calculated and consequently uh is defined

on Ei+1.h. Then by induction the solution exists and it is unique on E0.h ∪ Eh.

The motivation for the definition of the set E ′

h is the following. Approximate
solutions of problem (1), (2) are functions defined on E0.h ∪ Eh. We write equation
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(6) at each point (t(i), x(m)) of the set E ′

h and we calculate all the values of uh on
E0.h ∪ Eh.

Suppose that v : E0∪E → Rk is a solution of the functional differential problem
(1), (2). Let vh = v |E0.h∪Eh

. For each h ∈ ∆ there exists α(h) such that

|| u
(i,m)
h − v

(i,m)
h || ≤ α(h) on Eh. (8)

The above inequality gives the error estimate for the numerical method (6), (7).
Suppose that there exists a function α0 : ∆ → R+, such that

||ϕ(i,m) − ϕ
(i,m)
h || ≤ α0(h) on E0.h and lim

h→0
α0(h) = 0.

We say that method (6), (7) is convergent if there is α : ∆ → R+ such that condition
(8) holds and limh→0 α(h) = 0.

For a function z : E0.h ∪ Eh → Rk we write

‖ z ‖i.h = max { ‖z(j,m)‖ : (t(j), x(m)) ∈ Ei.h }

where 0 ≤ i ≤ N0. Let I0 = [−r0, 0], I = [0, a] and

I0.h = { t(i) : −Ñ0 ≤ i ≤ 0 }, Ih = { t(i) : 0 ≤ i ≤ N0 }, I ′h = Ih \ { t(N0) }.

For a function ω : I0.h ∪ Ih → R we write ω(i) = ω(t(i)), −Ñ0 ≤ i ≤ N0, and

‖ω‖i.h = max {|ω(j)| : −Ñ0 ≤ j ≤ i }.

In the sequel we will need the following operator

Vh : F(E0.h ∪ Eh, R
k) → F(I0.h ∪ Ih, R+).

If z : E0.h ∪ Eh → Rk, then Vh[z] is given by

Vh[z](t(i)) = max { ‖z(i,m)‖ : (t(i), x(m)) ∈ E0.h ∪ Eh },

where −Ñ0 ≤ i ≤ N0.

3 Functional difference equations

Now we formulate general conditions for the convergence of method (6), (7). Our
result will be proved by means of consistency and stability arguments.

Assumption H [σh]. Suppose that the function σh : I ′h×F(I.h ∪ Ih, R+) → R+

satisfies the conditions:
1) σh is nondecreasing with respect to the functional variable and fulfils the

Volterra condition,
2) σh(t, θh) = 0 for t ∈ I ′h where θ

(i)
h = 0 for −Ñ0 ≤ i ≤ N0 and the difference

problem
η(i+1) = η(i) + h0 σh( t(i), η ) for 0 ≤ i ≤ N0 − 1, (9)

η(i) = 0 for − Ñ0 ≤ i ≤ 0, (10)
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is stable in the following sense: if ηh : I0.h ∪ Ih → R+ is a solution of the problem

η(i+1) = η(i) + h0 c σh( t(i), η ) + h0γ(h) for 0 ≤ i ≤ N0 − 1, (11)

η(i) = α0(h) for − Ñ0 ≤ i ≤ 0, (12)

where c ≥ 1 and

α0, γ : ∆ → R+, lim
h→0

α0(h) = 0, lim
h→0

γ(h) = 0,

then there exists a function β : ∆ → R+ such that

η
(i)
h ≤ β(h) for 0 ≤ i ≤ N0 and lim

h→0
β(h) = 0.

Assumption H [%h, fh]. Suppose that the functions %h and fh satisfy the
Volterra condition and there is a function σh : I ′h×F(I0.h ∪ Ih, R+) → R+ satisfying
Assumption H [σg] and such that

‖%h(t, x, z) − %h(t, x, z̄)‖ ≤ σh( t, Vh[z − z̄] ),

‖fh(t, x, z) − fh(t, x, z̄)‖ ≤ σh( t, Vh[z − z̄] ),

on Ωh.

Remark 3.1. The functions %h and fh are generated by % and f and corresponding
interpolating operators. Adequate examples are given in Section 4.

Now we formulate a theorem on the convergence of method (6), (7).

Theorem 3.2. Suppose that Assumption H [%h, fh] is satisfied and
1) h ∈ ∆ and

1

n
−

h0

hj

|%h.νj(t, x, z) | ≥ 0 on Ωh for 1 ≤ ν ≤ k, 1 ≤ j ≤ n, (13)

2) h′ ≤ Mh0 and uh : E0.h ∪Eh → Rk is the solution of the difference functional
problem (6), (7) and there exists a function α0 : ∆ → R+ such that

‖ϕ(i,m) − ϕ
(i,m)
h ‖ ≤ α0(h) on E0.h and lim

h→0
α0(h) = 0, (14)

3) the function v ∈ C(E0 ∪ E, Rk) is a solution of problem (1), (2) and the
function v |E is of class C2,

4) there exists a function β̃ : ∆ → R+ such that

‖%h(t, x, vh)− %(t, x, v)‖ ≤ β̃(h),

‖fh(t, x, vh) − f(t, x, v)‖ ≤ β̃(h), (t, x) ∈ E ′

h,

and limh→0 β̃(h) = 0 where vh = (vh.1, . . . , vh.k) is the restriction of v to the set
E0.h ∪ Eh.

Under these assumptions there exists a function α : ∆ → R+ such that

‖v
(i,m)
h − u

(i,m)
h ‖ ≤ α(h) on Eh and lim

h→0
α(h) = 0.
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Proof. Let

Γh = (Γh.1, . . . , Γh.k) : E ′

h → Rk, Λh = (Λh.1, . . . , Λh.k) : E ′

h → Rk

be the functions defined by

Γ
(i,m)
h.ν = δ0v

(i,m)
h.ν − ∂tv

(i,m)
ν +

n
∑

j=1

%νj(t
(i), x(m), v)

[

∂xj
v(i,m)

ν − δjv
(i,m)
h.ν

]

, 1 ≤ ν ≤ k,

(15)
and

Λ
(i,m)
h.ν = fν(t(i), x(m), v)− fh.ν(t(i), x(m), uh) (16)

+
n
∑

j=1

[

%νj(t
(i), x(m), v)− %h.νj(t

(i), x(m), uh)
]

δjv
(i,m)
h.ν , 1 ≤ ν ≤ k.

Let zh = vh − uh, zh = (zh.1, . . . , zh.k) and

Pi.m =
(

t(i), x(m), uh

)

. (17)

The function zh satisfies the recursive equations

z
(i+1,m)
h.ν = h0

[

Γ
(i,m)
h.ν + Λ

(i,m)
h.ν

]

+ Az
i,m)
h.ν + h0

n
∑

j=1

%h.νj( Pi.m ) δjz
(i,m)
h.ν , 1 ≤ ν ≤ k,

where (t(i), x(m)) ∈ E ′

h. It follows from (3), (4) that

z
(i+1,m)
h.ν = h0

[

Γ
(i,m)
h,ν + Λ

(i,m)
h.ν

]

+
1

2

n
∑

j=1

z
(i,m+ej )
h.ν

[

1

n
+

h0

hj

%h.νj( Pi.m )

]

+
1

2

n
∑

j=1

z
(i,m−ej )
h.ν

[

1

n
−

h0

hj

%h.νj( Pi.m )

]

,

where 1 ≤ ν ≤ k. Let ωh be a function defined by ωh = Vh[zh]. It follows from (13)
that

‖z
(i+1,m)
h ‖ ≤ ω

(i)
h + h0

[

‖Γ
(i,m)
h ‖+ ‖Λ

(i,m)
h ‖

]

for (t(i), x(m)) ∈ E ′

h. (18)

It follows from assumption 3) that there exists c0 ∈ R+ such that

‖∂xj
v(t, x)‖ ≤ c0, (t, x) ∈ E, 1 ≤ j ≤ n. (19)

Then ‖δjv
(i,m)
h ‖ ≤ c0 on E ′

h for 1 ≤ j ≤ n. It follows from Assumption H [%h, fh] and
conditon 4) that

‖Λ
(i,m)
h ‖ ≤ ‖f(t(i), x(m), v)− fh(t(i), x(m), vh)‖+ ‖fh(t(i), x(m), vh) − fh(t(i), x(m), uh)‖

+c0‖%(t(i), x(m), v)− %h(t(i), x(m), vh)‖+ c0‖%h(t(i), x(m), vh)− %h(t(i), x(m), uh)‖

≤ (1 + c0) σh( t(i), ωh ) + (1 + c0)β̃(h).

We conclude from assumption 3) that there is γ̃ : ∆ → R+ such that

‖Γ
(i,m)
h ‖ ≤ γ̃(h) on E ′

h and lim
h→0

γ̃(h) = 0.
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The above estimates and (18) imply

ω
(i+1)
h ≤ ω

(i)
h + h0(1 + c0) σh( t(i), ωh ) + h0γ(h), 0 ≤ i ≤ N0 − 1, (20)

where γ(h) = (1 + c0)β̃(h) + γ̃(h) and

ω
(i)
h ≤ α0(h) for − Ñ0 ≤ i ≤ 0. (21)

Let ηh : I0.h ∪ Ih → R+ be a solution of the Cauchy problem

η(i+1) = η(i) + h0(1 + c0) σh( t(i), η ) + h0γ(h), 0 ≤ i ≤ N0 − 1, (22)

η(i) = α0(h) − Ñ0 ≤ i ≤ 0. (23)

Using the Volterra condition and the monotonicity property of σh and (20)-(23) we

get by induction that ω
(i)
h ≤ η

(i)
h for 0 ≤ i ≤ N0. Then we obtain the assertion of

Theorem 3.2 from the stability of problem (9), (10).

Remark 3.3. Note that condition (13) for method (6), (7) and inequality h′ ≤ Mh0

imply
1

n
M ≥ ( |%h.ν1(t, x, z)| , . . . , |%h.νn(t, x, z)| ) on Ω

where 1 ≤ ν ≤ k.

Now we consider the difference functional problem (6), (7), where Fh = (Fh.1, . . . ,

Fh.k) is given by (5) and the operators δ0, δ = (δ1, . . . , δn) are calculated in the
following way:

δ0z
(i,m)
ν =

1

h0

(

z(i+1,m)
ν − z(i,m)

ν

)

, 1 ≤ ν ≤ k, (24)

δjz
(i,m)
ν =

1

hj

(

z(i,m+ej)
ν − z(i,m)

ν

)

if %h.νj(t
(i), x(m), z) ≥ 0, (25)

δjz
(i,m)
ν =

1

hj

(

z(i,m)
ν − z(i,m−ej)

ν

)

if %h.νj(t
(i), x(m), z) < 0 (26)

where 1 ≤ j ≤ n, 1 ≤ ν ≤ k. It is easily seen that if %h and fh satisfy the Volterra
condition and h′ ≤ Mh0 then there exists exactly one solution uh = (uh.1, . . . , uh.k) :
Eh.k ∪ Eh → Rk of problem (6), (7) with δ0 and δ given by (24) - (26).

Theorem 3.4. Suppose that Assumption H [%h, fh] is satisfied and
1) h ∈ ∆ and

1− h0

n
∑

j=1

1

hj

|%h.νj(t, x, z)| ≥ 0 on Ωh for 1 ≤ ν ≤ k, (27)

2) h′ ≤ Mh0 and uh : E0.h ∪Eh → Rk is the solution of the difference functional
problem (6), (7) with the difference operators given by (24)-(26) and there exists a
function α0 : ∆ → R+ such that condition (14) holds,

3) the function v ∈ C(E0 ∪ E, Rk) is a solution of problem (1), (2) and the
function v |E is of class C1,

4) assumption 4) of Theorem 3.2 is satisfied.
Under these assumptions there exists a function α : ∆ → R+ such that

||v
(i,m)
h − u

(i,m)
h || ≤ α(h) on Eh and lim

h→0
α(h) = 0.
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Proof. Let Γh : E ′

h → Rk and Λh : E ′

h → Rk be the functions defined by (15)
and (16) with δ0 and δ given by (24) - (26). Write zh = vh − uh and

J
(i,m)
ν.+ = {j : 1 ≤ j ≤ n and %h.νj( Pi.m ) ≥ 0},

J
(i,m)
ν.− = {1, . . . , n} \ J

(i,m)
ν.+ .

Then we have
z

(i+1,m)
h.ν = h0

[

Γ
(i,m)
h.ν + Λ

(i,m)
h.ν

]

(28)

+z
(i,m)
h.ν





1− h0

∑

j∈J
(i,m)
ν.+

1

hj

%h.νj( Pi.m ) + h0

∑

j∈J
(i,m)
ν.−

1

hj

%h.νj( Pi.m )







+h0

∑

j∈I
(i,m)
ν.+

1

hj

%h.νj( Pi.m ) z
(i,m+ej)
h.ν − h0

∑

j∈J
(i,m)
ν.−

1

hj

%h.νj( Pi.m ) z
(i,m−ej)
hν ,

where (t(i), x(m)) ∈ E ′

h and Pi.m is given by (17). Let ωh be a function defined by
ωh = Vh[zh]. It follows from (27), (28) that for (t(i)x(m)) ∈ E ′

h we have

‖ z
(i+1,m)
h ‖ ≤ ω

(i)
h + h0

[

‖Γ
(i,m)
h ‖+ ‖Λ

(i,m)
h ‖

]

(29)

There exists c0 ∈ R+ such that condition (19) is satisfied. Then ||δjv
(i,m)
h || ≤ c0 on

Eh for 1 ≤ j ≤ n. It follows from Assumption H [%h, fh] and (16) that

‖Λ
(i,m)
h ‖ ≤ (1 + c0) σh(t(i), ωh) + (1 + c0)β̃(h).

We conclude that there is γ̃ : ∆ → R+ such that

‖Γ
(i,m)
h ‖ ≤ γ̃(h) on E ′

h and lim
h→0

γ̃(h) = 0.

The above estimates and (29) imply

ω
(i+1)
h ≤ ω

(i)
h + h0(1 + c0)σh(t(i), ωh) + h0γ(h), 0 ≤ i ≤ N0 − 1,

where γ(h) = (1 + c0)β̃(h) + γ̃(h) and

ω
(i)
h ≤ α0(h) for − Ñ ≤ i ≤ 0.

Let ηh : I0.h ∪ Ih → R+ be the solution of the Cauchy problem (22), (23). Using the
Volterra condition and the monotonicity property of σh we get by induction that
ω

(i)
h ≤ η

(i)
h for 0 ≤ i ≤ N0, and we obtain the assertion of Theorem 3.4 from the

stability of problem (9), (10).

Remark 3.5. Suppose that Mj > 0 for 1 ≤ j ≤ n. Note that condition (27) for
method (6), (7) with the difference operators given by (24)-(26) and the assumption
h′ ≤ Mh0 imply

1 ≥
n
∑

j=1

1

Mj

| %h.νj(t, x, z) | on Ω

where 1 ≤ ν ≤ k. If M1 = M2 = . . . = Mn = M̃ then M̃ ≥ ‖ %h(t, x, z) on Ω.

Remark 3.6. The stability of difference problems generated by hyperbolic systems of
conservations laws is strictly connected with the Courant - Friedrichs - Levy condi-
tions, see [4], Chapter III. Inequalities (13), (27) can be considered as the Courant-
Friedrichs-Levy conditions for functional differential systems.
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4 Difference schemes for quasilinear systems

We give examples of functions %h and fh corresponding to % and f. We also give
error estimates for the difference methods. We adopt additional assumptions for
the mesh E0.h ∪ Eh. We assume that the steps of the mesh satisfy the condition:
h′ = Mh0. Then we can write the definitions of the sets E0.h and Eh in the following
way:

E0.h = {(t(i), x(m)) : −Ñ0 ≤ i ≤ 0, −N ≤ m ≤ N},

Eh = {(t(i), x(m)) : 0 ≤ i ≤ N0, |mi| ≤ Ni − i for i = 1, . . . , n}.

Put B = [−b, b ] ⊂ Rn and Bh′ = { x(m) : −N ≤ m ≤ N }. We define the operator
Th′ : F([−r0, a]×Bh′ , R) → F([−r0, a]×B, R) as follows. Write

S+ = { s = (s1, . . . , sn) : si ∈ {0, 1} for 1 ≤ i ≤ n }.

Let w ∈ F([−r0, a]×Bh′ , R) and t ∈ [−r0, a], x ∈ B. There exists m ∈ Zn such that
x(m), x(m+1) ∈ Bh′ where m + 1 = (m1 + 1, . . . , mn + 1) and x(m) ≤ x ≤ x(m+1). We
define

Th′[w](t, x) =
∑

s∈S+

w(t, x(m+s))

(

x− x(m)

h′

)s (

1 −
x− x(m)

h′

)1−s

where
(

x− x(m)

h′

)s

=
n
∏

i=1





xi − x
(mi)
i

hi





si

(

1 −
x− x(m)

h′

)1−s

=
n
∏

i=1



1 −
xi − x

(mi)
i

hi





1−si

and we take 00 = 1 in the above formulas. Then the function Th′ [w](t, · ) is contin-
uous on B.

We define the operator Th : F(E0.h ∪ Eh, R) → F(E0 ∪ E, R) in the following
way. Suppose that w : E0.h ∪ Eh → R. For (t, x) ∈ E0 ∪ E and −r0 ≤ t ≤ a three
cases will be distinguished.

I. Suppose that (t, x) ∈ E0. Then there is (i, m) ∈Z1+n such that

(t(i), x(m)), (t(i+1), x(m+1)) ∈ E0.h and t(i) ≤ t ≤ t(i+1), x(m) ≤ x ≤ x(m+1).

We define

Th[w](t, x) =

(

1−
t− t(i)

h0

)

Th′ [w](t(i), x) +
t− t(i)

h0

Th′[w](t(i+1), x). (30)

II. Suppose that (t, x) ∈ E and there is (i, m) ∈Z1+n such that

[ t(i), t(i+1) ]× [ x(m), x(m+1) ] ⊂ E

and t(i) ≤ t < t(i+1), x(m) ≤ x ≤ x(m+1). Then we define Th[w](t, x) by formula (30).
III. Suppose that (t, x) ∈ E and
(a) t(i) ≤ t < t(i+1) for some i, 0 ≤ i ≤ N0−1, x(m) ≤ x ≤ x(m+1) for some m ∈ZN ,
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(b) (t(i), x(m)), (t(i), x(m+1)) ∈ E and

(t(i), x(m)) ∈ ∂0E or (t(i), x(m+1)) ∈ ∂0E

where ∂0E = ∂E ∩ ( [0, a]× Rn ) and ∂E is the boundary of E. Define the sets of
integers I+[i, m], I−[i, m], I0[i, m] (possibly empty) as follows :

I+[i, m] = { j : 1 ≤ j ≤ n and x
(mj+1)
j = bj −Mjt

(i), }

I−[i, m] = { j : 1 ≤ j ≤ n and x
(mj )
j = −bj + Mjt

(i) },

I0[i, m] = {1, . . . , n} \ ( I+[i, m] ∪ I−[i, m] ) .

We define Ux = (x̄1, . . . , x̄n) and Wx = (x̃1, . . . , x̃n) as follows:

x̄j = x
(mj )
j +

h0

t(i) + h0 − t

(

xj − x
(mj )
j

)

and x̃j = x
(mj)
j for j ∈ I+[i, m],

x̄j = x
(mj+1)
j +

h0

t(i) + h0 − t

(

xj − x
(mj+1)
j

)

and x̃j = x
(mj+1)
j for j ∈ I−[i, m],

x̄j = x̃j = xj for j ∈ I0[i, m].

Then we write

Th[w](t, x) =

(

1−
t− t(i)

h0

)

Th′[w](t(i), Ux) +
t− t(i)

h0

Th′[w](t(i+1), Wx).

If (t, x) ∈ E0 ∪ E and N0h0 < t ≤ a then we put Th[w](t, x) = Th[w](Nh0, x). Then
we have defined Th[w] : E0 ∪ E → R and Th[w] is a continuous function on E0 ∪ E.

The above interpolating operator was introduced and widely studied in [6].
It z = (z1, . . . , zk) : E0.h ∪ Eh → Rk then we put Th[z] = (Th[z1], . . . , Th[zk]). We

will denote by ‖ · ‖t the maximum norm in the space C(Et, R
k), 0 ≤ t ≤ a.

Lemma 4.1. Suppose that v : E0 ∪ E → Rk is of class C2 and denote by vh the
restriction of v to the set E0.h ∪ Eh. Let C̃ be such a constant that

‖∂ttv(t, x)‖ ≤ C̃, ‖∂txj
v(t, x)‖ ≤ C̃, ‖∂xixj

v(t, x)‖ ≤ C̃, 1 ≤ i, j ≤ n,

on E0 ∪ E, and

C0 =
1

2
C̃



 1 + 2
n
∑

j=1

Mi +
n
∑

i,j=1

MiMj





Then ‖Th[vh]− v‖t ≤ C0h
2
0 for t ∈ [0, N0h0].

The proof o the above lemma is silmilar to the proof of Theorem 3.1 in [6]. We
omit details.

Now we consider functional differential problem (1), (2) and the difference func-
tional system

δ0z
(i+1,m)
ν =

n
∑

j=1

%νj( t(i), x(m), Th[z] ) δjz
(i,m)
ν + fν( t(i), x(m), Th[z] ), 1 ≤ ν ≤ k, (31)
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with the initial condition

z(i,m) = ϕ
(i,m)
h on E0.h, (32)

where ϕh : E0.h → Rk is a given function and the operators δ0, δ = (δ1, . . . , δn) are
defined by (3), (4).

We will estimate functions of several variables by means of functions of one
variable. Therefore we will need the following operator V : C(E0 ∪ E, Rk) →
C([−r0, a], R+). If z ∈ C(E0 ∪ E, Rk) then

V [z](t) = max { ‖z(t, x)‖ : x ∈ St } , −r0 ≤ t ≤ a.

Assumption H [σ, f ]. Suppose that the functions % : Ω → Mk×n and f : Ω → Rk

are continuous, they satisfy the Volterra condition and
1) there exists a continuous function σ : R+ × C([−r0, a], R+) → R+ such that
(i) σ is nondecreasing with respect to both variables,
(ii) σ satisfies the Volterra condition and σ(t, θ) = 0 for t ∈ R+ where θ(t) = 0

for t ∈ [−r0, a],
(iii) for each c ≥ 1 the maximal solution of the problem

ω′(t) = c σ(t, ω), ω(t) = 0 for t ∈ [−r0, 0]

is ω̄(t) = 0 for t ∈ R+,

2) for (t, x, z), (t, x, z̄) ∈ Ω we have the estimates

‖ %(t, x, z) − %(t, x, z̄) ‖ ≤ σ( t, V [z − z̄] ),

and
‖ f(t, x, z)− f(t, x, z̄) ‖ ≤ σ( t, V [z − z̄] ).

Theorem 4.2. Suppose that Assumption H [%, f ] is satisfied and
1) h ∈ ∆ and

1

n
−

h0

hj

| %νj(t, x, z) | ≥ 0 on Ω

for 1 ≤ ν ≤ k,1 ≤ j ≤ n, and there is a function α0 : ∆ → R+ such that condition
(14) holds,

2) h′ = Mh0 and the function uh : E0.h ∪Eh → Rk is a solution of problem (31),
(32) with δ0 and δ given by (3), (4),

3) v : E0 ∪ E → Rk is a solution of (1), (2) and v is of class C2 and vh =
v |E0.h∪Eh

.

Then there is ε > 0 and a function α : ∆ → R+ such that for ‖h‖ < ε0 we have

‖u
(i,m)
h − v

(i,m)
h ‖ ≤ α(h) on Eh and limh→0α(h) = 0.

Proof. Let
Lh0 : F(I0.h ∪ Ih) → C([−r0, a], R)

be the operator given by

(Lh0η)(t) = η(i+1) t− t(i)

h0

+ η(i)

(

1−
t− t(i)

h0

)

for t(i) ≤ t ≤ t(i+1)
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and
(Lh0η)(t) = (Lh0η)(N0h0) for n0h0 < t ≤ a,

where η ∈ F(I0.h ∪ Ih, R). We prove that the functions

%h(t, x, z) = %(t, x, Th[z]), fh(t, x, z) = f(t, x, Th[z]) where (t, x, z) ∈ Ωh

and
σh(t, η) = σ(t, Lh0η), (t, η) ∈ I ′h × F(I0.h ∪ Ih, R+),

satisfy all the assumptions of Theorem 3.2.
We first prove that problem (9), (10) is stable in the sense of Assumption H [σh].

Let ηh : I0.h ∪ Ih → R+ be the solution of (11), (12), where

α0, γ : ∆ → R+ and lim
h→0

α0(h) = 0, lim
h→0

γ(h) = 0.

Denote by ωh : [−r0, a] → R+ the maximal solution of the problem

ω′(t) = c σ(t, ω) + γ(h), ω(t) = α0(h) for t ∈ I0.

There exists ε > 0 such that the solution ωh is defined on [−r0, a] for ‖h‖ < ε0 and

lim
h→0

ωh(t) = 0 uniformly on [−r0, a].

The function ωh is convex on [0, a], therefore we have

ω
(i+1)
h ≥ ω

(i)
h + h0 c σ(t, ωh) + h0γ(h), 0 ≤ i ≤ N0 − 1.

Since ηh satisfies (11), (12), then we have η
(i)
h ≤ ω

(i)
h for 0 ≤ i ≤ N0, which proves

the stability of problem (9), (10). For (t, x, z) ∈ Ωh, z̄ ∈ F(E0.h ∪ Eh, R
k) we have

‖%h(t, x, z) − %h(t, x, z̄)‖ = ‖%(t, x, Th[z]) − %(t, x, Th[z̄])‖

≤ σ( t, V [ Th[z − z̄] ]) ) = σh( t, Vh[z − z̄] )

and
‖fh(t, x, z) − fh(t, x, z̄)‖ ≤ σh( t, Vh[z − z̄] ).

It follows from Lemma 4.1 that there is β̃ : ∆ → R+ such that

‖%(t, x, Th[vh])− %(t, x, v)‖ ≤ β̃(h),

‖f(t, x, Th[vh])− f(t, x, v)‖ ≤ β̃(h) on E ′

h

and limh→0 β̃(h) = 0. Then the assertion of Theorem 4.2 follows from Theorem 3.2.
Now we give an error estimate for method (31), (32) with the difference operators

δ0 and δ = (δ1, . . . , δn) defined by (3), (4). According to Theorem 3.2 we have the
estimate

‖uh − vh‖i.h ≤ ω̃
(i)
h , 0 ≤ i ≤ N0,

where ω̃h : I0.h ∪ Ih → R+ satisfies the difference functional inequality

ω̃
(i+1)
h ≥ ω̃

(i)
k + h0(1 + c0) σh( t(i), ω̃h ) + h0γ(h), 0 ≤ i ≤ N0 − 1,
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where γ(h) = (1 + c0)β̃(h) + γ̃(h) and

ω̃
(i)
h ≥ α0(h) for − Ñ0 ≤ i ≤ 0.

The constant c0 and the functions α0, β̃, γ̃ : ∆ → R+ are defined by the relations

‖ %(t, x, Th[vh])− %(t, x, v) ‖ ≤ β̃(h), ‖ f(t, x, Th[vh])− f(t, x, v) ‖ ≤ β̃(h)

on E ′

h and
‖ϕh(t, x)− ϕ(t, x)‖ ≤ α0(h) on E0.h,

‖∂xj
v(t, x)‖ ≤ c0 on E, 1 ≤ j ≤ n,

and
‖Γ

(i,m)
h ‖ ≤ γ̃(h) on E ′

h,

where Γh = (Γh.1, . . . , Γh.k), and

Γ
(i,m)
h.ν = δ0v

(i,m)
h.ν − ∂tv

(i,m)
ν +

n
∑

j=1

%νj(t
(i), x(m), v)

[

∂xj
v(i,m)

ν − δjv
(i,m)
h.ν

]

, 1 ≤ ν ≤ k.

Assumption HL [%, f ]. Suppose that the functions % : Ω → Mk×n and f : Ω →
Rk are continuous and there is L ∈ R+ such that

‖ %(t, x, z) − %(t, x, z̄) ‖ ≤ L ‖z − z̄‖t,

‖f(t, x, z)− f(t, x, z̄)‖ ≤ L ‖z − z̄‖t

on Ω.

Remark 4.3. It follows from Assumption HL [%, f ] that % and f satisfy the Volterra
condition on Ω.

Theorem 4.4. Suppose that
1) Assumption HL[%, f ] is satisfied and condition 1) - 3) of Theorem 4.2 hold,
2) the function v |E is of class C3 and c0, C̃, C̄, d ∈ R+ are such constants that

‖∂xj
v(t, x)‖ ≤ c0 on E, 1 ≤ j ≤ n, (33)

‖∂ttv(t, x)‖, ‖∂txj
v(t, x)‖, ‖∂xixj

v(t, x)‖ ≤ C̃ on E0 ∪ E, (34)

where 1 ≤ i, j ≤ n and

‖∂xjxjxj
v(t, x)‖ ≤ C̄ on E, 1 ≤ j ≤ n, (35)

| %νj(t, x, v) | ≤ d on E, 1 ≤ ν ≤ k, 1 ≤ j ≤ n. (36)

Then
‖uh − vh‖i.h ≤ η̃

(i)
h for 0 ≤ i ≤ N0, (37)

where η̃
(0)
h = α0(h), and

η̃
(i)
h = α0(h)(1 + L̃h0)i + h0γ

?(h0)
i−1
∑

j=0

(

1 + L̃h0

)j
, 1 ≤ i ≤ N0,
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and

γ?(h0) = (1 + c0)B
?h2

0 + Ah0 + Bh2
0,

A =
1

2
C̃



 1 +
1

n

n
∑

j=1

M2
j



 , B =
1

6
dC̄

n
∑

j=1

M2
j ,

and

L̃ = L(1 + c0), B? =
1

2
C̃L



 1 + 2
n
∑

j=1

Mj +
n
∑

i,j=1

MiMj



 . (38)

Proof. It follows that

‖∂tv
(i,m) − δ0v

(i,m)
h ‖ ≤

1

2
C̃h0



 1 +
n
∑

j=1

M2
j





and

‖∂xj
v(i,m) − δjv

(i,m)
h ‖ ≤

1

6
C̄M2

j h2
0, 1 ≤ j ≤ n,

where (t(i), x(m)) ∈ E ′

h. Then we have

‖Γ
(i,m)
h ‖ ≤ Ah0 + Bh2

0 on E ′

h.

According to Lemma 4.1 and Assumption HL [%, f ], the terms

‖%(t, x, Th[vh])− %(t, x, v)‖, ‖f(t, x, Th[vh])− f(t, x, v)‖, (t, x) ∈ E,

are bounded from above by B?h2
0. By Theorem 3.2 we have the estimate (37) with

η̃h : Ih → R+ satisfying the equation

η(i+1) =
(

1 + L̃h0

)

η(i) + h0γ
?(h0), 0 ≤ i ≤ N0 − 1,

and the intial condition η(0) = α0(h). This completes the proof.
Now we consider the difference functional system (31) with the initial condition

(32), where δ0 is defined by (24) and

δjz
(i,m)
ν =

1

hj

(

z(i,m+ej)
ν − z(i,m)

ν

)

if %(t(i), x(m), Th[z]) ≥ 0, (39)

δjz
(i,m)
ν =

1

hj

(

z(i,m)
ν − z(i,m−ej)

ν

)

if %(t(i), x(m), Th[z]) < 0 (40)

where 1 ≤ j ≤ n, 1 ≤ ν ≤ k.

We will consider solutions of (1), (2) which are of class C1 on E0 ∪E. Therefore
we will need the following Lemma.

Lemma 4.5. ([8], Chapter 3) Suppose that the function v : E0∪E → Rk is of class
C1. Let vh be the restriction of v the the set E0.h ∪Eh. Then there is C? ∈ R+ such
that

‖Th[vh] − v‖t ≤ C? ‖h‖, 0 ≤ t ≤ a.
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Theorem 4.6. Suppose that Assumption H [%, f ] is satisfied and
1) h ∈ ∆ and

1− h0

n
∑

j=1

1

hj

| %νj(t, x, z) | ≥ 0 on Ω,

2) h′ = Mh0 and the function uh : E0.h ∪Eh → Rk is a solution of problem (31),
(32) with δ0 and δ given by (24) and (39), (40) respectively,

3) there is a function α0 : ∆ → R+ such that condition (14) holds,
4) v : E0 ∪E → Rk is a solution of (1),(2), v is of class C1 and vh = v |E0.h∪Eh

.

Then there is ε0 > 0 and a function α : ∆ → R+ such that for ‖h‖ < ε0 we have

‖u
(i,m)
h − v

(i,m)
h ‖ ≤ α(h) on Eh and lim

h→0
α(h) = 0.

The proof of the above Theorem is similar to the proof of Theorem 4.2. Details
are omited.

Now we formulate a result on the error estimate.

Theorem 4.7. Suppose that Assumption HL[%, f ] is satisfied and
1) conditions 1) - 3) of Theorem 4.6 hold,
2) v : E0 ∪ E → Rk is a solution of (1), (2) and v is of class C2 on E0 ∪ E,

3) c0, C̃, d ∈ R+ are constants satisfying (33), (34), (36) respectively.
Then

‖uh − vh‖i.h ≤ η̄
(i)
h , 0 ≤ i ≤ N0,

where η̄
(0)
h = α0(h) and

η̄
(i)
h = α0(h)

(

1 + L̃h0

)i
+ γ̄(h0)

i−1
∑

j=0

(

1 + L̃h0

)j
,

γ̄(h0) = (1 + c0)B
?h2

0 + Āh0, Ā =
1

2
C̃



 1 + d
n
∑

j=1

Mj



 ,

and the constants L̃, B? are given by (38).

The proof of the above theorem is similar to the proof of Theorem 4.4. We omit
details.

5 Numerical examples

Example 5.1 For n = 2 we put

E = { (t, x, y) : t ∈ [0, 1], −2 + t ≤ x ≤ 2− t, −2 + t ≤ y ≤ 2− t }.

Let us denote by z an unknown function of the variables (t, x, y) and consider the
differential integral equation

∂tz(t, x, y) = y

{

1 +
[∫ x

−x
z(t, s, y) ds− 2txy

]2
}

−1

∂xz(t, x, y) (41)
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+x

{

1 +
[∫ y

−y
z(t, x, r) dr − 2txy

]2
}

−1

∂yz(t, x, y)

+
∫

D(t,x,y)
z(t, s, r) drds−

1

2
(2− t)2z(t, x, y) + (x + y)(1− t)

with the initial condition

z(0, x, y) = 0 for (x, y) ∈ [−2, 2]× [−2, 2], (42)

where
∫

D(t,x,y)
z(t, s, r) drds =

∫ 1+0.5(x−t)

−1+0.5(x+t)

∫ 1+0.5(y−t)

−1+0.5(y+t)
z(t, s, r) dr ds.

Note that if (t, x, y) ∈ E, then

{ t } × [−1 + 0.5(x + t), 1 + 0.5(x− t)]× [−1 + 0.5(y + t), 1 + 0.5(y − t)] ∈ E.

The exact solution of this problem is known. It is v(t, x, y) = t(x + y), (t, x, y) ∈ E.

We apply Theorem 4.6 to (41), (42). Let h = (h0, h1, h2) stand for the steps of
the mesh on E. Let Th : F(Eh, R) → F(E, R) be the interpolating operator, defined
in Section 4 with n = 2. It follows that for a point (t(i), x(j), y(k)) ∈ Eh and for a
function z : Eh → R we have

Th[z](t(i), x, y) = z(i,j,k)

(

1−
x− x(j)

h1

) (

1−
y − y(k)

h2

)

+z(i,j,k+1)

(

1−
x− x(j)

h1

)

y − y(k)

h2

+ z(i,j+1,k) x− x(j)

h1

(

1−
y − y(k)

h2

)

+z(i,j+1,k+1) x− x(j)

h1

y − y(k)

h2

, x(j) ≤ x ≤ x(j+1), y(k) ≤ y ≤ y(k+1)

and consequently
∫ x

x(j)

∫ y

y(k)
Th[z](t(i), s, r) dr ds (43)

= z(i,j,k) x− x(j)

2

(

2−
x− x(j)

h1

)

y − y(k)

2

(

2−
y − y(k)

h2

)

+z(i,j,k+1) x− x(j)

2

(

2−
x− x(j)

h1

)

(

y − y(k)
)2

2h2

+z(i,j+1.k)

(

x− x(j)
)2

2h1

y − y(k)

2

(

2−
y − y(k)

h2

)

+z(i,j+1,k+1)

(

x− x(j)
)2

2h1

(

y − y(k)
)2

2h2
.

According to the above formula, we have

∫ x(j+1)

x(j)

∫ y(k+1)

y(k)
Th[z](t(i), s, r) dr ds (44)
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=
h1h2

4

(

z(i,j,k) + z(i,j,k+1) + z(i,j+1,k) + z(i,j+1,k+1)
)

and

∫ x(j+1)

x(j)

∫ y

y(k)
Th[z](t(i), s, r) dr ds =

h1

2

(

y − y(k)
)2

2h2

(

z(i,j,k+1) + z(i,j+1,k+1)
)

(45)

+
h1

2

y − y(k)

2

(

2−
y − y(k)

h2

)

(

z(i,j,k) + z(i,j+1,k)
)

and

∫ x

x(j)

∫ y(k+1)

y(k)
Th[z](t(i), s, r) dr ds =

(

x− x(j)
)2

2h1

(

z(i,j+1,k) + z(i,j+1,k+1)
)

(46)

+
h2

2

x− x(j)

2

(

2−
x− x(j)

h1

)

(

z(i,j,k) + z(i,j,k+1)
)

.

Having disposed of this preliminary step, we formulate the difference problem cor-
responding to (41), (42). Consider the difference equation

δ0z
(i,j,k) = y(k)

{

1 +

[

∫ x(j)

−x(j)
Th[z](t(i), s, y(k)) ds− 2t(i)x(j)y(k)

] }−1

δ1z
(i,j.k) (47)

+x(j)







1 +

[

∫ y(k)

−y(k)
Th[z](t(i)x(j), r) dr − 2t(i), x(j)y(k)

]2






−1

+
∫

D(t(i),x(j),y(k))
Th[z](t(i), s, r) dr ds−

1

2
(2− t(i))2 z(i,j,k) + (x(j) + y(k)) (1− t(i))

with the initial condition

z(0, x(j), y(k)) = 0 for (x(j), y(k)) ∈ [−2, 2]× [−2, 2], (48)

where

δ0z
(i,j,k) =

1

h0

[

z(i+1,j,k) − z(i,j,k)
]

,

δ1z
(i,j,k) =

1

h1

[

z(i,j+1,k) − z(i,j,k)
]

if y(k) ≥ 0,

δ1z
(i,j,k) =

1

h2

[

z(i,j,k) − z(i,j−1,k)
]

if y(k) < 0

and

δ2z
(i,j,k) =

1

h2

[

z(i,j,k+1) − z(i,j,k)
]

if x(j) ≥ 0,

δ2z
(i,j,k) =

1

h2

[

z(i,j,k) − z(i,j,k−1)
]

if x(j) < 0.

Note that results of the papers [6], [11], [16] cannot be applied to the above problem.
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We can now formulate formulas for calculating integrals in equation (47). Our
considerations start with the observation that

∫ x(j)

−x(j)
Th[z](t(i), s, y(k)) ds =

h1

2

[

z(i,−j,k) + z(i,j,k)
]

+ h1

j−1
∑

ν=−j+1

z(i,ν,k) (49)

and

∫ y(k)

−y(k)
Th[z](t(i), x(j), r) dr =

h2

2

[

z(i,j,−k) + z(i,j,k)
]

+ h2

k−1
∑

ξ=−k+1

z(i,j,ξ). (50)

The last integral in equation (47) has the following property: if (t(i), x(j), y(k)) is a
grid point, then

(

t(i),−1 + 0.5(x(j) + t(i)),−1 + 0.5(y(k) + t(i))
)

,

(

t(i), 1 + 0.5(x(j) − t(i)), 1 + 0.5(y(k) − t(i))
)

in general, are not grid points. Therefore we need the following construction. Write

θij = 1− 0.5(x(j) + t(i)), θ̃ij = 1 + 0.5(x(j) − t(i)),

and
ηik = 1− 0.5(y(k) + t(i)), η̃ik = 1 + 0.5(y(k) − t(i)).

Then

x(j) + θij = 1 + 0.5(x(j) − t(i)), x(j) − θ̃ij = −1 + 0.5(x(j) + t(i)),

and
y(k) + ηik = 1 + 0.5(y(k) − t(i)), y(k) − η̃ik = −1 + 0.5(y(k) + t(i)).

There exist κij, κ̃ij, µik, µ̃ik ∈ N and ε(i,j)
x , ε̃(i,j)

x ∈ [0, h1) , ε(i,k)
y , ε̃(i,k)

y ∈ [0, h2) such
that

θij = (κij + 1)h1 + ε(i,j)
x , θ̃ij = κ̃ijh1 + ε̃(i,j)

x

and
ηik = (µik + 1)h2 + ε(i,k)

y , η̃ik = µ̃ikh2 + ε̃(i,k)
y .

Write

A[i, j, k] = h1h2

κij−1
∑

ν=−κ̃ij+1

µik−1
∑

ξ=−µ̃ik+1

z(i,j+ν,k+ξ)

+
h1h2

2

µik−1
∑

ξ=−µ̃ik+1

[

z(i,j−κ̃ij ,ξ) + z(i,j+κij ,ξ)
]

+
h1h2

2

κij−1
∑

ν=−κ̃ij+1

[

z(i,ν,k−µ̃ik) + z(i,ν,k+µik)
]

+
h1h2

4

[

z(i,j−κ̃ij ,k+µik) + z(i,j+κij ,k+µik) + z(i,j−κ̃ij ,k−µ̃ik) + z(i,j+κij ,k−µ̃i,k)
]

.

For simplicity of formulation of next formulas we write

x[j.i] = 1 + 0.5(x(j) − t(i)), x̃[j.i] = −1 + 0.5(x(j) + t(i)),
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y[k.i] = 1 + 0.5(y(k) − t(i)), ỹ[k.i] = −1 + 0.5(y(k) + t(i)).

The integrals

B[i, ν, k] =
∫ x(ν+1)

x(ν)

[

∫ y[k.i]

y(k+µik+1)
Th[z](t(i), s, r) dr +

∫ y(k−µ̃ik)

ỹ[k.i]
Th[z](t(i), s, r) dr

]

ds

and

C[i, j, ξ] =
∫ y(ξ+1)

y(ξ)

[

∫ x
(j−κ̃ij )

x̃[j.i]
Th[z](t(i), s, r) ds +

∫ x[j.i]

x
(j+κij+1)

Th[z](t(i), s, r) ds

]

dr

where −κ̃ij ≤ ν ≤ κij, −µ̃ik ≤ ξ ≤ µik, can be calculated using (45) and (46). Write

E[i, j, k] =
∫ x[j.i]

x
(j+κij+1)

∫ y[k.i]

y(k+µik+1)
Th[z](t(i), s, r) dr ds+

∫ x[j.i]

x
(j+κij+1)

∫ y(k−µ̃ik)

ỹ[k.i]
Th[z](t(i), s, r) dr ds +

∫ x
(j−κ̃ij )

x̃[j.i]

∫ y(k−µ̃ik)

ỹ[k.i]
Th[z](t(i), s, r) dr ds

+
∫ x

(j−κ̃ij )

x̃[j.i]

∫ y[k.i]

y(k+µik+1)
Th[z](t(i), s, r) dr ds.

We calculate E[i, j, k] using (43).
Note that we have actually proved that

∫

D(t(i),x(j),y(k))
Th[z](t(i), s, r) dr ds = A[i, j, k] + E[i, j, k] (51)

+
κij
∑

ν=−κ̃ij

B[i, ν, k] +
µik
∑

ξ=−µ̃ik

C[i, j, ξ].

We approximate the solution of the problem (41), (42) by means of solutions of the
difference problem consisting of (47) - (51). Let uh : Eh → R be the solution of this
difference problem. Write

ε
(i)
h = max { |u

(i,j,k)
h − v

(i,j,k)
h | : (t(i), x(j), y(k)) ∈ Eh }, 0 ≤ i ≤ N0,

where vh is the restriction of v to the set Eh. We take h0 = h1 = h2 = 10−3. The
values of ε

(i)
h are listed in the table.

Table of errors

t
(i) :

ε
(i)
h

:

0.5

5.0650 10−3

0.6

5.2852 10−3

0.7

5.4654 10−3

0.8

5.6056 10−3

0.9

5.7057 10−3

1.0

5.7657 10−3

The results shown in the table are consistent with our mathematical analysis.

Example 5.2 For n = 2 we put

E = { (t, x, y) : t ∈ [0, 0.5], −1 + t ≤ x ≤ 1− t, −1 + t ≤ y ≤ 1− t }.

Let us denote by (u, v) an unknown function of the variables (t, x, y) and consider
the system of differential equations with a deviated argument
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∂tv(t, x, y) =

{

1−
1

1 + [u(α)− tv(γ) + f11(t, x, y)]2

}

∂xu(t, x, y)

−

{

1−
1

1 + [u(δ)− tv(β) + f12(t, x, y)]2

}

∂yu(t, x, y)

+u(t, x, y)− v(t, x, y)− (t− 1)(xy − x− y) + xy,

∂tv(t, x, y) =
x

1 + [u(β) + tv(α) + f21(t, x, y)]2
∂xv(t, x, y)

+
y

1 + [u(δ) + tv(γ) + f22(t, x, y)]2
∂yv(t, x, y)

+u(t, x, y)− v(t, x, y)− xy(1 + t),

with the initial condition

u(0, x, y) = x + y, v(0, x, y) = xy, (x, y) ∈ [−1, 1]× [−1, 1],

where

f11(t, x, y) = (t− 1) ( tx + 0.5(x + y)) , f12(t, x, y) = (t− 1)
(

0.5(x + y)− 1− t2
)

,

f21(t, x, y) = −0.5(x + y)(1 + t2)− 0.5txy + (t− 1) (1 + 0.5tx) ,

f22(t.x, y) = −0.5(x + y)(t2 + 1) + (1− t)(1 + 0.5tx)− 0.5txy,

and

α = ( t, 0.5(x− 1 + t), 0.5(y + 1− t) ) , β = ( t, 0.5(x + 1− t), 0.5(y + 1− t) ) ,

γ = (t, 0.5(x + 1− t), 0.5(y − 1 + t) ) , δ = ( t, 0.5(x− t + t), 0.5(y − 1 + t) ) .

Note that α, β, γ, δ ∈ E for (t, x, y) ∈ E. The exact solution of this problem is
known. It is

ũ(t, x, y) = txy + x + y, ṽ(t, x, y) = t(x + y) + xy, (t, x, y) ∈ E.

Suppose that h = (h0, h1, h2) stand for the steps of the mesh on E and Th :
F(Eh, R) → F(E, R) is the interpolating operator defined in Section 4 for n = 2.
For a function z : Eh → R we put

δ0z
(i,jk) =

1

h0

[

z(i+1,j,k) − Az(i,j,k))
]

,

where

Az(i.j.k) =
1

4

[

z(i,j+1,k) + z(i,j−1,k) + z(i,j,k+1) + z(i,j,k−1)
]

and

δ1z
(i,j,k) =

1

2h1

[

z(i,j+1,k) − z(i,j−1,k)
]

, δ2z
(i,j,k) =

1

2h2

[

z(i,j,k+1) − z(i,j,k−1)
]

.
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Consider the system of difference equations

δ0v
(i,j,k) =











1−
1

1 +
[

Th[u](αijk)− t(i) Th[v](γijk) + f
(i,j,k)
11

]2











δ1u
(i,j,k)

−











1−
1

1 +
[

Th[u](δijk)− t(i) Th[v](βijk) + f
(i,j,k)
12

]2











δ2u
(i,j,k)

+u(i,j,k) − v(i,j,k) − (t(i) − 1)(x(j)y(k) − x(j) − y(k)) + x(j)y(k),

δ0u
(i,j,k) =

x(j)

1 +
[

Th[u](βijk) + t(i) Th[v](αijk) + f
(i,j,k)
21

]2 δ1v
(i,j,k)

+
y(j)

1 +
[

Th[u](δijk) + t(i) Th[v](γijk) + f
(i,j,k)
22

]2 δ2v
(i,j,k)

+u(i,j,k) − v(i,j,k) − x(j)y(k)(1 + t(i))

with the initial condition

u(0, x(j), y(k)) = x(j) +y(k), v(0, x(j), y(k)) = x(j)y(k), (x(j), y(k)) ∈ [−1, 1]× [−1, 1],

where
f

(i,j,k)
νξ = fνξ(t

(i), x(j), y(k)), ν, ξ = 1, 2,

and
αijk =

(

t(i), 0.5(x(j) − 1 + t(i)), 0.5(y(k) + 1− t(i))
)

,

βijk =
(

t(i), 0.5(x(j) + 1− t(i)), 0.5(y(k) + 1− t(i))
)

,

γijk =
(

t(i), 0.5(x(j) + 1− t(i)), 0.5(y(k) − 1 + t(i))
)

,

δijk =
(

t(i), 0.5(x(j) − 1 + t(i)), 0.5(y(k) − 1 + t(i))
)

.

Note that if (t(i), x(j), y(k)) is a grid point then αijk, βijk, γijk, δijk in general, are not
grid points. Denote by (uh, vh) : Eh → R2 the solution of this difference problem.
Write

ε
(i)
1.h = max { |u

(i,j,k)
h − ũ

(i,j,k)
h | : (t(i), x(j), y(k)) ∈ Eh },

ε
(i)
2.h = max { |v

(i,j,k)
h − ṽ

(i,j,k)
h | : (t(i), x(j), y(k)) ∈ Eh },

where 0 ≤ i ≤ N0 and (ũh, ṽh) is the restriction ov (ũ, ṽ) to the set Eh. Put

ε
(i)
h = max {ε

(i)
1.h, ε

(i)
2.h }, 0 ≤ i ≤ N0.

We take h0 = h1 = h2 = 10−4. The values of ε
(i)
h are listed in the table.
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Table of errors

t(i) :

ε
(i)
h :

0.1

4.5657 10−4

0.2

4.5732 10−4

0.3

4.5801 10−4

0.4

4.6031 10−4

0.5

4.6163 10−4

The results shown in the table are consistent with our mathematical analysis.

Remark 5.1. The methods described in Section 4 have the potential for applications
in the numerical solving of differential integral equations or equations with a deviated
argument. Difference methods considered in the paper have the following property:
a large number of previous values z(i,m) must be preserved, because they are needed
to compute an approximate solution corresponding to t = t(i+1).
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