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Abstract

The paper deals with the local Cauchy problem for first order partial
functional differential systems. A general class of difference methods is con-
structed. The convergence of explicit difference schemes is proved by means
of consistency and stability arguments. It is assumed that the given functions
satisfy nonlinear estimates of Perron type with respect to functional variables.
Differential systems with deviated variables and differential integral problems
can be obtained from a general case by specializing the given operators. The
results are illustrated by numerical examples.

1 Introduction

For any metric spaces X and Y we denote by C(X,Y) the class of all continuous
functions from X into Y. We will use vectorial inequalities with the understanding
that the same inequalities hold between their corresponding components. We denote
by My the space of all real k& x n matrices. For x = (z1,...,2,) € R", p =
(p1,-- - pk) € RF and X € Mywp, X = [ijlic1,. 5, j=1

-----

[zl = >_ fail, [Ipl] = max{lp;| : 1 < i <k},
i=1
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1 X = max{)_ |z;]: 1 <i <k}

j=1
Unless otherwice noted, we use in the paper the above norms and they are denoted
by the same symbol || - ||. Let E be the Haar pyramid

E:{(t,:c) = (t,r1,...,2,) € R™": t €[0,a], z€[-b+ Mt, b—Mt]}

wherea > 0,b= (by,...,b,), M = (My,...,M,) € R}, Ry =[0,+00),and b > Ma.
Write

Ey = [=710,0] x [=b, 0], Ey= (EoUE)N([—ro,t] x R"), 0<t<a,
where 7o € R, and
Sy =[=b, b] for t €[-ry,0], S;=[-b+ Mt, b— Mt] for t € [0,a.

Set 2 = E x C(FEyU E, R*) and assume that

-----

f:Q— RF, f=01 s fr) ¢ : Ey — R, ©="(p1,...,pr)

are given functions. We consider the system of differential functional equations

Oyzi(t,x) = Z 0ij(t, @, 2) Oy, 2i(t, ) + fi(t,x,2), 1 <0<k, (1)

j=1
with the initial condition
2(t,x) = p(t,x) for (t,z) € Ep. (2)

Let us denote by z|g,, 0 < t < a, the restriction of the function z : Ey U E — RF
to the set E;. The function o : 2 — M., is said to satisfy the Volterra condition if
for each (¢,7) € F and for 2, z € C(Ey U E, RF) such that

z|g, = Z|g, we have o(t,z,z) = o(t, z, Z).

Note that the Volterra condition for ¢ means that the value of g at the point (¢, x, z)
of the space 2 depends on (¢,z) and on the restriction of z to the set E;. In the
same way we define the Volterra condition for f. In the paper we assume that p
and f satisfy the Volterra condition and we consider classical solutions of the above
problem.

Numerical methods for nonlinear first order partial differential functional equa-
tions were considered by many authors and under various assumptions. Difference
methods for initial boundary value problems were studied in [7], [11]. Initial prob-
lems on the Haar pyramid and a general class of difference schemes with suitable
interpolating operators were considered in [6], [12], [16]. The convergence of differ-
ence methods for functional parabolic problems was studied in [10], [13] - [15]. The
main problem in these investigations is to find a difference functional problem which
is stable and satisfies consistency conditions with respect to the original problem.
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The method of difference inequalities or simple theorems on reccurent inequalities
are used in the investigations of the stability.

The numerical method of lines for partial differential functional equations was
considered in [17], [18]. By using a discretization with respect to the spatial vari-
able, the partial differential equation with a functional dependence is replaced by
a sequence of ordinary functional differential equations with initial conditions. The
proof of the convergence of the method of lines is based on differential inequalities
techniques. For further bibliographic information concerning numerical methods for
partial functional differential equations see the survey paper [2] and the monograph
8].

The results given in [6], [7], [11] for nonlinear functional differential problems are
not applicable to quasilinear systems of the form (1). In the paper we prove that
there is a class of difference methods for (1), (2) which are convergent. The stability
of the methods is investigated by using a theorem on recurrent inequalities. We give
a few numerical examples.

Differential systems with deviated variables and differential integral systems can
be obtained by specializing the operators ¢ and f. Existence results for quasilinear
hyperbolic problems are given in [1], [3], [5], [8]. For bibliography on applications of
functional partial differential equations see the monograph [8] and the survey paper

[9]-

2 Discretization

We denote by F(A, B) the class of all functions defined on A and taking values in
B, where A and B are arbitrary sets. Let N and Z be the sets of natural numbers
and integers respectively. For z, & € R", x = (x1,...,2,), T = (Z1,...,Z,), We write
r*xT = (1Z1,...,2,T,). We define a mesh on the set Ey U E in the following way.
Let h = (ho, h') where b/ = (hy, ..., h,) stand for steps of the mesh. Denote by A
the set of all h = (hg, h') such that there exist Ny € Z and N = (Ny,...,N,) €
7" with the properties: Nohg = 1o and N % b/ = b. We assume that A # () and
that there exists a sequence {hW}, h) € A, such that lim; ., h) = 0. We define
nodal points as follows:
tD = ihy, 2™ =mxn, 2™ = (xﬁ"“), o alma)y
where (i,m) € Z'™. Define Ny € N as follows: Nohg < a < (Ng + 1)hq.
Let
R = {9 2™ (i,m) € 2"}

and
E,=ENR"™, Ey,=ENR*'™,

By = {9 2™) e By : (19 + ho,a™) € By }.

For a function z : Eyp U Ey, — R* we write 2(+™) = z(t(i), x(m)). Now we formulate
a difference problem corresponding to (1), (2). Let e; = (0,...,0,1,0,...,0) € R",
1 < 7 < n, where 1 is the j-th coordinate and let w : Ey ), U E;, — R. We consider
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difference operators dg,d = (d1,...,0,) defined in the following way:

S lim) — hio (wm) = Awm)) | Awlom) — QLJZl( wlimtes) o qlim=es))

(3)

ap(Bm) (i;m+e;) _ , (im—ej) ;
d;w —th(w i — J), 1<j<n. (4)
For a function z = (21, ..., 2) : Eop U Ej, — R we write

5oz = (502(2 ™o 502(2 m)) .

Put Q) = E, x F(Ey, U Ej,, R*) and assume that

-----

foiQn = B o= (furse s fun)s ©n: Eon — B on=(0n1,-- . onk)
are given functions. Let the operator F}, = (F}, 1, ..., Fyx) be defined by

Fh (zm)_zgh t() )5sz +fh (t(i),{L‘(m),Z), 1<v<k. (5)

We will approximate classical solutions of problem (1), (2) by means of solutions of
the difference problem

502 B™ = Fy[ 2], (6)
20m = ™ on By, (7)

We assume that the steps of the mesh satisfy the condition h' < Mhg. Now we
formulate the Volterra condition for the operator F},. Put

Ein= {(t(j)aﬁ(m)) €eEy,UE,: j<i}

where 0 < 7 < Ny. The function On is said to satisfy the Volterra condltlon if for
)l

In the same way we define the Volterra condition for f.

If o, and fj, satisfy the Volterra condition then the relation A’ < Mhy implies
that there exists exactly one solution u, = (up1,...,upr) : Eop U B, — RF of
problem (6), (7). Indeed, suppose that there is a solution of the above problem on
Eip, 0<i < Ny, and (t0F), 20™) € . Then condition b’ < Mhg implies that

(t® gmte)y (10 gm=<ei)y ¢ Fy, UE), for 1<j<n.

It follows from (3)-(7) that u{""™"™ can be calculated and consequently uy, is defined
on F; 1. Then by induction the solution exists and it is unique on Eyj U .

The motivation for the definition of the set Ej is the following. Approximate
solutions of problem (1), (2) are functions defined on Fyp U Ej,. We write equation
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(6) at each point (t®, z(™)) of the set E; and we calculate all the values of u; on
Eop U E).

Suppose that v : EyUE — R* is a solution of the functional differential problem
(1), (2). Let vy, = v |g, ,up, - For each h € A there exists a(h) such that

| uf™ — o™ || < a(h) on Ey. (8)

The above inequality gives the error estimate for the numerical method (6), (7).
Suppose that there exists a function ay : A — R, such that

™ — @ ™| < an(h) on Eyj and lim ag(k) =0.

We say that method (6), (7) is convergent if there is & : A — R, such that condition
(8) holds and limj_o a(h) = 0.

For a function 2 : Eyj, U E;, — R* we write
12 i = max { 207 - (¢9,20) € Eip }

where 0 < i < Ny. Let Iy = [—r,0], I =[0,a] and

Lop={tV: —Ny<i<0}, Li={tY: 0<i<Ny}, I, =1\ {t™) .
For a function w : Iy, U I, — R we write w® = w(t®), —Ny <i < N,, and

lwllin = max {JwP] : —No < j <i}.
In the sequel we will need the following operator
Vi i F(Eop UEy, RY) — F(Iy, UL, Ry).
If z: Egp UER — Ry, then Vj[z] is given by
Va[£(t") = max { |2 - (¢9,2™) € Eop U By},

where —NO < i < Ng.

3 Functional difference equations

Now we formulate general conditions for the convergence of method (6), (7). Our
result will be proved by means of consistency and stability arguments.

Assumption H [0},]. Suppose that the function oy, : I} x F(I,UI,, Ry) — R,
satisfies the conditions:

1) oy is nondecreasing with respect to the functional variable and fulfils the
Volterra condition, '

2) op(t,0,) = 0 for t € I} where Hﬁf) = 0 for —Ny < i < N, and the difference
problem

N =p@ L hgop(t9,n) for 0<i< Ny—1, (9)

nW =0 for —Ny<i<O0, (10)



272 D. Jaruszewska-Walczak — 7. Kamont

is stable in the following sense: if 0, : Iy, U I, — R, is a solution of the problem
) =n@ L hgcon(tD,n) 4+ hoy(h) for 0<i < Ny —1, (11)

n® = ag(h) for — Ny <i<O0, (12)

where ¢ > 1 and

ag, v: A — Ry, fllii%ao(h) =0, }lliir(l)v(h) =0,

then there exists a function §: A — R, such that
0\ < B(h) for 0<i< N, and lim () = 0.

Assumption H [g;, fn]. Suppose that the functions g, and f, satisfy the
Volterra condition and there is a function oy, : I], x F(Iy, U1, Ry) — R, satisfying
Assumption H [o,] and such that

||Qh(t,:L‘,Z) - Qh(t7$75)|| < O-h(tv Vh['z - 2] )7

||fh(t,:L‘,Z) - fh(t7$75)|| < Uh(tv Vh['z - 2] )7
on Qh-

Remark 3.1. The functions oy, and fy, are generated by ¢ and f and corresponding
interpolating operators. Adequate examples are given in Section /.

Now we formulate a theorem on the convergence of method (6), (7).

Theorem 3.2. Suppose that Assumption H [oy, frn] is satisfied and
1)h e A and
1 hy

T lonvi(t,z,2)| >0 on Q for 1<v <k, 1<j<n, (13)
n .

J

2) W < Mhgo and uy, : Egp U E), — R is the solution of the difference functional
problem (6), (7) and there exists a function ag : A — Ry such that

1™ — L™ < (k) on Eop and lim ag(h) = 0, (14)

1
h—0

8) the function v € C(Ey U E, R*) is a solution of problem (1), (2) and the
function v |g is of class C?,
4) there exists a function f: A — R, such that

||Qh(t7xvvh) - Q(t7IvU)H < B(h)v

1 fat, 2 0n) = [tz 0)[| < B(R), (t,7) € By,
and limy,_ B(h) = 0 where v, = (Vp1,...,Unk) is the restriction of v to the set
EonU Ep.
Under these assumptions there exists a function o : A — R, such that

||U}(:’m) — ugfm)H < a(h) on E, and }ILiIr(l) a(h) =0.
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Proof. Let
Fh = (Fh.lu .. .,Fh.k) . E;L — Rk, Ah = (Ah.h e 7Ah.k) . l?]/1 — Rk

be the functions defined by

(zm = 50 (zm 8tv,(ji’m) -+ Z Q,/]<t(z),.§lf(m ) [3 U(Zm — 5]@}(:,:1)} s 1 S 14 S k',
j=1

;v
(15)
and A
A = £ (19 2™ v) — f, (1D, 20 ) (16)
Z |:Ql/_] t(l (m) ) - Qh.uj(t(i)ax(m)auh)} 5]vi(zz’um)7 1 S 14 S k.
7=1
Let z, = vp, — up, 2 = (211, - -, 2nk) and
Po = (19,2, 1) an

The function z;, satisfies the recursive equations

o™ = ho [T} )+A§j_’f)}+Az;$)+hozghVJ v ) 6,20 1<y <k,

where (t@, 2(™) € B Tt follows from (3), (4) that
Z}(Lz;rlm)_h |:F +A(zm }

1< (i,m+e;) 1 hO (z m—e;) 1 hO
3 | 2 . = (P |
_'_22217,.1/ n+h Onj( + = Z - h}Qh.]( m)

J J

i+1,m 7 i,m i,m 3 m
e N < wp + b [ITR ™I+ [AS™ ] for (#9,2) € B (18)

It follows from assumption 3) that there exists ¢ € R, such that
10,0t 2)|| < co, (t,2) €E, 1<j<n. (19)

Then ||5jv,(f’m) | <coon Ej for 1 < j < n.lt follows from Assumption H [gy, f5] and
conditon 4) that

HASvm)” < Hf(t(l)7x(m)7v) - fh(t(l)7x(m)7vh)” + ||fh<t(2)7x(m)7vh) - fh(t(l)7x(m)7uh)”

+CO||Q(t(Z)7 x(m)’ U) - Qh(t(Z)a x(m)’ Uh)” + COHQh(t(i)a "L‘(m)a Uh) - Qh(t(Z)a x(m)’ Uh)”
< (14 co) on(t,wn) + (1+ co)B(h).
We conclude from assumption 3) that there is 4 : A — R, such that

ITh ™l < 5(h) on Ej and lim75(h) = 0.
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The above estimates and (18) imply

wp <@ (Lt o) an(tD wn) +hoy(h), 0< i< Ny =1, (20)
where y(h) = (1 + ¢o)3(h) + #(h) and
w,(f) < ag(h) for — Ny <i<0. (21)
Let ny, : Iop U Iy — R, be a solution of the Cauchy problem
N =@ 4 ho(14 ¢o) on (D7) 4+ hoy(h), 0<i< Ny—1, (22)
n = ag(h) — Ny <i<O. (23)

Using the Volterra condition and the monotonicity property of o and (20)-(23) we

get by induction that w,(f) < n,gi) for 0 < 7 < Ny. Then we obtain the assertion of
Theorem 3.2 from the stability of problem (9), (10).

Remark 3.3. Note that condition (13) for method (6), (7) and inequality h’ < Mhy
imply

1

EM Z ( |Qh.u1(t7xa Z)| PR |Qh.un(ta xz, Z)| ) on €
where 1 <v < k.

Now we consider the difference functional problem (6), (7), where Fj, = (Fy1, ...,
Fh1) is given by (5) and the operators &g, § = (d1,...,0,) are calculated in the
following way:

) 1 ) )
(i,;m) _ (i+1,m) _ _(i,m)
0oz, = I (zy 2, ) , 1 <v<E, (24)
5;2m) — — (zyman - zgww) it gp,; (19,20 2) >0, (25)
J
@m) — L Gm) _ im—e) @) (m)
d;2,) :h—(zy’ — z T ) if op,; (8, 2\, 2) <0 (26)
J
where 1 < 7 <n, 1 <v < k. It is easily seen that if g, and f; satisfy the Volterra
condition and h' < Mhg then there exists exactly one solution u, = (up.1,...,unk) :

Ej, U E), — R of problem (6), (7) with d; and § given by (24) - (26).

Theorem 3.4. Suppose that Assumption H [oy, fr] is satisfied and
1)h e A and

n

1
1 —hozh— lonvi(t,z,2)] >0 on Q for 1 <v <k, (27)

j=1"%

2) W < Mhy and uy, = Egp U Ep — RF is the solution of the difference functional
problem (6), (7) with the difference operators given by (24)-(26) and there exists a
function o : A — R, such that condition (14) holds,

3) the function v € C(Ey U E, RF) is a solution of problem (1), (2) and the
function v |g is of class C1,

4) assumption 4) of Theorem 3.2 is satisfied.

Under these assumptions there exists a function o : A — R, such that

||v,(:’m) — ugm)H < a(h) on Ej and }llir% a(h) =0.



Difference methods for differential functional systems on the Haar pyramid 275

Proof. Let 'y, : B} — RF and A, : E} — R* be the functions defined by (15)
and (16) with dy and & given by (24) - (26). Write zj, = v, — uy, and

J(J:n):{j: 1<j<n and Qhuj(Pim>ZO}7
T8 = (1, \ IS,

Then we have ' ‘
™ = ho [T + ALY | (28)

,m 1
+z( 1 - ho Z gh vi( Pim ) + ho Z n, —0h.wj( Pim)
J(Z m) ]EJ(’L ,m)

1 zm e i,m—e;
tho 3 onu(Pun)zl Y —he 2 5 ghw Po) 2™,
jerlm jegtr m I
where (t%),2(™) € E} and P, is given by (17). Let w; be a function defined by
wi, = Vi|zn]. Tt follows from (27), (28) that for (t®z(™) € E; we have
i+1,m 7 i,m i,m
L2 < wp + ho [ITF™] + 1A5™] ] (29)

There exists ¢y € R, such that condition (19) is satisfied. Then H(Sjv,(f’m)H < ¢y on
Ej for 1 < j < n. It follows from Assumption H [gy, f5] and (16) that

1A < (1 co) on(twn) + (14 co) B(h)-
We conclude that there is 4 : A — R, such that
ITh™ | <5(h) on Ej and lim5(h) = 0.

The above estimates and (29) imply

Wit < 4 ho(1 + co)on(t™,wh) + hoy(h), 0<i < No—1,
h h

where v(h) = (1 + ¢o)B(h) +7(h) and
w(i) <ag(h) for —N <i<0.

Let np, : Inp, U I, — Ry be the solution of the Cauchy problem (22), (23). Using the
Volterra condition and the monotonicity property of o, we get by induction that
w,si) < n,si) for 0 < i < Ny, and we obtain the assertion of Theorem 3.4 from the
stability of problem (9), (10).

Remark 3.5. Suppose that M; > 0 for 1 < j < n. Note that condition (27) for
method (6), (7) with the difference operators given by (24)-(26) and the assumption
n < Mhgy imply

"1

1> Zﬁ | onwi(t,x,2) | on Q

j=1 i
where 1 <v <k. If My =My, =...= M, =M then M > || on(t,z, 2) on Q.
Remark 3.6. The stability of difference problems generated by hyperbolic systems of
conservations laws 1s strictly connected with the Courant - Friedrichs - Levy condi-

tions, see [4], Chapter III. Inequalities (13), (27) can be considered as the Courant-
Friedrichs-Levy conditions for functional differential systems.
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4 Difference schemes for quasilinear systems

We give examples of functions g, and f; corresponding to ¢ and f. We also give
error estimates for the difference methods. We adopt additional assumptions for
the mesh FEy;, U E),. We assume that the steps of the mesh satisfy the condition:
h' = Mhg. Then we can write the definitions of the sets Fyj; and Fj, in the following
way:

Eop={(t9 2(M): —N;<i<0, —N <m < N},

By ={t9 2. 0<i< Ny, |my| <N;—i fori=1,...,n}.
Put B =[—b,b] C R" and By = {2™ : —N < m < N }. We define the operator
Ty = F([=ro,a] x By, R) — F([—719,a] x B, R) as follows. Write
Sy ={s=(s1,...,8,): 8, €{0, 1} for1 <i<n}.

Let w € F([—ro,a] X By, R) and t € [—r¢,a], x € B. There exists m € Z" such that
(™ 2D ¢ By, where m +1= (m; +1,...,m, + 1) and 2™ < 2 < 2m+D We
define

z—zm\’ x— g\
Tulul(t,2) = Y wit, ™) (T) (1 _ T)

S€S+

z—am\® ﬁ z; — ™) "
h B e h;

_pm\E ma)\ T
r—x T — T,
12— =] (1 - ——
( h ) i=1 ( hi )

and we take 0° = 1 in the above formulas. Then the function T [w](¢, - ) is contin-
uous on B.

We define the operator T}, : F(Ey, U Ep, R) — F(Ey U E, R) in the following
way. Suppose that w : Ey, U E, — R. For (t,z) € Ey U E and —ry <t < a three
cases will be distinguished.

I. Suppose that (¢,x) € Ey. Then there is (i,m) €Z'™ such that

where

(@ 2y, (D gmiDy c By and 9 < ¢ < 0D g < g < gD,

We define

t— ¢

() , ‘
bt )Th/[w](t(l),x)jL Tl (Y, 2). (30

0

Tiful(t.0) = (1-

I1. Suppose that (t,z) € E and there is (i,m) €Z'™ such that
[t(i)’t(iﬂ)] % [x(m)’x(mﬂ)] CE

and t@ <t < 0D 5m < g < 2Mm+Y Then we define T}, [w](, z) by formula (30).
ITI. Suppose that (t,z) € E and
(a) t@ <t < 0+ for some i, 0 < i < No—1, 2™ < 2 < 20" for some m €ZV
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(b) (9,20, #O 2™y € E and
D, 2™y € QE or (tV, 2™V oE

where Oy E = OE N ([0,a] x R™) and OF is the boundary of E. Define the sets of
integers 1, [i,m|, I_[i,m], Io[i,m] (possibly empty) as follows :

Iiji;ml={j: 1<j<n and x§~mj+1) =b; — M;t" }
I[iyml={j: 1<j<n and 2\ = —b; + M},

Lofi,m] = {1, ..., n}\ (L [i,m] UL [i,m]).

We define Uz = (Z1,...,%,) and Wz = (Z1,...,Z,) as follows:

_ (my) ho (m;) L (my) . .
.ﬁCj—.Tj ! +m(l’]—l’] g ) and Ij—xj 77 for j€[+[l,m],
L () ho L (my+) L (myt) ‘ .
Tj = x; + Oy — (x] T; ) and I; = x; for j € I_[i,m],

T =13; =ux; for j € Lyji,m].
Then we write

t—t® PG

Ty [w] (Y, Wa).
ho

Ty [w](t, z) = (1-— ) T [w] (D, Uz) +

0
If (t,z) € Ey U E and Nohy < t < a then we put Ty[w|(t, z) = Th[w](Nhg, x). Then
we have defined Ty, [w] : Eg U E — R and Tj[w] is a continuous function on Ey U E.
The above interpolating operator was introduced and widely studied in [6].
It 2= (21,...,2) : EonUE, — R* then we put Tj,[2] = (Th[z1], - - ., Th[2x]). We
will denote by || - ||; the maximum norm in the space C(E;, R¥), 0 <t < a.

Lemma 4.1. Suppose that v : Eg U E — R* is of class C? and denote by vy, the
restriction of v to the set Ey, U Ey. Let C' be such a constant that

|10wv(t, )| < C, [0, v(t,2)|| < C, [[Oae,v(t,2)]| <C, 1<i,j <,
on Fg U FE, and
Cl1+2> M+ > MM,

j=1 ij=1

Then || Ty [vn] — vl < Cohd for t € [0, Nohg].

Co =

DO | =

The proof o the above lemma is silmilar to the proof of Theorem 3.1 in [6]. We
omit details.

Now we consider functional differential problem (1), (2) and the difference func-
tional system

5ozl(ji+1’m) = Z gyj(t(i),x(m), Tnlz]) 5jzl(f’m) + fy(t(i),x(m), Tulz]), 1<v <k, (31)
=1
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with the initial condition

20 = ™ o Eop, (32)
where ¢y, : Ey;, — RF is a given function and the operators dy, 6 = (d1,...,4,) are

defined by (3), (4).

We will estimate functions of several variables by means of functions of one
variable. Therefore we will need the following operator V : C(E, U E, RF) —
C([~ro,a], Ry). If z € C(EyU E, R*) then

VIz|(t) = max { ||z(t, )] : z€ S}, —ro<t<a.

Assumption H [0, f]. Suppose that the functions ¢ : @ — My, and f: Q — R*
are continuous, they satisfy the Volterra condition and

1) there exists a continuous function o : Ry x C([—rg,a], Ry) — R, such that

(i) o is nondecreasing with respect to both variables,

(ii) o satisfies the Volterra condition and o(t,0) = 0 for t € R, where 6(t) =0
for t € [—ro,al,

(iii) for each ¢ > 1 the maximal solution of the problem

W(t) =co(t,w), w(t)=0 for t € [—rg,0]

isw(t)=0forte R,,
2) for (t,z,2), (t,z,2) € Q we have the estimates

|| Q(t,:L‘,Z) - Q(t,fb,g) || S U( t,V[Z - 2] )7

and

||f(t,I,Z)—f(t,{E,2) || SO’(t,V[Z’—Z]).

Theorem 4.2. Suppose that Assumption H [o, f] is satisfied and
1) h €A and

1 hy
———|oi(t,z,2)| >0 on
il 2
for 1 <v <k,1<j<mn, and there is a function gy : A — R, such that condition

(14) holds,

2) W = Mhq and the function uy, : Eg, U E, — RF is a solution of problem (51),
(32) with dy and 0 given by (3), (4),

3)v: EyUE — RF s a solution of (1), (2) and v is of class C* and v, =

v |EOAhUEh :
Then there is € > 0 and a function o : A — R such that for ||h|| < ey we have

[ul"™ — "™ < a(h) on Ej, and limy_oc(h) = 0.

Proof. Let
Ly, : F(Ip, U L) — C([—r0,a], R)
be the operator given by
t—t®
-

ot —t@ A
(Lmnﬂﬂ==ﬂ“”————'*ﬁo<1

) for t@ < ¢ <D
ho
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and
(Lhoﬁ)(t> = (Lhoﬁ)(Noho) for noho <t< a,

where 1 € F(Iy, U I, R). We prove that the functions
on(t,x,z) = o(t,x, Th[z]), fu(t,x,2) = f(t,x,Ty[z]) where (t,z,2) € Qy

and
0h<t7 77) = U(t7 Lhon)7 (t777> S I/I7, X F([O.h U [h7 R+)7

satisfy all the assumptions of Theorem 3.2.
We first prove that problem (9), (10) is stable in the sense of Assumption H [o].
Let ny, : Ipp, U I, — R be the solution of (11), (12), where

ag, v: A — R, and }llii]%ao(h) =0, }llii%fy(h) = 0.
Denote by wy, : [-rg,a] — R, the maximal solution of the problem
W'(t) = co(t,w) +v(h), w(t)= ag(h)fort € I,.
There exists € > 0 such that the solution wy, is defined on [—7, a] for ||| < &y and

fllir% wp(t) = 0 uniformly on [—rg, al.

The function wy, is convex on [0, a], therefore we have
(i+1) (i) ; _
wp, > wy Fhoco(t,wy) + hoy(h), 0<i<Ny—1.

Since ny, satisfies (11), (12), then we have 77,@ < w,(f) for 0 < i < Ny, which proves
the stability of problem (9), (10). For (¢,x,2) € Q,, z € F(Ey, U By, RF) we have

lon(t, z, 2) — on(t, =, 2)|| = llo(t, 2, Th[2]) — o(t, z, Th[Z])]

<o(t,V[Thlz — 2]])) = on(t, Vilz — 2])

and
”fh<t7 Z, Z) - fh<t7x7 2)” < 0h<t7 Vh[z - Z] )
It follows from Lemma 4.1 that there is 3: A — R, such that

lo(t, 2, Tu[on]) — o(t, -, v)|| < B(R),

||f(t7x7Th[vh]) - f(t,:L‘,U)H < B(h) on Ei,z

and limy,_ 3(h) = 0. Then the assertion of Theorem 4.2 follows from Theorem 3.2.
Now we give an error estimate for method (31), (32) with the difference operators
do and § = (01,...,0,) defined by (3), (4). According to Theorem 3.2 we have the
estimate A
lun = vnllin < @3, 0 < i < N,

where @y, : Iy, U I, — Ry satisfies the difference functional inequality

o™ 2 @ + ho(1+ co) on(tD,@n) + hoy(h), 0<i<No—1,
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where v(h) = (1 + ¢o)3(h) + 7(h) and
J),(f) > ag(h) for — Ny <i<0.
The constant ¢, and the functions ay, 3, ¥ : A — R, are defined by the relations

|| Q(t7vah[vh]) - g(t,x,v) || < B(h)v ” f(t7x7Th[vh]) - f(t,:L’,U) || < B(h)
on Ej; and
[n(t, x) — (t, z)|| < ap(h) on Ega,
0u vt o) <o on B, 1<j<n,

and '
ITS™ || < 5(h) on Ej,

where I'y, = (T'p1, ..., Thk), and

v

T — goulm — gplm 4 > 0, (D, 2™ v) {&ij(i’m) - 5jv,(i’;n)} , 1<v<k.
i=1

Assumption Hj, [p, f]. Suppose that the functions ¢ : Q@ — My, and f: Q —
RF are continuous and there is L € R, such that

” g(t,x,z) - Q(t,&?,i) || < L HZ - 2Ht7
1f(t,2,2) = f(t, 2, 2)| < Lz — 2|
on ).

Remark 4.3. It follows from Assumption Hy, [o, f | that 0 and f satisfy the Volterra
condition on ).

Theorem 4.4. Suppose that
1) Assumption Hy[o, f] is satisfied and condition 1) - 3) of Theorem 4.2 hold,
2) the function v |g is of class C® and cy, C, C, d € Ry are such constants that

Haifjv(tfr)H S Co on E7 1 S ] S n, (33)
100 D), [9uey 0t ), 8,0t ) < C o By UE, (34)
where 1 < 1,7 <n and
10s,0,0,0(t )| < C on B, 1<j<n, (35)
|ovi(t,z,0) | <d on E, 1<v<k, 1<j<n. (36)
Then '
|wn — vallin < 77;(1@) for 0 <@ < Ny, (37)

where f;}(f) = og(h), and

A R ‘ i—1 ~ :
i) = ao(h)(1+ Lho) + hoy*(ho) >_ (14 Lho )", 1 < i < Ny,
j=0
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and
’)/*(ho) = (1 + CQ)B*hg + Aho + Bhg,
A=1le 1+1§an.2 ledCiMz
2 n= |’ 6 —
J= J=
and
B 1 -~ n n
L=L(1+4c), B*ziCL 1+22Mj+ Z MiMj] . (38)
j=1 ij=1

Proof. 1t follows that

] i,m 1~
806 — douy™ || < 5 Cho

1+ZM§]

j=1

and X
02,00 = 80| < CCMFRS, 1< j <,

where (¢, (™) € E. Then we have
IT%™)|| < Aho + Bh2 on E}.
According to Lemma 4.1 and Assumption Hy, [, f], the terms
lo(t, z, Thlon]) — o(t, z, V)|, |[f (@t Thlon]) — f(E, 2, 0)|l, (t,2) € E,

are bounded from above by B*h2. By Theorem 3.2 we have the estimate (37) with
nn : In — Ry satisfying the equation

N = (14 Lho ) n™ + hoy*(ho), 0<i < No—1,

and the intial condition n® = aq(h). This completes the proof.
Now we consider the difference functional system (31) with the initial condition
(32), where ¢y is defined by (24) and

, 1 , , ,
§;20m) = I~ (2lmte) — 20m) i (@, 2™, Ty[2]) > 0, (39)
J
) 1 ) ) )
§iz0™ = w (2 — zfm=e) ) i (¢, 2™ Ty[2]) < 0 (40)
J

where 1 < j7<n,1<v<k.
We will consider solutions of (1), (2) which are of class C' on Ey U E. Therefore
we will need the following Lemma.

Lemma 4.5. ([8], Chapter 3) Suppose that the function v : EgUE — R is of class
Ct. Let vy, be the restriction of v the the set Eyj, U Ey,. Then there is C* € Ry such
that

[ Thfvn] —olle < C*[A]l, 0<t <a.
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Theorem 4.6. Suppose that Assumption H [o, f] is satisfied and
1)h e A and

n

1
l—hozh— | 0y;(t,z,2)| >0 on €,

j=1"4

2) W = Mhq and the function uy, : Eg, U E, — RF is a solution of problem (51),
(32) with oy and 0 given by (24) and (39), (40) respectively,

3) there is a function oy : A — Ry such that condition (14) holds,

4)v: EgUE — R* is a solution of (1),(2), v is of class C* and vy, = v |k, ,uE, -

Then there is g > 0 and a function o : A — R, such that for ||h|| < g9 we have

[ul"™ — ™| < a(h) on E, and lim a(h) = 0.
The proof of the above Theorem is similar to the proof of Theorem 4.2. Details
are omited.
Now we formulate a result on the error estimate.

Theorem 4.7. Suppose that Assumption Hy o, f] is satisfied and
1) conditions 1) - 3) of Theorem 4.6 hold,
2)v:EyUE — R¥ is a solution of (1), (2) and v is of class C* on Eg U E,
3) co, C, d € R are constants satisfying (33), (34), (36) respectively.
Then ‘
lun, = vallin < 7, 0 < i< Ny,

where ﬁ,(LO) = ag(h) and
i—1

) = aoh) (1+Lho ) +3(ho) 3 (1+ Lo )

J=0

F(ho) = (14 ¢co)B*h2 + Ahy, A==C

1+dZMj] ,

1
2 =

and the constants L, B* are given by (38).

The proof of the above theorem is similar to the proof of Theorem 4.4. We omit
details.
5 Numerical examples
Example 5.1 For n = 2 we put
E={(t,z,y): t€[0,1], 24+t<x<2—-t —2+t<y<2-t}

Let us denote by z an unknown function of the variables (¢, z,y) and consider the
differential integral equation

Oz(t,x,y) =y {1 + Uw 2(t,s,y)ds — thyr}_l Op2(t, z,y) (41)

—T
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9 —1
} 8,:(t,2,)

y
+x {1 + [/ z(t, x,r)dr — 2txy
~y

1
+/ | z(t,s,r)drds — 5(2 — t)QZ(t, z,y)+ (z+y)(1l—1)
t,x,y
with the initial condition
Z(O,Qf,y) =0 fOI' (xay) S [_27 2] X [_27 2]7 (42)

where
14+0.5(z—t) /1+0.5(yt)

/ z(t,s,r)drds = /
D(t,xz,y) —14-0.5(z+t)

Note that if (¢,z,y) € E, then

z(t, s,r)drds.
—140.5(y+)

{(t}x [-1+05(z+1), 1+ 05z —)] % [-14+0.5(y+1), 1 +0.5(y —t)] € E.

The exact solution of this problem is known. It is v(¢, x,y) = t(z +y), (t,z,y) € E.

We apply Theorem 4.6 to (41), (42). Let h = (ho, h1, he) stand for the steps of
the mesh on E. Let T}, : F(E), R) — F(E, R) be the interpolating operator, defined
in Section 4 with n = 2. It follows that for a point (t©),z0) ¢*) € E}, and for a
function z : E;, — R we have

, . — z) — gk
T[E)(10, ,y) = 2090 (1= T ) (1= 52
hy ha

4o likt1) [ z—a0)\ y—y® 4 (G +LE) z —al) 1Y~ y®)
ha heo ha ho

. pC) EPTR (O B A
+Wmmmnth y}j C 2V < g < gD ) <y < D)

and consequently

4
/(J) /(’C) § T) drds ( 3)
_ L £ 2V 2_$—ﬂ” y—y® (5 _y—y®

2 hl 2 h2

2
(a4, k+1) £ zV) 9 _ YT 2V (y y )
2 hy 2hy

+z

)
(L) (x 2;1] ) y —Qy(k) <2 Ly _hg(k) )
(:p — z0) )2 (y — y® )2
2hy o2hy

According to the above formula, we have

2D yw+n

(3)
/xm /(k) 1(#, s,7) drds (44)
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_ h14h2 (Z(i,j,k) + S(i3,k+1) + (63 +1.k) + Z(z’,j+1,k+1))
and
:L‘(j+1) y ( ) hl (y — y(k) )2 ( X ) ( k )
i _ i\ji kA1 i+ 1,k+1
/x(j) /y(k) Tul2](t", s,r) drds = > ol (z +z ) (45)
hyy —y® y —y™® (i,,k) (i,j+1,k)
—|—7 5 2 — Iy (Z +z )
and
vyt @) (x — a2V )2 (J+1k) | (j+1k+1)
i — N ) (G i,j+1,k+
/:v(j) /y(k) Tyt s,r) drds = o (z +z ) (46)

hy x — 2U) r — 2\ y y
(Z7J7k) (Z7J7k 1)
+ 5 2 2 I (z + z ) .

Having disposed of this preliminary step, we formulate the difference problem cor-
responding to (41), (42). Consider the difference equation

z() A o ! .
502k = () { 1+ [/_ . T[] (tD, s,y *)) ds — 2t(l)x(])y(k)1 } 512038 (47)

-1

—y®)

. y*) L . . 2
L) {1+ l / Tol2] (192D, ) dr — th’x(])y(k)] }

) 1 ) o . .
+/ Thl2](t9, s,7) drds — =(2 — tD)2 2030 (20) 4 4By (1 — 1)
D(t(z)71‘(]),y(k)) 2

with the initial condition

Z(Owr(])uy(k)) =0 for (x(J)7y(k)) € [_27 2] X [_27 2]7 (48>
where
520 — 1 [264190) _ (6]
0
512(2,%16) — h_1 {Z(wﬂ,k) _ Z(mk)} if y(k) > 0,
5,00k = 1 [2060) _ 265-10] i 4@ < g
he

and

5,200k — L [20) _ 630 ] i 0 > 0,
2

5,20 — L

[Z(ivjvk) _ Z(ivjkal)} lf x(]) < O
2

Note that results of the papers [6], [11], [16] cannot be applied to the above problem.



Difference methods for differential functional systems on the Haar pyramid 285

We can now formulate formulas for calculating integrals in equation (47). Our
considerations start with the observation that

j—1
hy 1

x(9) . o o ,
/ Th[z](t(l), s y(k)) ds — [Z(z,—Jvk) + Z(Zajvk)] Ry 2 : S(ivk) (49)
—z(9) 2 v—i41
and
v @ ,.G) ha 1 G-k o Gk SN
i) .0 _ i\j,— i.j, ij,
/_y(k) Tpl2] (8", 2V r) dr 5 {z +z } + hy g_EkH 208, (50)

The last integral in equation (47) has the following property: if (t® 2) 4®) is a
grid point, then

(9, =1+ 05 + D), =14 0.5(y™ + 1)),

(7, 14059 — @), 1405y — 7))

in general, are not grid points. Therefore we need the following construction. Write

0, =1—05x9 +t9) 6 =14 0.5z — W),

and A
mik =1—05y™ +1D), fy =1+05y" — ).
Then
:L‘(j) + Qij =1+ 0’5(‘%0’) _ t(i)), :L‘(j) _ éz‘j =1+ 0‘5(:130) + t(i)),
and

y® e =1+ 05y" —9), y® — iy = 1+ 05" +0).

There exist fj, &ij, fir, i € N and ™) 09 € [0, hy) | 68"””, ég’k) € [0, hg) such
that )
91-]» = (FLZ']' + 1)h1 + ES’J), 91-]» = /%ijhl + é::(vl’])

and
Mk = (it + Dho + e, i = fuighy + ).
Write
Kij—1 Hig—1 N
A[i7j7 k] = h/th Z Z 2(27]+V7k+£)
v=—~Rij+1 §=—f;+1
+h1h2 Hil [z(i,j—f%ij,ﬁ) +Z(i,j+mj,§)} + w sz_l [z(i’”’k_ﬂi’“) +Z(i,V7k‘+Mik):|
2 2 2
=—fik+1 v= Ii”+1
Pahe [ (oo ki) o (gt ki) L o (id—Fos ki) L (i i )
—+ 1 |:Z ] T HRag R ik + 2z J TR HRT ik + 2 J—FRij,k— ik + 2 g k=i g :| .

For simplicity of formulation of next formulas we write

2V =14 0.5(z) — @), LA p— 0.5(z) + ¢t®),
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ykd =14 0.5y% — @), g*d = —1 4 0.5(y® 4 10).
The integrals
2D k.i] y(k=FRik)

- ! i i
Bli, v, K] :/M [/WWU Th2] (¢, s,7) dr+/w Tol2) (6D, 5, 1) dr] ds

and

y(E+D) 20— Fiz)

A 2l] '
Cli,j: €] = /y " l / o A, s, ryds + / iy an Tnl2 (8 5,7) ds] dr

where —R;; < v < ki, —fir < & < g, can be calculated using (45) and (46). Write

2l e ‘
Blijkl = [ | To[(t9, s,7) dr ds+

y(k+ﬂlk+1)

x[] i] y(k Aik) G- HZ]) (k—fg) ()
/x(j‘Hiij"'l) / T2t s, ) drd8+/ /~[k ; Tnlz] (Y, s,r) drds

g[kw] [5.4)
* fo
We calculate Ei, 7, k] using (43).
Note that we have actually proved that

20=Riz) [k.1]

()
/(k+u1k+1) Th [Z] (t y S, T) drds.

/ o (W, s ) drds = Al §, K] + Eli, j, K] (51)
CORORON
Kij Hik
+ Z [i,v, k] + Z Cli, j, &].
VZ*I%’L‘]' E=—fik

We approximate the solution of the problem (41), (42) by means of solutions of the
difference problem consisting of (47) - (51). Let uy : E, — R be the solution of this

difference problem. Write
e = max { Jup ™ — oI (10 20,y W) € B}, 0 <i < N,

where vy, is the restriction of v to the set £j,. We take hg = hy = hy = 1073. The
values of 522) are listed in the table.

TABLE OF ERRORS
t@ . 0.5 0.6 0.7 0.8 0.9 1.0

el 50650107 528521073 54654107 5.605610~% 5.705710~% 5.765710°

The results shown in the table are consistent with our mathematical analysis.
Example 5.2 For n = 2 we put
E={(t,z,y): t€]0,05], -1+t<z<1—t, —1+t<y<1-—t}.

Let us denote by (u,v) an unknown function of the variables (¢, z,y) and consider
the system of differential equations with a deviated argument
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1
o(t,x,y) = {1 — T Ja(a) — 0007 T e x,y)]2 } Oyu(t, x,y)
1
- {1 1 [u0) — 0(B) + Fualt 2.9 } Oyult,2,9)

+U(t,l‘,y) - U(t,fb,y) - (t - 1)(l‘y — T = y) + zy,

€T
O 29) = T ) + tola) + g P Y
)

1+ [’U,((S) + tv(f}/) + ng(lf,Jf, y)]2

+

8yv(t> .CL’, y)

+u(t,x,y) —v(t, z,y) — xy(1 +1¢),
with the initial condition
uw(0,z,y) =x+y, v0,z,9)=uzy, (z,y)€[-1,1] x[-1, 1],
where
fulto,y) = (=1 (tr+ 05z +y), folzy)=t-1)(05x+y) —1-+),

fa(t,z,y) = —0.5(x +y)(1 +t*) — 0.5tey + (t — 1) (1 + 0.5tx),
faa(t.m,y) = —=0.5(z +y)(t* + 1) + (1 — t)(1 + 0.5tx) — 0.5txy,
and

a=(t,05x—-14+1t),05y+1—-t)), B=(t05x+1—-1),05@y+1-1t)),

vy=(t05(x+1—-1%),05(y—1+1t)), d=(t 05z —t+1),05(y—1+1)).

Note that a, 3, v, 6 € E for (t,x,y) € E. The exact solution of this problem is
known. It is

a(t,z,y) =tey+x+y, 0t xy) =tlx+y) +ay, (t,z,y)€kFE.

Suppose that h = (hg, h1,hs) stand for the steps of the mesh on E and T}, :
F(E,, R) — F(FE,R) is the interpolating operator defined in Section 4 for n = 2.
For a function 2z : E, — R we put

52k — L (206134 _ 5]

0
where
A (idk) l [z(i,j+1,k) + S(i:3=1,k) + S (6::k+1) + Z(z,j,kq)}
4

and

. 1 . . . 1 . .

(Zvjvk) —_ (%]‘i’l»k) _ (Zvjflvk) (Zvjvk) —_ (27]7k+1) _ (Zvjkal)

012 —th[z z }, 092 _QhQ{Z z }
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Consider the system of difference equations
1
() ,5,k) 2
Lo [ Tiful (i) = 10 Tifo] (v) + 177

50U(i7jvk) — 1 _ 51u(ivjvk)

) IE SyuH3:%)
L+ [ Taful () = 0 Tafol (Be) + S5

k) _ plidk) (16 _ 1)@y ) _ g0 _ )y 4 g G)y®),

20

50u(i,j7k) —
L+ [Tl (Bue) + 1O Tulol o) + £ ]

. 51U(i,j7k)

(4) o
+ y (ij:k) 00
L+ [ Th[u) (8ix) + 0 Th[o] (vige) + fi5” }

with the initial condition

u(0,29,y®) = 2D 440 0(0,2D,yM) = 2Dy ® (29, yW) € -1, 1] x [-1, 1],

Note that if (¢®), 20), y*)) is a grid point then Qijk, Bijk, Vijk, 0ijk in general, are not
grid points. Denote by (u,vp,) : E;, — R? the solution of this difference problem.

Write N N
= max {ugl™ = @Y (10,00, y) € By}
ip = max {[u ™ = 50 (10,20, y ) € By,
0)

where 0 < i < Ny and (@, 0) is the restriction ov (@, ?) to the set Ej. Put

6,(1):max{€1h, €5 } 0<i< N

We take hg = h; = hy = 107*. The values of g,(f) are listed in the table.
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TABLE OF ERRORS
@ . 0.1 0.2 0.3 0.4 0.5

el 45657107 4.573210~* 4.580110~* 4.603110~* 4.616310~*

The results shown in the table are consistent with our mathematical analysis.

Remark 5.1. The methods described in Section 4 have the potential for applications
in the numerical solving of differential integral equations or equations with a deviated
argument. Difference methods considered in the paper have the following property:
a large number of previous values 2™ must be preserved, because they are needed
to compute an approrimate solution corresponding to t = AN
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