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Abstract. In this paper we discuss how to construct piecewise linear

chaotic maps with a prescribed probability distribution on a finite
number of open intervals of equal length that form a partition of the

unit interval. The idea and method of how to find such a map are

given in [3]. But a formal proof is not given. In this paper we provide
a formal proof.

1. Problem

In this paper we consider the following problem. We divide the unit
interval [0, 1] into n open subintervals {Ij}nj=1 = {( j−1n , jn )}nj=1 of equal

length. Suppose that p = [p1 . . . pn]T is a given positive probability vector,
that is,

∑n
j=1 pj = 1 and each pj > 0. Now, the problem is to find a

piecewise linear map τ : [0, 1]→ [0, 1] such that

lim
N→∞

1

N

N−1∑
i=0

χIj (τ
i(x)) = pj m− a.e for 1 ≤ j ≤ n, (1.1)

where χIj is the characteristic map over Ij for each j, τ i denotes the com-
position of τ with itself i times, and m is the Lebesgue measure. The idea
and method of how to find such a map τ are given in [3] (see also [4] and
[5]). But a formal proof has not been given. In this paper we provide a
formal proof.

2. Preliminaries

Throughout the paper we assume that B is the Borel σ-algebra on the
closed unit interval [0, 1]. Every measure mentioned in this paper is defined
on B. We need three definitions before we state the celebrated Birkhoff
Ergodic Theorem.
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Definition 1. The map τ : [0, 1]→ [0, 1] is called measurable if τ−1(B) ⊆
B, that is, B ∈ B implies τ−1(B) ∈ B, where τ−1(B) = {x ∈ [0, 1] : τ(x) ∈
B}.

Definition 2. We say that the measurable map τ : [0, 1]→ [0, 1] preserves
measure µ or that measure µ is τ -invariant if µ(τ−1(B)) = µ(B) for all
B ∈ B.

Definition 3. Let τ : [0, 1] → [0, 1] be a measurable map. A set B ∈ B is
said to be an invariant set of τ if τ−1(B) = B. The map τ is said to be
ergodic w.r.t. the measure µ if whenever B ∈ B is an invariant set of τ ,
then µ(B) = 0 or µ(Bc) = 0.

Now we are ready to recall the Birkhoff Ergodic Theorem.

The Birkhoff Ergodic Theorem. Suppose τ : [0, 1] → [0, 1] is mea-
surable and the probability measure µ is τ -invariant. Then for any f ∈
L1([0, 1],B, µ), there exists a function f̂ ∈ L1([0, 1],B, µ) such that

lim
N→∞

1

N

N−1∑
i=0

f(τ i(x)) = f̂(x), µ− a.e. (2.1)

Furthermore,

f̂ ◦ τ = f̂ , µ− a.e. (2.2)

and ∫ 1

0

f̂ dµ =

∫ 1

0

f dµ. (2.3)

In addition, if τ is ergodic w.r.t. the probability measure µ, then (2.2) im-

plies that f̂ is constant µ-a.e., so using (2.3) and the fact that µ is a prob-
ability measure we have

f̂ =

∫ 1

0

f dµ, µ− a.e.

Thus, (2.1) becomes

lim
N→∞

1

N

N−1∑
i=0

f(τ i(x)) =

∫ 1

0

f dµ, µ− a.e. (2.4)

Proof. See, for example, [2, Theorems 4.2.3 and 4.2.4]. �

Now we need two more definitions before we state Theorem 1.

Definition 4. A measurable map τ : [0, 1]→ [0, 1] is nonsingular w.r.t. the
Lebesgue measure m if m(B) = 0 implies m(τ−1(B)) = 0, where B ∈ B.
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Definition 5. If τ : [0, 1]→ [0, 1] is a nonsingular map w.r.t. the Lebesgue
measure m, the linear operator Pτ : L1([0, 1],B,m) → L1([0, 1],B,m) de-
fined (implicitly) for any g ∈ L1([0, 1],B,m) by∫

B

Pτg dm =

∫
τ−1(B)

g dm for every B ∈ B

is called the Frobenius-Perron operator associated with τ .

Remark 1. For a given g ∈ L1([0, 1],B,m), by choosing B = [0, x], we see
that ∫ x

0

Pτg dm =

∫
τ−1([0,x])

g dm for every x ∈ [0, 1].

By differentiating both sides w.r.t. x, we have

(Pτg) (x) =
d

dx

∫
τ−1([0,x])

g dm for m− a.e. x ∈ [0, 1], (2.5)

which is the explicit formula of the Frobenius-Perron operator associated
with τ .

We have the following theorem that tells us the usefulness of the Frobenius-
Perron operator associated with a nonsingular map τ : [0, 1] → [0, 1]
w.r.t. the Lebesgue measure m.

Theorem 1. Let τ : [0, 1]→ [0, 1] be a nonsingular map w.r.t. the Lebesgue
measure m, and let Pτ be the Frobenius-Perron operator associated with τ .
Let g ∈ L1[(0, 1],B,m) be a density function. Then the probability measure
µ defined by

µ(B) =

∫
B

g dm for every B ∈ B (2.6)

is τ -invariant if and only if g is an invariant density under Pτ , that is,
Pτ (g) = g.

Proof. See, for example, [1, Proposition 4.2.7]. �

Now we need another basic definition before we state Theorem 2.

Definition 6. The measure µ1 is said to be an absolutely continuous mea-
sure w.r.t. the measure µ2, denoted by µ1 << µ2, if B ∈ B and µ2(B) = 0,
then µ1(B) = 0.

Now we are ready to state Theorem 2.

Theorem 2. Let τ : [0, 1] → [0, 1] be nonsingular and ergodic w.r.t. the
Lebesgue measure m. Suppose that g ∈ L1([0, 1],B,m) is a density such
that Pτ (g) = g and g > 0 on [0, 1]. If we define the probability measure
µ as in (2.6), then µ is τ -invariant, µ << m, and τ is ergodic w.r.t. the
probability measure µ. Furthermore, we also have m << µ.
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Proof. Since Pτ (g) = g and the probability measure µ is defined as in (2.6),
by Theorem 1 the probability measure µ is τ -invariant. By the definition of
µ, we have µ << m. So τ , which is ergodic w.r.t. the Lebesgue measure m,
is also ergodic w.r.t. the probability measure µ. Furthermore, since g > 0
on [0, 1], it is easy to see that we also have m << µ. �

3. Construction of the Map τ

We define g∗ ∈ L1([0, 1],B,m) by

g∗ =

n∑
j=1

(npj)χIj , (3.1)

where pj is the jth component of the positive probability vector p given in

Section 1. Note that g∗ is not defined at { jn}
n
j=0. But since the Lebesgue

measure of this set is zero, it does not matter. Since p is a positive proba-
bility vector, g∗ is a positive density function.

Suppose that we can find τ : [0, 1]→ [0, 1] such that

(i) τ is nonsingular and ergodic w.r.t. the Lebesgue measure m;
(ii) g∗ is an invariant density of Pτ , that is, Pτ (g∗) = g∗.

Let the probability measure µ be defined by (2.6) using g∗ in place of g.
Then by Theorem 2, the equation (2.4) in the Birkhoff Ergodic Theorem
is valid for τ with any f ∈ L1([0, 1],B, µ). So using (2.4) with f = χIj , we
obtain

lim
N→∞

1

N

N−1∑
i=0

χIj (τ
i(x)) =

∫ 1

0

χIj dµ =

∫
Ij

dµ

=

∫
Ij

g∗ dm = pj µ− a.e. for 1 ≤ j ≤ n.

But since m << µ again by Theorem 2, the above equation can be written

lim
N→∞

1

N

N−1∑
i=0

χIj (τ
i(x)) = pj m− a.e for 1 ≤ j ≤ n,

which is (1.1). So all we have to do is to find τ fulfilling the conditions (i)
and (ii).

The key of constructing such a τ is to construct a special column stochas-
tic matrix. In [3] (see also [4] and [5]) the authors considered the following
matrix

Aβ = βI + (1− β)peT with eT = [1 1 · · · 1], (3.2)
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where the vector p is the positive probability vector given in Section 1 and

β is any real number in the interval [0, 1). We let a
(β)
ij denote the (i, j)-

entry of the matrix Aβ for each β ∈ [0, 1). Now we collect two important
properties of the matrix Aβ for each β ∈ [0, 1).

Lemma 1. The matrix Aβ is a positive column stochastic matrix for every
β ∈ [0, 1).

Proof. Note that from (3.2), a
(β)
ii = β + (1 − β)pi for 1 ≤ i ≤ n and

aij = (1 − β)pi for 1 ≤ i 6= j ≤ n. Since β ∈ [0, 1) and p is a positive

probability vector, we see that a
(β)
ij > 0 for 1 ≤ i, j ≤ n. So Aβ is a positive

matrix for every β ∈ [0, 1).
To show that Aβ is column stochastic, it is enough to show eT Aβ = eT .

Indeed, for every β ∈ [0, 1), using the fact that eT p = 1, we have

eTAβ = eT [β I + (1− β)p eT ] = βeT + (1− β)(eT p)eT

= βeT + (1− β)eT = eT ,

as desired. �

Lemma 2. The positive probability vector p is an eigenvector of Aβ cor-
responding to eigenvalue 1 for every β ∈ [0, 1), that is Aβp = p for every
β ∈ [0, 1).

Proof. We simply note that, for any β ∈ [0, 1), we have

Aβp = [β I + (1− β)p eT ]p = βp+ (1− β)p (eT p)

= βp+ (1− β)p = p.

�

Now we are ready to construct τ : [0, 1]→ [0, 1] which fulfills conditions
(i) and (ii). In fact, we will construct a one parameter family {τβ}β∈[0,1)
which fulfills conditions (i) and (ii) for every β ∈ [0, 1).

Now we construct such a family. Let β be an arbitrary number in the

interval [0, 1) but fixed. First of all, we construct a partition {x(β)s }n
2

s=0 of

[0, 1] such that x
(β)
0 = 0 and

x
(β)
n(j−1)+k =

j − 1

n
+

1

n

k∑
i=1

a
(β)
ij , 1 ≤ j, k ≤ n.

Since by Lemma 1, a
(β)
ij > 0, {x(β)s }n

2

s=0 is made of distinct points. Since

again by Lemma 1, Aβ is a column stochastic matrix, we have x
(β)
n(j−1)+n =

x
(β)
nj = j

n for 1 ≤ j ≤ n. In particular, x
(β)
n2 = 1.
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Now we define τβ by defining τβ |(x(β)
i−1,x

(β)
i )

for 1 ≤ i ≤ n2 as follows: for

1 ≤ i ≤ n2 we let

τβ |(x(β)
i−1,x

(β)
i )

(x) =
1

n(x
(β)
i − x(β)i−1)

(x−x(β)i−1)+
rem(i− 1, n)

n
, x ∈ (x

(β)
i−1, x

(β)
i ),

where rem(i−1, n) denotes the remainder when i−1 is divided by n. Note

that τβ is not defined at {x(β)s }n
2

s=0. Since the Lebesgue measure of this set is

zero, it does not matter. However, it is convenient to define τβ(x
(β
0 ) = 0 and

τβ(x
(β)
n(j−1)+k) = k

n for 1 ≤ j, k ≤ n so that τβ |Ij is a piecewise linear strictly

increasing continuous function onto the open interval (0, 1) for 1 ≤ j ≤ n.

So if we let τ
(j)
β : Ij → (0, 1) be the restriction of τβ to Ij for 1 ≤ j ≤ n,

then each τ
(j)
β is a one-to-one and onto function from Ij to (0, 1). Thus, if

we let g
(j)
β =

(
τ
(j)
β

)−1
: (0, 1)→ Ij for 1 ≤ j ≤ n, we have

τ ′β

(
g
(j)
β (x)

)(
g
(j)
β

)′
(x) = 1,

because τβ

(
g
(j)
β (x)

)
= x, and hence,(

g
(j)
β

)′
(x) =

1

τ ′β

(
g
(j)
β (x)

) . (3.3)

One can check that

τ ′β

(
g
(j)
β (x)

)
=

1

a
(β)
ij

when x ∈ Ii for 1 ≤ i, j ≤ n. (3.4)

Now we are going to show that Pτβ (g∗) = g∗. Since g∗ =
∑n
j=1(npj)χIj

by (3.1), we first find the expression of Pτβ (χIj ). Note that by using (2.5),
(3.3), and (3.4), we have

Pτβ (χIj )(x) =
d

dx

∫
τ−1
β ([0,x])

χIj (y) dm(y) =
d

dx

∫
τ−1
β ([0,x])∩Ij

1 dm(y)

=
d

dx

∫ g
(j)
β (x)

j−1
n

1 dm(y) =
(
g
(j)
β

)′
(x)

=
1

τ ′β

(
g
(j)
β (x)

) =
n∑
i=1

a
(β)
ij χIi(x).

In short, we have

Pτβ (χIj ) =

n∑
i=1

a
(β)
ij χIi . (3.5)
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Now using (3.1), (3.5), and Lemma 2, we have

Pτβ (g∗) = Pτβ

 n∑
j=1

(npj)χIj

 =

n∑
j=1

(npj)Pτβ (χIj )

=

n∑
j=1

(npj)

n∑
i=1

a
(β)
ij χIi = n

n∑
i=1

 n∑
j=1

a
(β)
ij pj

χIi

= n

n∑
i=1

[Aβp]iχIi = n

n∑
i=1

piχIi

=

n∑
i=1

(npi)χIi = g∗,

where [Aβp]i is the ith component of the vector Aβp, and hence, Pτβ (g∗) =
g∗.

But this is true for every β ∈ [0, 1). So τβ , for any β ∈ [0, 1), has g∗ as the
common invariant density of its corresponding Frobenius-Perron operator
Pτβ . From the construction of τβ , it is clear that τβ is nonsingular and
ergodic w.r.t. the Lebesgue measure m for every β ∈ [0, 1). So {τβ}β∈[0,1)
fulfills conditions (i) and (ii) for every β ∈ [0, 1). Thus, {τβ}β∈[0,1) is a one
parameter family of solutions to the problem given in Section 1.
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