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Abstract

The paper deals with the local and global nonexistence of weak solutions

to a class of weakly coupled systems of parabolic inequalities with a fractional

power of the Laplacian. Our results include nonexistence results as well as

necessary conditions for the local and global solvability.

1 Introduction and main results

The broad goal of this paper is to discuss the nonexistence of weak solutions to

systems of parabolic inequalities with a fractional power of the Laplacian (−∆)
β

2 , 0 <
β ≤ 2, namely











ut ≥ −(−∆)
α
2 u + h1(x, t)|v|p,

vt ≥ −(−∆)
β
2 v + h2(x, t)|u|q,

(1.1)

posed in ST := R
N × (0, T ), 0 < T ≤ +∞, where 0 < α, β ≤ 2 and p > 1, q > 1.

The nonexistence result of global solutions was first addressed by Escobedo and
Herrero [4]. The authors showed that the problem











ut = ∆u + vp,

vt = ∆v + uq,
(1.2)
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has no nonnegative global solution, except the trivial one if 2 max {p + 1, q + 1} ≥
N(pq − 1).
Moreover, if 2 max {p + 1, q + 1} < N(pq − 1) the both non global and global solu-
tions may exist.

In [5] Fila et al. studied (1.2) with δ∆u, 0 < δ ≤ 1, instead of ∆u. The authors
proved, among other results, the following.
If N > 2 and max{a, b} < (N−2)/N, where a = (p+1)/(pq−1), b = (q+1)/(pq−1),
then global non–trivial nonnegative solutions exist which belong to L∞(RN × R+)
and satisfy

0 < u(x, t) ≤ c|x|−2a, 0 < v(x, t) ≤ c|x|−2b,

for large |x| and for all t > 0, where c depends only upon the initial data. For
the case max{a, b} ≥ N

2
the only global trivial solution is acceptable. Later on the

problem










ut = ∆u + |x|σ1vp,

vt = ∆v + |x|σ2uq,
(1.3)

was considered by Mochizuki and Huang [19] where p, q ≥ 1 and pq > 1. The authors
extend the above results to the case 0 ≤ σ1 < N(p− 1) and 0 ≤ σ2 < N(q − 1). In
particular, under the restrictions

max {r, s} < N, q > 1 +
2 + σ2

N
,

where

r =
2(p + 1) + σ2p + σ1

pq − 1
, s =

2(q + 1) + σ1q + σ2

pq − 1
,

and
lim sup
|x|→+∞

u0|x|
a, lim sup

|x|→+∞
v0|x|

b < +∞,

where
a > r, b > s,

it is shown that (1.3) has a global solution for ‖ u0|x|
a‖∞+‖ v0|x|

b‖∞ small enough.

Returning to (1.1), it seems that the methods of [4],[5], [19] can not be used,
since the proofs are based on the positivity and some estimates of solutions via the
heat kernel.

Using the nonlinear capacity approach due to [3] and developed by [16], [17]
Guedda and Kirane [11] studied











ut = −(−∆)
α
2 u + h(x, t)vp,

vt = −(−∆)
β
2 v + h(x, t)uq,

(1.4)

where p, q > 1 and h behaves like tσ1 |x|σ2 at infinity. The authors proved the
existence of Nc = Nc(σ1, σ2, p, q) such that for any N ≤ Nc Problem (1.4) has no
global non trivial weak solution (u, v) satisfying the following

∫

RN
u(x, 0)dx ≥ 0,

∫

RN
v(x, 0)dx ≥ 0.
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This result is extended by Kirane and Quafsaoui [13] to systems of the type











ut = ∆(a(u, v, t, x)u) + A(x).∇vr + hvq,

vt = ∆(b(u, v, t, x)v) + B(x).∇us + gup.

It is the purpose of this paper to provide a sufficient condition for the local and
global non solvability of (1.1) from a different angle. We investigate, for any fixed
p > 1 and q > 1, in contrast to the Fujita-type result, the effect of the behavior of
initial data and hi, i = 1, 2, at infinity on the nonexistence of local and global weak
solutions.
This work is motivated by the paper [2] in which Baras and Kersner showed that
the problem

ut = ∆u + h(x)up, u(x, 0) = u0(x) ≥ 0, (1.5)

has no local weak nonnegative solution if the initial data satisfies

lim
|x|→+∞

up−1
0 h(x) = +∞,

and any possible local weak nonnegative solution blows up at a finite time if

lim
|x|→+∞

up−1
0 h(x)|x|2 = +∞.

Here, we attempt to extend this result to (1.1). The methods used are some modi-
fications and adaptations of ideas from [2],[16].
Next we add to (1.1) the initial condition

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R
N , (1.6)

where it is assumed that u0, v0 are locally integrable functions and there exists
R0 > 0 such that

u0(x) ≥ 0, v0(x) ≥ 0,

and
hi(x, t) ≥ gi(x) ≥ 0, i = 1, 2,

for all t ≥ 0 and for all |x| > R0.

The definition of local weak solutions to (1.1),(1.6) used here is the following.

Definition 1.1. The couple (u, v) ∈ L1
loc(ST )×L1

loc(ST ) is a local weak solution to to
(1.1),(1.6) defined in ST , 0 < T < +∞ if u ∈ Lq

loc(ST , h2dxdt), v ∈ Lp
loc(ST , h1dxdt)

such that
∫

RN
u(x, 0)ζ(x, 0)dx +

∫

ST

h1|v|
pζdxdt ≤

∫

ST

u(−∆)
α
2 ζdxdt−

∫

ST

uζtdxdt, (1.7)

and
∫

RN
v(x, 0)ζ(x, 0)dx +

∫

ST

h2|u|
qζdxdt ≤

∫

ST

v(−∆)
β

2 ζdxdt−
∫

ST

vζtdxdt, (1.8)

hold for any nonnegative ζ ∈ C∞
0 (ST ) such that ζ = 0 at t = T.
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The integral
∫

RN
w(x, 0)ζ(x, 0)dx

is understood in the weak sense, i.e.,

∫

RN
w(x, t)ζ(x, t)dx →

∫

RN
w(x, 0)ζ(x, 0), as t → 0+, ∀ζ ∈ C0(R

N × [0, T )).

Definition 1.2. The couple (u, v) is a global weak solution to (1.1),(1.6) if it is a
local solution to (1.1),(1.6) defined in ST for any T > 0.

Now we are ready to summarize our main results. Set

G = inf
{

g1, g2, g
p−1
q−1

2

}

.

Theorem 1.1. Let p, q > 1. Assume that

lim
|x|→+∞

u0G
1

p−1 lim
|x|→+∞

v0G
1

p−1 = +∞.

Then Problem (1.1),(1.6) has no weak local solution for any T > 0.

The absence of global weak solutions is formulated by the following.

Theorem 1.2. Let p > 1, q > 1. Assume

lim
|x|→+∞

(

u0G
p′−1|x|

1
2

inf{β,α} p+q+2
pq−1

)

lim
|x|→+∞

(

v0G
p′−1|x|

1
2

inf{β,α} p+q+2
pq−1

)

= +∞, (1.9)

then no global weak solution to (1.1),(1.6) can exist.

Remark 1.1. The above results still hold if Problem (1.1),(1.6) is posed in an
exterior domain Ω ⊂ R

N with a smooth boundary ∂Ω. In this case we add the
Dirichlet boundary condition u|∂Ω

= v|∂Ω
= 0.

The main step for the proofs of Theorems 1.1 and 1.2 is to establish necessary
conditions for the local and global solvability. Those conditions follow from an
estimate of

∫

|x|>R
u0(x)dx

∫

|x|>R
v0(x)dx, R > R0.

This is done in the next section. Here we assume that u0 and v0 are such that a
local solution to (1.1),(1.6) exists. We note, in passing, that in this work we are
not interested in local and global existence of solutions to (1.1),(1.6). However, the
arguments used would allow us to obtain a priori estimate for the local existence.

2 Necessary conditions for local and global solvability

As we have said, the objective is to establish necessary conditions for the local and
global existence of weak solutions.

Our first result can be formulated as follows.
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Theorem 2.1. Let (u, v) be a local solution to (1.1),(1.6) where T < ∞ and p, q > 1.
Then there exists C = C(p, q) > 0 such that

lim inf
|x|→∞

u0G
1

p−1 lim inf
|x|→∞

v0G
1

p−1 ≤ CT− p+q+2
pq−1 .

Proof. For any ζ ∈ C∞
0

(

R
N × (0, T )

)

, ζ ≥ 0, such that supp ζ ⊂ {|x| > R0} one
has

∫

RN
u0ζ(x, 0)dx +

∫

ST

h1|v|
pζdxdt ≤

∫

ST

|u||ζt|dxdt +
∫

ST

|u||∆
α
2 ζ|dxdt,

and
∫

RN
v0ζ(x, 0)dx +

∫

ST

h2|u|
qζdxdt ≤

∫

ST

|v|ζt|dxdt +
∫

ST

|v||∆
β
2 ζ|dxdt.

Using the Hölder inequality the following

∫

RN
u0ζ(x, 0)dx +

∫

ST

h1|v|
pζdxdt ≤

[
∫

ST

h2|u|
qζdxdt

]1/q

×
[

{
∫

ST

|ζt|
q′(ζh2)

1−q′dxdt
}1/q′

+
{
∫

ST

|(−∆)
α
2 ζ|q

′

(ζh2)
1−q′dxdt

}1/q′
]

, (2.1)

and

∫

RN
v0ζ(x, 0)dx +

∫

ST

h2|u|
qζdxdt ≤

[
∫

ST

h1|v|
pζdxdt

]1/p

×
[

{
∫

ST

|ζt|
p′(ζh1)

1−p′dxdt
}1/p′

+
{
∫

ST

|(−∆)
β
2 ζ|p

′

(ζh1)
1−p′dxdt

}1/p′
]

, (2.2)

hold with q′ = q
q−1

, p′ = p
p−1

. Therefore we get

[
∫

ST

h2|u|
qζdxdt

]
pq−1

pq

≤ A
1
q .B,

[
∫

ST

h1v
qζdxdt

]
pq−1

pq

≤ A.B
1
p ,

where

A =

[

{
∫

ST

|ζt|
p′(ζh1)

1−p′dxdt
}1/p′

+
{
∫

ST

|(−∆)
β

2 ζ|p
′

(ζh1)
1−p′dxdt

}1/p′
]

,

and

B =

[

{
∫

ST

|ζt|
q′(ζh2)

1−q′dxdt
}1/q′

+
{
∫

ST

|(−∆)
α
2 ζ|q

′

(ζh2)
1−q′dxdt

}1/q′
]

.

Inserting the two above estimates in (2.1) and (2.2) and multiplying the resulting
inequalities we obtain

∫

RN
u0ζ(x, 0)dx

∫

RN
v0ζ(x, 0)dx ≤ A

p(q+1)
pq−1 B

q(p+1)
pq−1 . (2.3)
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Next we may take

ζ(x, t) = (1−
t

T
)γΦ(

x

R
), γ = max{p′, q′}

where Φ ∈ W 1,∞(RN), Φ ≥ 0, is supported by {1 < |x| < 2} and satisfies

max
{

|(−∆)
α
2 Φ)|, |(−∆)

β
2 Φ)|

}

≤ Φ,

to conclude

∫

|x|>R
u0Φdx

∫

|x|>R
v0Φdx ≤

C





1

T

{

∫

ST

Φ

(h1)p′−1
dxdt

}1/p′

+
1

Rβ

{

∫

ST

Φ

(h1)p′−1
dxdt

}1/p′




p(q+1)
pq−1

×





1

T

{

∫

ST

Φ

(h2)q′−1
dxdt

}1/q′

+
1

Rα

{

∫

ST

Φ

(h2)q′−1
dxdt

}1/q′




q(p+1)
pq−1

,

where C = C(p, q) is a positive constant.
Next inserting the function G into the last estimate, dividing by

∫

{|x|>R}

Φ

Gp′−1
dx,

we find in the region ΩR = {|x| > R} , for some positive constant C = C(p, q),

inf
ΩR

(u0G
(p′−1)) inf

ΩR

(v0G
(p′−1)) ≤ CT 2

[

1

T
+

1

Rβ

]

p(q+1)
pq−1

[

1

T
+

1

Rα

]

q(p+1)
pq−1

.

Finally we obtain the desired estimate by passing to the limit as R → +∞, and the
theorem is demonstrated. �

Corollary 2.1. Let p, q > 1. There is no local (and then no global) weak solution to
(1.1),(1.6) such that

lim inf
|x|→+∞

u0G
p′−1 lim inf

|x|→+∞
v0G

p′−1 = +∞.

Corollary 2.2. Let p, q > 1. Assume that

L := lim inf
|x|→+∞

(u0G
p′−1) lim inf

|x|→+∞
(v0G

p′−1) > 0.

Then the blow up time takes place in (0,
(

C(p,q)
L

)
pq−1

p+q+2 ).

Below, we give the proof of Theorem 1.2. For the convenience of the reader we
recall this theorem.
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Theorem 2.2. Let p, q > 1. Assume

lim
|x|→+∞

(

u0G
p′−1|x|

1
2

inf{β,α} p+q+2
pq−1

)

lim
|x|→+∞

(

v0G
p′−1|x|

1
2

inf{β,α} p+q+2
pq−1

)

= +∞. (2.4)

Then no global weak solution to (1.1),(1.6) exists.

Proof. The proof starts with the following estimate

∫

|x|>R
u0Φdx

∫

|x|>R
v0Φdx ≤

C



T
−1+ 1

p′

{
∫

LR

Φ

Gp′−1
dx
}1/p′

+
T

1
p′

Rβ

{
∫

LR

Φ

Gp′−1
dx
}1/p′





p(q+1)
pq−1

×



T
−1+ 1

q′

{
∫

LR

Φ

Gq′−1
dx
}1/q′

+
T

1
q′

Rα

{
∫

LR

Φ

Gq′−1
dx
}1/q′





q(p+1)
pq−1

,

for any T > 0, where Φ is as before and

LR = {R < |x| < 2R} .

Therefore, for any γ ∈ R and any R > R0,

inf
|x|>R

u0.G
(p′−1)|x|γ inf

|x|>R
v0.G

(p′−1)|x|γ
[

∫

|x|>R

Φ

Gp′−1|x|γ
dx

]2

≤

CR2γ



T
−1+ 1

p′

{

∫

LR

Φ

G′−1|x|γ
dx

}1/p′

+
T

1
p′

Rβ

{

∫

LR

Φ

Gp′−1|x|γ
dx

}1/p′




p(q+1)
pq−1

×



T
−1+ 1

q′

{

∫

LR

Φ

Gp′−1|x|γ
dx

}1/q′

+
T

1
q′

Rα

{

∫

LR

Φ

Gp′−1|x|γ
dx

}1/q′




q(p+1)
pq−1

.

Thus, after simplification, we easily obtain

inf
|x|>R

u0G
(p′−1)|x|γ inf

|x|>R
v0G

(p′−1)|x|γ ≤ CR2γ
[

T
−1+ 1

p′

+ T
1
p′ R−β

]

p(q+1)
pq−1

[

T
−1+ 1

q′ + T
1
q′ R−α

]

q(p+1)
pq−1

,

for any T > 0. A quick inspection of the above estimate with T = Rinf{β,α} leads to

inf
|x|>R

u0G
(p′−1)|x|γ inf

|x|>R
v0G

(p′−1)|x|γ ≤ CR2γ−inf{β,α} p+q+2
pq−1 . (2.5)

Obviously, for γ = 1
2
inf {β, α} p+q+2

pq−1
, we deduce that the right hand side of (2.5) is

bounded which contradicts hypothesis (2.4). �
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Corollary 2.3. There exists a constant K? > 0 such that if

lim inf
|x|→∞

(

u0G
p′−1|x|

1
2

inf{β,α} p+q+2
pq−1

)

× lim inf
|x|→∞

(

v0G
p′−1|x|

1
2

inf{β,α} p+q+2
pq−1

)

> K?,

any possible local solution to (1.1),(1.6) blows up at a finite time.

Remark 2.1. Similar results can be formulated with G = inf
{

g2, g1, g
q−1
p−1

1

}

.

Remark 2.2. In the case where p = q we shall see that the choice of T = Rinf{β,α}

in the proof of Theorem 2.2 is optimal. Since, for some positive constant, C3, the
following

inf
|x|>R

u0G
(p′−1)|x|γ inf

|x|>R
v0G

(p′−1)|x|γ ≤ C3R
2γ
[

T
−1+ 1

p′ + T
1
p′ R−ℵ

]2p′

(2.6)

holds for any T > 0, where ℵ = inf{α, β}. This implies in particular that the
left–hand side of (2.5) is bounded from above by

C3R
2γ inf

{T∈R+}

[

T
−1+ 1

p′ + T
1
p′ R−ℵ

]2p′

.

Since the minimum is achieved at

T0 = (p′ − 1)Rℵ,

we deduce, by taking γ = ℵ.(p′ − 1), that the limit

lim
|x|→∞

(

u0G
p′−1|x|

1
2

inf{β,α} 1
p−1

)

× lim
|x|→∞

(

v0G
p′−1|x|inf{β,α} 1

p−1

)

,

is finite. A contradiction.

Remark 2.3. It is easy to see from condition (1.9) that Problem (1.1),(1.6) may
have no global weak solution in the case where

∫

RN
u(x, 0)dx < 0,

∫

RN
v(x, 0)dx < 0.

For instance, assume gi ≡ 1, i = 1, 2 and

u0(x) =

{

A0 if |x| ≤ R0/2,

A1|x|
1
2

p+q+2
pq−1 , if |x| > R0,

and

v0(x) =

{

B0 if |x| ≤ R0/2,

B1|x|
1
2

p+q+2
pq−1 , if |x| > R0,

where A0, B0 < 0, A1, B1 > 0. Then if N is such that

p + q + 2

pq − 1
inf{α, β} > 2N,

u0 and v0 are integrable and we can select A0, A1, B0, B1 such that the integrals of
u0, v0 are nonpositive and assumption (2.4) is satisfied.
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Remark 2.4. Let us point, in passing, that the generalization of the above results
to the problem











ut ≥ −(−∆)
β

2 (a(x, t)u) + h1|v|
p,

vt ≥ −(−∆)
α
2 (b(x, t)v) + h2|u|

q,

where a and b are measurable positive uniformly bounded functions in R
N×(0, +∞),

is quite straightforward. For the non-diagonal systems of the type











ut ≥ −(−∆)
β
2 (a(x, t)v) + h1(x)|v|p,

vt ≥ −(−∆)
α
2 (b(x, t)u) + h2(x)|u|q.

Condition (2.4) is formulated as

lim
|x|→∞

(u0 + v0)h
p′−1|x|inf{β,α} inf{p′−1,q′−1} = +∞, (2.7)

where

h =
{

h1, h2, h
p−1
q−1

2

}

.

The new element in this result is that condition (2.7) shows that solutions may blow
up even if u0 = 0 or v0 = 0.

Now let us consider the following


































∂k

∂tk
u ≥ −(−∆)

α
2 u + |v|p,

∂k

∂tk
v ≥ −(−∆)

β
2 v + |u|q,

∂k−1

∂tk−1 u(x, 0) = uk−1(x), ∂k−1

∂tk−1 v(x, 0) = vk−1(x),

(2.8)

where k ∈ N is larger than 1. The functions uk−1, vk−1 are positive for large |x|. Let

γ =
1

2

inf{α, β}

k(pq − 1)

[

(kp′ − 1)(p− 1)(q + 1) + (kq′ − 1)(q − 1)(p + 1)
]

.

We have

Theorem 2.3. Assume p, q > 1 and

lim
|x|→+∞

uk−1|x|
γ × lim

|x|→+∞
vk−1|x|

γ = +∞.

Then there is no global weak solution to (2.8).

The proof of this theorem can be obtained without any major difficulty. The
idea is the take

ζ(x, t) = η(t/T )Φ(x/R),

as a test function where Φ is defined as above and the function η ∈ C∞ is defined
by 0 ≤ η ≤ 1, η(τ) = 1 for τ ≤ 1/2 and η(τ) = 0 for τ ≥ 1.
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A natural extension of our results is to study the nonexistence of global solutions
to systems of three inequalities like































ut ≥ −(−∆)
β
2 u + h1|v|

p,

vt ≥ −(−∆)
α
2 v + h2|w|

q,

wt ≥ −(−∆)
γ
2 w + h2|u|

r.

(2.9)

The following is our final result.

Theorem 2.4. Let p, q, r be a positive reals larger strictly than 1. Set

h = inf
{

h1, h2, h3, h
p−1
q−1

2 , h
p−1
r−1

3

}

.

Then if

lim
|x|→+∞

u0h
(p′−1)|x|θ lim

|x|→+∞
v0h

(p′−1)|x|θ lim
|x|→+∞

w0h
(p′−1)|x|θ = +∞,

where

θ :=
1

3
inf {α, β, γ}

q(p + 1) + r(q + 1) + r(p + 1)− 3

pqr − 1
(p− 1),

no global weak solution, (u, v, w) to (2.9) such that u(., 0) = u0, v(., 0) = u0, w(., 0) =
u0 can exist.

Proof. To avoid the routine argument we will shrink the proof. If we take, as
above, the selected test function

ζ(x, t) =
(

1−
t

T

)τ

φ,

where
τ = max {p′, q′, r′} ,

we recover our familiar estimate
∫

RN
u0φdx

∫

RN
v0φdx

∫

RN
w0φdx ≤

C(p, q, r)

(

∫

RN

φ

hp′−1
dx

)3

A
r(pq+q+1)

pdr−1 B
p(pr+r+1)

pdr−1 C
q(rp+p+1)

pqr−1 ,

where

A = T−1+ 1
r′ + R−αT

1
r′ , B = T

−1+ 1
q′ + R−βT

1
q′ , C = T

−1+ 1
p′ + R−γT

1
p′ .

Likewise, by setting,
T = Rinf{α,β,γ},

we arrive at a contradiction. �

Acknowledgments. The author would like to thank Professor R. Kersner for the
stimulating discussion. This paper was written during a visit of the author to the
Computer and Automation Research Institute, Budapest, to which he is deeply
grateful for its hospitality. This work was partially supported by Direction des
Affaires Internationales (UPJV) Amiens, France.



Absence of solutions to weakly coupled systems of parabolic inequalities 219

References

[1] C. Bandle and H. Brunner, Blowup in diffusion equations: a survey, J.
Comput. Appl. Math., 97, no. 1-2, (1998), pp. 3–22.

[2] P. Baras and R. Kersner, Local and global solvability of a class of semi-
linear parabolic equations, J. Diff. Eqns, 68, no. 2, (1987), pp. 238–252.

[3] P. Baras and M. Pierre, Critère d’existence de solutions positives pour
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Faculté de Mathématiques et d’Informatique,
33, rue Saint-Leu
80039 Amiens, France


