ON CONSTRUCTING CHAOTIC MAPS WITH A PRESCRIBED PROBABILITY DISTRIBUTION

PETER M. UHL, HANNAH BOHN, AND NOAH H. RHEE

ABSTRACT. In this paper we discuss how to construct piecewise linear chaotic maps with a prescribed probability distribution on a finite number of open intervals of equal length that form a partition of the unit interval. The idea and method of how to find such a map are given in [3]. But a formal proof is not given. In this paper we provide a formal proof.

1. Problem

In this paper we consider the following problem. We divide the unit interval [0,1] into n open subintervals $\{I_j\}_{j=1}^n = \{(\frac{j-1}{n}, \frac{j}{n})\}_{j=1}^n$ of equal length. Suppose that $p = [p_1 \dots p_n]^T$ is a given positive probability vector, that is, $\sum_{j=1}^n p_j = 1$ and each $p_j > 0$. Now, the problem is to find a piecewise linear map $\tau : [0,1] \to [0,1]$ such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \chi_{I_j}(\tau^i(x)) = p_j \quad m - \text{a.e} \quad \text{for} \quad 1 \le j \le n,$$
(1.1)

where χ_{I_j} is the characteristic map over I_j for each j, τ^i denotes the composition of τ with itself *i* times, and *m* is the Lebesgue measure. The idea and method of how to find such a map τ are given in [3] (see also [4] and [5]). But a formal proof has not been given. In this paper we provide a formal proof.

2. Preliminaries

Throughout the paper we assume that \mathcal{B} is the Borel σ -algebra on the closed unit interval [0, 1]. Every measure mentioned in this paper is defined on \mathcal{B} . We need three definitions before we state the celebrated Birkhoff Ergodic Theorem.

MISSOURI J. OF MATH. SCI., SPRING 2018

This work was supported by UMKC's funding for excellence program.

Definition 1. The map $\tau : [0,1] \to [0,1]$ is called measurable if $\tau^{-1}(\mathcal{B}) \subseteq \mathcal{B}$, that is, $B \in \mathcal{B}$ implies $\tau^{-1}(B) \in \mathcal{B}$, where $\tau^{-1}(B) = \{x \in [0,1] : \tau(x) \in B\}$.

Definition 2. We say that the measurable map $\tau : [0,1] \to [0,1]$ preserves measure μ or that measure μ is τ -invariant if $\mu(\tau^{-1}(B)) = \mu(B)$ for all $B \in \mathcal{B}$.

Definition 3. Let $\tau : [0,1] \to [0,1]$ be a measurable map. A set $B \in \mathcal{B}$ is said to be an invariant set of τ if $\tau^{-1}(B) = B$. The map τ is said to be ergodic w.r.t. the measure μ if whenever $B \in \mathcal{B}$ is an invariant set of τ , then $\mu(B) = 0$ or $\mu(B^c) = 0$.

Now we are ready to recall the Birkhoff Ergodic Theorem.

The Birkhoff Ergodic Theorem. Suppose $\tau : [0,1] \rightarrow [0,1]$ is measurable and the probability measure μ is τ -invariant. Then for any $f \in L^1([0,1], \mathcal{B}, \mu)$, there exists a function $\hat{f} \in L^1([0,1], \mathcal{B}, \mu)$ such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} f(\tau^i(x)) = \hat{f}(x), \quad \mu - \text{a.e.}$$
(2.1)

Furthermore,

$$\hat{f} \circ \tau = \hat{f}, \quad \mu - \text{a.e.}$$
 (2.2)

and

78

$$\int_{0}^{1} \hat{f} \ d\mu = \int_{0}^{1} f \ d\mu.$$
 (2.3)

In addition, if τ is ergodic w.r.t. the probability measure μ , then (2.2) implies that \hat{f} is constant μ -a.e., so using (2.3) and the fact that μ is a probability measure we have

$$\hat{f} = \int_0^1 f \ d\mu, \quad \mu - \text{a.e.}$$

Thus, (2.1) becomes

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} f(\tau^i(x)) = \int_0^1 f \, d\mu, \quad \mu - \text{a.e.}$$
(2.4)

Proof. See, for example, [2, Theorems 4.2.3 and 4.2.4].

Now we need two more definitions before we state Theorem 1.

Definition 4. A measurable map $\tau : [0,1] \to [0,1]$ is nonsingular w.r.t. the Lebesgue measure m if m(B) = 0 implies $m(\tau^{-1}(B)) = 0$, where $B \in \mathcal{B}$.

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

Definition 5. If $\tau : [0,1] \to [0,1]$ is a nonsingular map w.r.t. the Lebesgue measure m, the linear operator $P_{\tau} : L^1([0,1], \mathcal{B}, m) \to L^1([0,1], \mathcal{B}, m)$ defined (implicitly) for any $g \in L^1([0,1], \mathcal{B}, m)$ by

$$\int_{B} P_{\tau}g \, dm = \int_{\tau^{-1}(B)} g \, dm \quad \text{for every} \quad B \in \mathcal{B}$$

is called the Frobenius-Perron operator associated with τ .

Remark 1. For a given $g \in L^1([0,1], \mathcal{B}, m)$, by choosing B = [0,x], we see that

$$\int_0^x P_\tau g \, dm = \int_{\tau^{-1}([0,x])} g \, dm \quad \text{for every} \quad x \in [0,1].$$

By differentiating both sides w.r.t. x, we have

$$(P_{\tau}g)(x) = \frac{d}{dx} \int_{\tau^{-1}([0,x])} g \, dm \quad \text{for } m-\text{a.e.} \quad x \in [0,1],$$
(2.5)

which is the explicit formula of the Frobenius-Perron operator associated with τ .

We have the following theorem that tells us the usefulness of the Frobenius-Perron operator associated with a nonsingular map $\tau : [0,1] \rightarrow [0,1]$ w.r.t. the Lebesgue measure m.

Theorem 1. Let $\tau : [0,1] \to [0,1]$ be a nonsingular map w.r.t. the Lebesgue measure m, and let P_{τ} be the Frobenius-Perron operator associated with τ . Let $g \in L^1[(0,1], \mathcal{B}, m)$ be a density function. Then the probability measure μ defined by

$$\mu(B) = \int_{B} g \, dm \quad \text{for every} \quad B \in \mathcal{B}$$
(2.6)

is τ -invariant if and only if g is an invariant density under P_{τ} , that is, $P_{\tau}(g) = g$.

Proof. See, for example, [1, Proposition 4.2.7].

Now we need another basic definition before we state Theorem 2.

Definition 6. The measure μ_1 is said to be an absolutely continuous measure w.r.t. the measure μ_2 , denoted by $\mu_1 \ll \mu_2$, if $B \in \mathcal{B}$ and $\mu_2(B) = 0$, then $\mu_1(B) = 0$.

Now we are ready to state Theorem 2.

Theorem 2. Let $\tau : [0,1] \to [0,1]$ be nonsingular and ergodic w.r.t. the Lebesgue measure m. Suppose that $g \in L^1([0,1], \mathcal{B}, m)$ is a density such that $P_{\tau}(g) = g$ and g > 0 on [0,1]. If we define the probability measure μ as in (2.6), then μ is τ -invariant, $\mu \ll m$, and τ is ergodic w.r.t. the probability measure μ . Furthermore, we also have $m \ll \mu$.

MISSOURI J. OF MATH. SCI., SPRING 2018

P. UHL, H. BOHN, AND N. RHEE

Proof. Since $P_{\tau}(g) = g$ and the probability measure μ is defined as in (2.6), by Theorem 1 the probability measure μ is τ -invariant. By the definition of μ , we have $\mu \ll m$. So τ , which is ergodic w.r.t. the Lebesgue measure m, is also ergodic w.r.t. the probability measure μ . Furthermore, since g > 0 on [0, 1], it is easy to see that we also have $m \ll \mu$.

3. Construction of the Map τ

We define $g^* \in L^1([0,1], \mathcal{B}, m)$ by

$$g^* = \sum_{j=1}^n (np_j)\chi_{I_j},$$
(3.1)

where p_j is the *j*th component of the positive probability vector p given in Section 1. Note that g^* is not defined at $\{\frac{j}{n}\}_{j=0}^n$. But since the Lebesgue measure of this set is zero, it does not matter. Since p is a positive probability vector, g^* is a positive density function.

Suppose that we can find $\tau : [0,1] \to [0,1]$ such that

- (i) τ is nonsingular and ergodic w.r.t. the Lebesgue measure m;
- (ii) g^* is an invariant density of P_{τ} , that is, $P_{\tau}(g^*) = g^*$.

Let the probability measure μ be defined by (2.6) using g^* in place of g. Then by Theorem 2, the equation (2.4) in the Birkhoff Ergodic Theorem is valid for τ with any $f \in L^1([0,1], \mathcal{B}, \mu)$. So using (2.4) with $f = \chi_{I_j}$, we obtain

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \chi_{I_j}(\tau^i(x)) = \int_0^1 \chi_{I_j} \, d\mu = \int_{I_j} d\mu$$
$$= \int_{I_j} g^* \, dm = p_j \quad \mu - \text{a.e. for} \quad 1 \le j \le n.$$

But since $m \ll \mu$ again by Theorem 2, the above equation can be written

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \chi_{I_j}(\tau^i(x)) = p_j \quad m - \text{a.e} \quad \text{for} \quad 1 \le j \le n,$$

which is (1.1). So all we have to do is to find τ fulfilling the conditions (i) and (ii).

The key of constructing such a τ is to construct a special column stochastic matrix. In [3] (see also [4] and [5]) the authors considered the following matrix

$$A_{\beta} = \beta I + (1 - \beta) p e^T \quad \text{with} \quad e^T = [1 \ 1 \cdots 1], \tag{3.2}$$

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

where the vector p is the positive probability vector given in Section 1 and β is any real number in the interval [0,1). We let $a_{ij}^{(\beta)}$ denote the (i,j)entry of the matrix A_{β} for each $\beta \in [0,1)$. Now we collect two important
properties of the matrix A_{β} for each $\beta \in [0,1)$.

Lemma 1. The matrix A_{β} is a positive column stochastic matrix for every $\beta \in [0, 1)$.

Proof. Note that from (3.2), $a_{ii}^{(\beta)} = \beta + (1 - \beta)p_i$ for $1 \le i \le n$ and $a_{ij} = (1 - \beta)p_i$ for $1 \le i \ne j \le n$. Since $\beta \in [0, 1)$ and p is a positive probability vector, we see that $a_{ij}^{(\beta)} > 0$ for $1 \le i, j \le n$. So A_β is a positive matrix for every $\beta \in [0, 1)$.

To show that A_{β} is column stochastic, it is enough to show $e^T A_{\beta} = e^T$. Indeed, for every $\beta \in [0, 1)$, using the fact that $e^T p = 1$, we have

$$e^{T}A_{\beta} = e^{T}[\beta I + (1 - \beta)p e^{T}] = \beta e^{T} + (1 - \beta)(e^{T}p)e^{T}$$
$$= \beta e^{T} + (1 - \beta)e^{T} = e^{T},$$

as desired.

Lemma 2. The positive probability vector p is an eigenvector of A_{β} corresponding to eigenvalue 1 for every $\beta \in [0,1)$, that is $A_{\beta}p = p$ for every $\beta \in [0,1)$.

Proof. We simply note that, for any $\beta \in [0, 1)$, we have

$$A_{\beta}p = [\beta I + (1 - \beta)p e^{T}]p = \beta p + (1 - \beta)p (e^{T}p)$$
$$= \beta p + (1 - \beta)p = p.$$

Now we are ready to construct $\tau : [0, 1] \to [0, 1]$ which fulfills conditions (i) and (ii). In fact, we will construct a one parameter family $\{\tau_{\beta}\}_{\beta \in [0,1)}$ which fulfills conditions (i) and (ii) for every $\beta \in [0, 1)$.

Now we construct such a family. Let β be an arbitrary number in the interval [0, 1) but fixed. First of all, we construct a partition $\{x_s^{(\beta)}\}_{s=0}^{n^2}$ of [0, 1] such that $x_0^{(\beta)} = 0$ and

$$x_{n(j-1)+k}^{(\beta)} = \frac{j-1}{n} + \frac{1}{n} \sum_{i=1}^{k} a_{ij}^{(\beta)}, \quad 1 \le j, k \le n.$$

Since by Lemma 1, $a_{ij}^{(\beta)} > 0$, $\{x_s^{(\beta)}\}_{s=0}^{n^2}$ is made of distinct points. Since again by Lemma 1, A_β is a column stochastic matrix, we have $x_{n(j-1)+n}^{(\beta)} = x_{nj}^{(\beta)} = \frac{j}{n}$ for $1 \le j \le n$. In particular, $x_{n^2}^{(\beta)} = 1$.

MISSOURI J. OF MATH. SCI., SPRING 2018

P. UHL, H. BOHN, AND N. RHEE

Now we define τ_β by defining $\tau_\beta|_{(x_{i-1}^{(\beta)}, x_i^{(\beta)})}$ for $1 \le i \le n^2$ as follows: for $1 \le i \le n^2$ we let

$$\tau_{\beta}|_{(x_{i-1}^{(\beta)}, x_{i}^{(\beta)})}(x) = \frac{1}{n(x_{i}^{(\beta)} - x_{i-1}^{(\beta)})}(x - x_{i-1}^{(\beta)}) + \frac{\operatorname{rem}(i-1, n)}{n}, \ x \in (x_{i-1}^{(\beta)}, x_{i}^{(\beta)}),$$

where rem(i-1, n) denotes the remainder when i-1 is divided by n. Note that τ_{β} is not defined at $\{x_s^{(\beta)}\}_{s=0}^{n^2}$. Since the Lebesgue measure of this set is zero, it does not matter. However, it is convenient to define $\tau_{\beta}(x_0^{(\beta)}) = 0$ and $\tau_{\beta}(x_{n(j-1)+k}^{(\beta)}) = \frac{k}{n}$ for $1 \leq j, k \leq n$ so that $\tau_{\beta}|_{I_j}$ is a piecewise linear strictly increasing continuous function onto the open interval (0, 1) for $1 \leq j \leq n$.

So if we let $\tau_{\beta}^{(j)}: I_j \to (0,1)$ be the restriction of τ_{β} to I_j for $1 \le j \le n$, then each $\tau_{\beta}^{(j)}$ is a one-to-one and onto function from I_j to (0,1). Thus, if we let $g_{\beta}^{(j)} = (\tau_{\beta}^{(j)})^{-1}: (0,1) \to I_j$ for $1 \le j \le n$, we have

$$\tau'_{\beta}\left(g_{\beta}^{(j)}(x)\right)\left(g_{\beta}^{(j)}\right)'(x) = 1,$$

because $\tau_{\beta}\left(g_{\beta}^{(j)}(x)\right) = x$, and hence,

$$\left(g_{\beta}^{(j)}\right)'(x) = \frac{1}{\tau_{\beta}'\left(g_{\beta}^{(j)}(x)\right)}.$$
 (3.3)

One can check that

$$\tau_{\beta}'\left(g_{\beta}^{(j)}(x)\right) = \frac{1}{a_{ij}^{(\beta)}} \quad \text{when} \quad x \in I_i \quad \text{for} \quad 1 \le i, j \le n.$$
(3.4)

Now we are going to show that $P_{\tau_{\beta}}(g^*) = g^*$. Since $g^* = \sum_{j=1}^n (np_j)\chi_{I_j}$ by (3.1), we first find the expression of $P_{\tau_{\beta}}(\chi_{I_j})$. Note that by using (2.5), (3.3), and (3.4), we have

$$P_{\tau_{\beta}}(\chi_{I_{j}})(x) = \frac{d}{dx} \int_{\tau_{\beta}^{-1}([0,x])} \chi_{I_{j}}(y) \ dm(y) = \frac{d}{dx} \int_{\tau_{\beta}^{-1}([0,x])\cap I_{j}} 1 \ dm(y)$$
$$= \frac{d}{dx} \int_{\frac{j-1}{n}}^{g_{\beta}^{(j)}(x)} 1 \ dm(y) = \left(g_{\beta}^{(j)}\right)'(x)$$
$$= \frac{1}{\tau_{\beta}'\left(g_{\beta}^{(j)}(x)\right)} = \sum_{i=1}^{n} a_{ij}^{(\beta)} \chi_{I_{i}}(x).$$

In short, we have

$$P_{\tau_{\beta}}(\chi_{I_{j}}) = \sum_{i=1}^{n} a_{ij}^{(\beta)} \chi_{I_{i}}.$$
(3.5)

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

ON CONSTRUCTING CHAOTIC MAPS WITH A PRES. PROB. DIST.

Now using (3.1), (3.5), and Lemma 2, we have

$$P_{\tau_{\beta}}(g^{*}) = P_{\tau_{\beta}}\left(\sum_{j=1}^{n} (np_{j})\chi_{I_{j}}\right) = \sum_{j=1}^{n} (np_{j})P_{\tau_{\beta}}(\chi_{I_{j}})$$
$$= \sum_{j=1}^{n} (np_{j})\sum_{i=1}^{n} a_{ij}^{(\beta)}\chi_{I_{i}} = n\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}^{(\beta)}p_{j}\right)\chi_{I_{i}}$$
$$= n\sum_{i=1}^{n} [A_{\beta}p]_{i}\chi_{I_{i}} = n\sum_{i=1}^{n} p_{i}\chi_{I_{i}}$$
$$= \sum_{i=1}^{n} (np_{i})\chi_{I_{i}} = g^{*},$$

where $[A_{\beta}p]_i$ is the *i*th component of the vector $A_{\beta}p$, and hence, $P_{\tau_{\beta}}(g^*) = g^*$.

But this is true for every $\beta \in [0, 1)$. So τ_{β} , for any $\beta \in [0, 1)$, has g^* as the common invariant density of its corresponding Frobenius-Perron operator $P_{\tau_{\beta}}$. From the construction of τ_{β} , it is clear that τ_{β} is nonsingular and ergodic w.r.t. the Lebesgue measure m for every $\beta \in [0, 1)$. So $\{\tau_{\beta}\}_{\beta \in [0, 1)}$ fulfills conditions (i) and (ii) for every $\beta \in [0, 1)$. Thus, $\{\tau_{\beta}\}_{\beta \in [0, 1)}$ is a one parameter family of solutions to the problem given in Section 1.

References

- [1] A. Boyarsky and P. Gora, Laws of Chaos, Birkhauser, Boston, 1997.
- [2] A. Lasota and M. C. Mackey, *Chaos, Fractals, and Noise*, Springer-Verlag New York, Inc., 1994.
- [3] A. Rogers, R. Shorten, and D. Heffernan, Synthesizing chaotic maps with prescribed invariant densities, Physics Letters A, 330 (2004), 435–441.
- [4] A. Rogers, R. Shorten, and D. Heffernan, A novel matrix approach for controlling the invariant densities of chaotic maps, Chaos, Solutions and Fractals, 35 (2008), 161–175.
- [5] A. Rogers, R. Shorten, D. Heffernan, and D. Naughton, Synthesis of piecewise-linear chaotic maps: Invariant densities, autocorrelations, and switching, International Journal of Bifurcation and Chaos, 18.8 (2008), 2169–2189.

MSC2010: 37A05, 47B99

MISSOURI J. OF MATH. SCI., SPRING 2018

P. UHL, H. BOHN, AND N. RHEE

Key words and phrases: Chaotic dynamical system; invariant measure; Frobenius-Perron operator; invariant density

DEPARTMENT OF MATHEMATICS AND STATISTICS,, UNIVERSITY OF MISSOURI-KANSAS CITY, 5100 ROCKHILL ROAD, KANSAS CITY, MO 64110 *Email address:* pmu2n8@mail.umkc.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS,, UNIVERSITY OF MISSOURI-KANSAS CITY, 5100 ROCKHILL ROAD, KANSAS CITY, MO 64110 *Email address*: hnbdmb@mail.umkc.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS,, UNIVERSITY OF MISSOURI-KANSAS CITY, 5100 ROCKHILL ROAD, KANSAS CITY, MO 64110 *Email address*: rheen@umkc.edu

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1