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Abstract. We extend results of Bongiovanni et al. [1] on double
bubbles on the line with log-convex density to the case where the

derivative of the log of the density is bounded. We show that the
tie function between the double interval and the triple interval still
exists, but may blow up to infinity in finite time. For the first time, a
density is presented for which the blowup time is positive and finite.

1. Introduction

Consider R with a symmetric, strictly log-convex, C1 density f . Bongio-
vanni et al. [1] show that a perimeter-minimizing double bubble enclosing
volumes V1 ≤ V2 is one of the following two configurations of Figure 1:

• A double interval : two contiguous intervals in equilibrium enclosing
volumes V1 and V2;

• A triple interval : an interval symmetric about the origin enclosing
volume V1 flanked by two intervals on each side, each enclosing
volume V2/2.

They also show that, if (log f)′ is unbounded, there is a tie function λ(V1)
such that for V2 = λ(V1), the double interval and the triple interval tie (have
equal perimeter); for V2 > λ(V1), the triple interval is uniquely perimeter
minimizing; and for V2 < λ(V1), the double interval is uniquely perimeter
minimizing up to reflection [1, Theorem 4.15].

The goal of this note is to extend this result to the case where (log f)′ is
bounded. We show that the tie function λ still exists, but it may “blow up
in finite time”: it is defined only for V1 < V0 for some V0 and approaches
infinity as V1 → V0. See Figure 2. This proves the conjecture stated at the
end of [1, Section 4].

Our main result is as follows.
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Figure 1. A double interval and a triple interval on the
real line.

Theorem 1.1. Consider R with a symmetric, strictly log-convex, C1 den-

sity. There exists a “blowup time” 0 ≤ V0 ≤ ∞ such that, for each V1 < V0,

there is a unique λ(V1) > V1 with the following properties.

• For V1 < V0 and V2 = λ(V1), the double interval and the triple

interval tie.

• For V1 < V0 and V2 > λ(V1), the perimeter-minimizing double bub-

ble is uniquely the triple interval.

• For either V1 ≥ V0 or V1 < V0 and V1 ≤ V2 < λ(V1), the perimeter-

minimizing double bubble is uniquely the double interval up to re-

flection.

See Figure 2. Moreover, each of the three types of blowup: V0 = 0, 0 <
V0 < ∞, and V0 = ∞, occurs for some symmetric, strictly log-convex, C1

density.

Proposition 2.2 gives more properties of the tie function λ. We provide
a way to compute the blowup time V0 in Proposition 3.8, and criteria for
when the blowup time is infinity or zero in Corollaries 3.9 and 3.10. Finally,
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Figure 2. Three possibilities for the tie function λ be-
tween the double interval and the triple interval: λ not
existing, λ blowing up to infinity in finite time, and λ ex-
isting for all time. Each case occurs for some symmetric,
strictly log-convex, C1 density (Example 3.11).

Example 3.11 presents densities exhibiting the three types of blowup. In
particular, we show that it is possible for the blowup time to be positive
and finite.

This note is organized as follows. Section 2 shows the existence of the
blowup time V0 and tie function λ in Theorem 1.1 by modifying the proof
of [1, Theorem 4.15].

168 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 2



DOUBLE BUBBLES ON THE LINE

In Section 3, we derive a formula for the blowup time V0 in Proposition
3.8. This result is then used to develop criteria for when V0 = ∞ (Corol-
lary 3.9) and V0 = 0 (Corollary 3.10). Finally, we present examples of
densities for which V0 = 0, 0 < V0 < ∞, and V0 = ∞ in Example 3.11.

2. Existence of Blowup Time

We establish the existence of the blowup time V0 and tie function λ in
Theorem 1.1. Our notation follows Bongiovanni et al. [1]. For prescribed
volumes V1 ≤ V2, let µ(V1, V2) = P3 − P2 be the difference of perimeters
of the triple interval and the double interval. In Bongiovanni et al. [1],
Proposition 4.11 requires the extra hypothesis that (log f)′ is unbounded,
but Lemmas 4.8, 4.9, and 4.14 and Proposition 4.10 do not hold for any
symmetric, strictly log-convex, C1 density.

The following quantity is useful in characterizing the blowup time.

Definition 2.1. Consider R with a symmetric, strictly log-convex, C1 den-
sity. For each V1, define µℓ(V1) to be

µℓ(V1) = lim
V2→∞

µ(V1, V2),

the limit of the difference of perimeters of the triple interval and the double
interval as V2 → ∞.

Notice that µℓ is well-defined because µ is strictly decreasing in V2 [1,
Lemma 4.9], with −∞ ≤ µℓ < ∞. Moreover, since µ is strictly increasing
in V1 [1, Lemma 4.9], µℓ is nondecreasing.

We can now state the following proposition, which proves the existence
of the blowup time V0 and tie function λ.

Proposition 2.2. Consider R with a symmetric, strictly log-convex, C1

density. There exists a “blowup time” 0 ≤ V0 ≤ ∞ such that, for each

V1 < V0, there is a unique λ(V1) > V1 with the following properties.

• For V1 < V0 and V2 = λ(V1), the double interval and the triple in-

terval tie, and they are the only perimeter-minimizing double bub-

bles up to reflection.

• For V1 < V0 and V2 > λ(V1), the perimeter-minimizing double bub-

ble is uniquely the triple interval.

• For either V1 ≥ V0 or V1 < V0 and V1 ≤ V2 < λ(V1), the perimeter-

minimizing double bubble is uniquely the double interval up to re-

flection.
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• λ is strictly increasing, C1, tends to infinity as V1 → V0, and tends

to a positive limit as V1 → 0.

See Figure 2.

Proof. We modify the proof of [1, Theorem 4.15]. The idea is that µℓ

(Definition 2.1) should be negative in the region where λ is defined. With
this in mind, let the blowup time V0 be

V0 = sup{V1 : µℓ(V1) < 0}, 0 ≤ V0 ≤ ∞, (2.1)

where this quantity is zero if no V1 satisfies the condition.
For V1 < V0, we now construct the tie function λ(V1). Because µℓ is

nondecreasing, µℓ(V1) < 0. Since µ(V1, V1) > 0 [1, Proposition 4.10] and µ
is strictly decreasing in V2 [1, Lemma 4.9], there is a unique λ(V1) > V1 such
that µ(V1, λ(V1)) = 0. Then, µ(V1, V2) < 0 for V2 > λ(V1) and µ(V1, V2) >
0 for V1 ≤ V2 < λ(V1). Because the double interval and the triple interval
are the only possible perimeter minimizers [1, Proposition 4.6], we have
proved the first three items in the case that V1 < V0.

Now, consider the case V1 ≥ V0. We must show that µ(V1, V2) > 0 for
all V2 ≥ V1. If V0 = ∞, this is trivial. If V0 = 0, then µℓ(V1) ≥ 0 for
all V1 > 0. Because µ is strictly decreasing in V2, µ(V1, V2) > 0 for all
V1 ≤ V2, as desired. Suppose that 0 < V0 < ∞. We claim that µℓ(V0) ≥ 0.
If µℓ(V0) < 0, then for some V2 > V0, µ(V0, V2) < 0. By continuity of µ,
for some V0 < V1 < V2, µ(V1, V2) < 0, and so µℓ(V1) < 0, a contradiction.
Thus, the claim holds. Because µℓ is nondecreasing, µℓ(V1) ≥ 0 for all
V1 ≥ V0. Then, because µ is strictly decreasing in V2, µ(V1, V2) > 0 for all
V2 ≥ V1 ≥ V0.

It remains to prove the fourth item. Using exactly the same arguments
as in the proof of [1, Theorem 4.15], one can show everything except the
statement that λ(V1) → ∞ as V1 → V0. We now show this last statement.
Notice that we can assume 0 < V0 < ∞. Suppose, to the contrary, that
λ increases to a finite limit L as V1 → V0. Then, µ(V1, V2) < 0 for all
V1 < V0 and V2 > L. By continuity, µ(V0, V2) ≤ 0 for all V2 > L, and so,
because µ is strictly decreasing in V2, µ(V0, V2) < 0 for all V2 > L. Again
by continuity, µ(V1, V2) < 0 for some V1 > V0 and V2 > L, implying that
µℓ(V1) < 0, a contradiction. Therefore, the proposition is proved. �

A question remains: what values can the blowup time V0 take? Theorem
4.15 of Bongiovanni et al. shows that if (log f)′ is unbounded, then V0 = ∞,
and Example 4.13 gives a density with V0 = 0. In the next section, we
will devise a general procedure for determining the value of V0 and finally,
present a density for which 0 < V0 < ∞.
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3. Computing Blowup Time

We now seek to compute the blowup time V0 in Proposition 2.2. We
must first define some quantities. As in Bongiovanni et al. [1, Lemma 4.2],
define the volume coordinate by

V =

∫ x

0

f,

where x is the positional coordinate. In particular, f is a strictly log-convex
density if and only if f is strictly convex in volume coordinate.

Definition 3.1. On R with a symmetric, strictly log-convex, C1 density
f , define

L = lim
x→∞

(log f)′(x) = lim
V→∞

f ′(V ),

M = lim
V→∞

f(2V )− 2f(V ),

where x is the positional coordinate and V the volume coordinate.

Notice that L exists because f ′ is strictly increasing and M exists be-
cause, by taking derivatives, f(2V ) − 2f(V ) is strictly increasing when
V > 0. Observe that 0 < L ≤ ∞ and −∞ < M ≤ ∞.

From now on, we work exclusively with volume coordinates. The follow-
ing lemma shows a relationship between L and M .

Lemma 3.2. L = ∞ implies M = ∞.

Proof. Let g(V ) = f(2V )− 2f(V ) for V > 0. Because g is strictly increas-
ing, g ≤ M . Notice that

f(2V )

2V
− f(V )

V
=

g(V )

2V
,

so by telescoping,

f(2n)

2n
− f(1) =

n−1∑

k=0

g(2k)

2k+1
≤

(
1− 1

2n

)
M.

Since L = ∞, f(V )/V → ∞ as V → ∞. So, as n → ∞, the left-hand side
diverges to infinity, implying that M = ∞. �

The following example shows that the converse of Lemma 3.2 is not true.

Example 3.3. Consider f(V ) = V tan−1 V − log(V 2 + 1)/2 + 1. We can

easily check that f is symmetric, C1 with f ′(V ) = tan−1 V , and strictly

convex. Therefore, L = π/2, and we can compute that M = ∞.

We now define another quantity, which will later be shown to be related
to the left endpoint of the double interval.
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Definition 3.4. Let f be a symmetric, strictly log-convex, C1 density on
R with f ′(V ) bounded. For each V1, define V

∗ to be the unique solution to

f ′(V ∗) + f ′(V ∗ + V1) = −L, (3.1)

where L is as in Definition 3.1.

Notice that the left-hand side of (3.1) is strictly increasing in V ∗, tends
to −2L as V ∗ → −∞, and tends to 2L as V ∗ → ∞. So, (3.1) has a unique
solution, and V ∗ is well-defined.

Let Ṽ be the leftmost endpoint of the double interval. By the equilibrium

condition [1, Corollary 3.3], Ṽ is the unique solution to

f ′(Ṽ ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0. (3.2)

Because f ′ is strictly increasing, we can see that Ṽ is strictly decreasing in

both V1 and V2. We now characterize V ∗ as the limit of Ṽ as V2 → ∞.

Lemma 3.5. Suppose that L < ∞. For a fixed V1, limV2→∞ Ṽ = V ∗.

Proof. Since Ṽ is strictly decreasing in V2, the limit Vℓ = limV2→∞ Ṽ exists
(it may be −∞). It remains to show that Vℓ = V ∗. By [1, Lemma 4.8],

Ṽ > −(V1 + V2)/2, so Ṽ + V1 + V2 > (V1 + V2)/2 → ∞ as V2 → ∞. Hence,
by taking V2 → ∞ in (3.2),

f ′(Vℓ) + f ′(Vℓ + V1) + L = 0,

where we interpret f ′(−∞) = −L in the case that Vℓ = −∞. Finally,
observe that Vℓ = −∞ is not possible due to L > 0, so Vℓ is finite and
equals V ∗. �

The next lemma collects some properties of V ∗ as V1 → ∞.

Lemma 3.6. Suppose that L < ∞ and let V ∗ be as in Definition 3.4. Then,

V ∗ is strictly decreasing in V1, limV1→∞ V ∗ = −∞, and limV1→∞(V ∗ +
V1) = 0.

Proof. The fact that f ′ is strictly increasing implies that V ∗ is strictly
decreasing in V1. This and the fact that V ∗ ≤ −V1 [1, Lemma 4.8] im-
ply that limV1→∞ V ∗ = −∞. Now, take V1 → ∞ in (3.1) to obtain
limV1→∞(V ∗ + V1) = 0. �

The following proposition gives a way to compute µℓ (Definition 2.1)
based on Lemma 3.5.

Proposition 3.7. Let µℓ be as in Definition 2.1, L and M be as in Defi-

nition 3.1, and V ∗ be as in Definition 3.4. Suppose that L < ∞. Then,

µℓ(V1) = 2f

(
V1

2

)
− f(V ∗)− f(V ∗ + V1)− V ∗L−M, (3.3)
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where this quantity is finite if M < ∞ and equals −∞ if M = ∞.

Proof. By Lemma 3.5,

µℓ(V1) = lim
V2→∞

(P3 − P2)

= lim
V2→∞

[
2f

(
V1

2

)
+ 2f

(
V1 + V2

2

)

− f(Ṽ )− f(Ṽ + V1)− f(Ṽ + V1 + V2)

]

= 2f

(
V1

2

)
− f(V ∗)− f(V ∗ + V1)

+ lim
V2→∞

[
2f

(
V1 + V2

2

)
− f(Ṽ + V1 + V2)

]
.

Rewrite the quantity in the last limit as
[
2f

(
V1 + V2

2

)
− f(V1 + V2)

]
+
[
f(V1 + V2)− f(Ṽ + V1 + V2)

]
.

The first bracket tends to −M as V2 → ∞. By the Mean Value Theorem,

the second bracket equals −Ṽ f ′(V ) for some V > Ṽ + V1 + V2 > (V1 +
V2)/2 → ∞ as V2 → ∞ [1, Lemma 4.8], so it tends to −V ∗L as V2 → ∞.
Therefore, µℓ has the desired formula. �

We are now ready to state the proposition computing the blowup time
V0.

Proposition 3.8. Consider R with a symmetric, strictly log-convex, C1

density f . Let L and M be as in Definition 3.1 and V ∗ be as in Defini-

tion 3.4. Then, the blowup time V0 of Proposition 2.2 can be computed as

follows.

• If L = ∞ or M = ∞, then V0 = ∞.

• If L < ∞ and M < ∞, then V0 < ∞ and

V0 = sup {V1 : µℓ(V1) < 0} = inf {V1 : µℓ(V1) ≥ 0} , (3.4)

where µℓ satisfies (3.3) and the sup is 0 if there is no V1 satisfying

its condition.

Proof. Bongiovanni et al. [1, Proposition 4.11] show that if L = ∞, then
V0 = ∞. So, suppose that L < ∞. By Proposition 3.7, µℓ is given by (3.3).

The characterization of V0 in (2.1) shows the first half of (3.4). Then,
the fact that µℓ is nondecreasing implies the second half of (3.4).

It remains to show that, still assuming L < ∞, V0 = ∞ if and only if
M = ∞. If M = ∞, then µℓ(V1) = −∞ by (3.3), and so V0 = ∞. Suppose
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that M < ∞. By (3.3), we can write

µℓ(V1) =

[
2f

(
V1

2

)
− f(V1)

]
+[f(−V1)− f(V ∗)]−f(V ∗+V1)−V ∗L−M.

Take V1 → ∞ and apply Lemma 3.6. The first bracket tends to −M . The
second bracket is (−V1 − V ∗)f ′(V ) for some V , which tends to 0 because
V ∗ + V1 → 0 as V1 → ∞ and f ′ is bounded. Finally, f(V ∗ + V1) → f(0)
and V ∗L → −∞. Hence, µℓ → ∞ as V1 → ∞, showing that V0 < ∞. �

From Proposition 3.8, we obtain two corollaries stating conditions when
V0 = 0 and V0 = ∞.

Corollary 3.9. Consider R with a symmetric, strictly log-convex, C1 den-

sity. Let L and M be as in Definition 3.1. Then, V0 = ∞ if and only if

M = ∞. In particular, L = ∞ implies V0 = ∞.

Proof. By Proposition 3.8, V0 = ∞ if and only if L = ∞ or M = ∞. This
is equivalent to M = ∞ by Lemma 3.2. �

Corollary 3.10. Consider R with a symmetric, strictly log-convex, C1

density f . Let L and M be as in Definition 3.1. Then, V0 = 0, that is, the
double interval is uniquely perimeter minimizing for all prescribed volumes

if and only if L < ∞ and

2f(0)− 2f(V ) + V L−M ≥ 0, where V = (f ′)−1(L/2). (3.5)

Proof. By Corollary 3.9, L = ∞ implies V0 = ∞. Suppose that L < ∞.
By Proposition 3.8, V0 = 0 if and only if µℓ(V1) ≥ 0 for all V1 > 0. Since
µℓ is nondecreasing, this is equivalent to limV1→0 µℓ(V1) ≥ 0. From (3.1),
V ∗ → −(f ′)−1(L/2) as V1 → 0. Hence, by (3.3), limV1→0 µℓ(V1) equals the
left-hand side of (3.5), proving the corollary. �

Finally, the following example shows densities with the three types of
blowup: V0 = 0, 0 < V0 < ∞, and V0 = ∞. In particular, it shows that the
case 0 < V0 < ∞ is indeed possible.

Example 3.11. All densities below are symmetric, C1, and strictly convex

in volume coordinate.

• [1, Example 4.13]. Consider f(V ) = |V |+ e−|V |. We can compute

L = 1, M = 0, and (f ′)−1(L/2) = log 2. By Corollary 3.10, we

can check that V0 = 0.
• Consider f(V ) =

√
V 2 + 1 − 1/2. Then, L = 1, M = 1/2, and

(f ′)−1(L/2) = 1/
√
3. Corollaries 3.9 and 3.10 imply that 0 < V0 <

∞.

• Consider the Borell density f(x) = ex
2

. Then (log f)′(x) = 2x is

unbounded, so L = ∞. By Corollary 3.9, V0 = ∞.

With this example, we have completed the proof of Theorem 1.1.
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