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Abstract. We prove the infinitude of prime numbers by the princi-

ple of contradiction, that is different from Euclid’s proof in a way that
it uses an explicit property of prime numbers. A sieve method that

applies the inclusion-exclusion principle is used to give the property

of the prime numbers in terms of the prime counting function.

1. Introduction

In number theory a prime number is a natural number that has exactly
two divisors, 1 and itself. Though this definition of prime numbers is easy
to comprehend, working with the prime numbers is one of the most diffi-
cult things in mathematics. Consequently there are more conjectures than
there are theorems on related topics. In ancient Greece around 300 BC,
Eratosthenes introduced the first sieve idea that generates primes up to a
positive integer x knowing the list of primes up to

√
x. Legendre devel-

oped this same idea to a more mathematical explicit formula in the early
19th century. Most of the basic theorems on prime numbers were given by
Euclid. From the following two theorems; although Euclid and others had
an indirect contribution to the first theorem, Carl Friedrich Gauss was the
first to develop the theorem as a systematic science in 1801 and the second
theorem was stated by Euclid himself.

Notations.

• W is the set of nonnegative integers.
• P is the set of prime numbers.
• Z+ is the set of positive integers.

Theorem 1.1 (Fundamental Theorem of Arithmetic). For n ∈ Z+, εi ∈
W, and pi ∈ P

n = pε11 p
ε2
2 p

ε3
3 · · · pεnn (1.1)

and every n has a unique factorization.
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Proof. The proof can be given by either mathematical induction or contra-
diction. See [3, pp. 20–21] and [2, p. 15]. �

Theorem 1.2. There are infinitely many prime numbers.

Proof. Suppose pn is the largest element of the finite set of prime numbers
and q = 1 · 2 · 3 · · · · · pn + 1; that is, one more than the product of all the
positive integers from 1 through pn. The integer q is larger than pn and is
not divisible by any positive integer from 2 through pn. Thus, the positive
divisors of q other than 1 must be greater than pn, which is a contradiction.
Therefore, there must be an infinitely many prime numbers. �

Definition 1.3. Floor function: bxc is the greatest integer less than or
equal to x.

Definition 1.4. Möbius function is denoted by µ(n), where n ∈ Z+ and is

µ(n) =

 1, if n = 1
0, if p2|n for some prime p
(−1)r, if n = p1p2 · · · pr, where pi are distinct primes.

Definition 1.5. Prime counting function: π(x) is the function counting
the number of primes less than or equal to some real number x.

2. An Identity on Sets

Identity (2.1), proved in this section, is an original result. Hence we have
used this identity to derive other identities and well-known theorems. The
interested reader can try to obtain the results listed in the Appendix from
(2.1).

Lemma 2.1. Let si be the ith number defined by the set S, which is either
a finite or infinite set, n ∈ Z+,

S = {s1, s2, s3, . . . , sn}.
Then

1 = s1 +

n−1∑
i=1

si+1

i∏
j=1

(1− sj) +

n∏
i=1

(1− si). (2.1)

Proof. We prove (2.1) by induction on n.
Base case: (2.1) is true for n = 1.
Inductive hypothesis: Suppose (2.1) is true for n = k.

1 = s1 +

k−1∑
i=1

si+1

i∏
j=1

(1− sj) +

k∏
i=1

(1− si). (2.2)
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Inductive step: From the inductive hypothesis we intend to imply (2.1)
is also true for n = k+ 1. Separating the sum of products in (2.2) into two
and combining one of them to the product term, we have

1 = s1 +

k∑
i=1

si+1

i∏
j=1

(1− sj)− sk+1

k∏
j=1

(1− sj) +

k∏
i=1

(1− si);

1 = s1 +

k∑
i=1

si+1

i∏
j=1

(1− sj) +

k+1∏
i=1

(1− si). (2.3)

Thus, identity (2.1) holds for n = k + 1.
Conclusion: By the principle of mathematical induction, (2.1) is true for
all n ∈ Z+. �

Corollary 2.2. Let x be any number and pi ∈ P. Then

x =
x

p1
+

n−1∑
i=1

x

pi+1

i∏
j=1

(
1− 1

pj

)
+ x

n∏
i=1

(
1− 1

pi

)
. (2.4)

Proof. LetR be the set of all reciprocals of primes; R =
{

1
p1
, 1
p2
, 1
p3
, . . . , 1

pn

}
,

letting R = S and multiplying x to both sides of equation (2.1), from
Lemma 2.1, (2.4) directly follows. �

3. Sieving for the Prime Numbers

We sieve for the primes by the use of inclusion-exclusion principle.

Lemma 3.1 (Inclusion-Exclusion Principle). Let Ai be the ith set from the
sets: A1, A2, · · · , An for n ∈ Z+ and |Ai| be the cardinality of the set Ai.
Then∣∣A1 ∪A2 ∪ · · · ∪An

∣∣ =

n∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

∣∣Ai1 ∩Ai2 ∩ · · · ∩Aik ∣∣
or ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

J 6=∅,J⊆{1,2,··· ,n}

(−1)|J|−1

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ (3.1)

Proof. The proof uses the principle of mathematical induction on n and is
shown in [6] and [1]. Equation (3.1) is known as the inclusion-exclusion
principle. �
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Proposition 3.2. Considering all the assumptions taken in Lemma 3.1,
let A = {1, 2, 3, . . . , x}, P = {p1, p2, . . . , pn} for P the set of prime numbers
up to x, x ∈ Z+, pn ≤ x, and Ai = {a ∈ A : a mod pi = 0}, where pi ∈ P
and Ai ⊂ A ⊆ Z+. Then

|A|∏
i∈J pi

−
|A| mod

∏
i∈J pi∏

i∈J pi
=

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ (3.2)

where J 6= ∅, J ⊆ {1, 2, . . . , n}

Proof. From the assumptions taken in the proposition we can directly im-
ply: Ai = {pi, 2pi, . . . , |Ai|pi}, 0 ≤ x− |Ai|pi < pi and |A| = x. Knowing
that

⋂
i∈J Ai = {a ∈ A : a mod

∏
i∈J pi = 0}, we can yet imply⋂

i∈J
Ai =

{∏
i∈J

pi, 2
∏
i∈J

pi, . . . ,

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣∏
i∈J

pi

}
and

0 ≤ x−

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣∏
i∈J

pi <
∏
i∈J

pi where J 6= ∅, J ⊆ {1, 2, . . . ,m}.

For B = {b, 2b, . . . , |B|b}, B ⊂ A, b ∈ A, and 0 ≤ x− |B|b < b, from a
simple division rule we have

x

b
− x mod b

b
= |B|. (3.3)

If B ≡
⋂
i∈J Ai then b =

∏
i∈J pi. Substituting this condition into (3.3) we

have (3.2), which completes the proof. �

Identities (3.4) and (3.9) are well-known to many mathematicians. The
result (3.4) appears as an exercise or observation in several number theory
books and is an application of Hardy and Wright’s Theorem 268 (taking
the constant function F (x) = 1 so that G(x) = bxc [3, p. 237, formula
(3.9)], in a different form, is due to Legendre [4]. But the way we prove
them is new and uses an interesting application of the inclusion-exclusion
principle.

Lemma 3.3. Let x be any number greater than or equal to 1, bxc be the
floor function and µ(j) be the Möbius function. Then

∞∑
n=1

⌊
x

j

⌋
µ(j) = 1. (3.4)

Proof. Combining (3.1) and (3.2), we have∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
∑

J 6=∅,J⊆{1,2,...,n}

(−1)|J|−1
(
|A|∏
i∈J pi

−
|A| mod

∏
i∈J pi∏

i∈J pi

)
. (3.5)
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It can be seen that A = {1} ∪
⋃n
i=1Ai, |A| = x ⇒

∣∣⋃n
i=1Ai

∣∣ = x− 1 and

|A|∏
i∈J pi

−
|A| mod

∏
i∈J pi∏

i∈J pi
=

⌊
x∏
i∈J pi

⌋
, (3.6)

where J 6= ∅, J ⊆ {1, 2, . . . , n}
Substituting (3.6) into (3.5) we have

x− 1 =
∑

J 6=∅,J⊆{1,2,...,n}

(−1)|J|−1
⌊

x∏
i∈J pi

⌋
. (3.7)

As J runs through all subsets,
∏
i∈J pi runs through all integers 2 through

x as well as some additional larger integers. For x <
∏
i∈J pi we have⌊

x∏
i∈J pi

⌋
= 0 and hence, we can view

∏
i∈J pi as

∏
i∈J pi = {2, 3, 4, . . . , x}∪

{a ∈
∏
i∈J pi : a > x} to deduce

x− 1 =
∑

1<j≤x

−µ(j)

⌊
x

j

⌋
. (3.8)

By rearranging (3.8) we have
∑
j≤x

⌊
x
j

⌋
µ(j) = 1. Considering the fact that⌊

x
j

⌋
is always zero for j > x we get the result (3.4). �

Lemma 3.4. Let π(x) be the prime counting function, pm ≤
√
x for m ∈

Z+ so that m = π(
√
x) and {y} be the fractional part of y for any number

y. Also consider H; H 6= ∅, H ⊆ {1, 2, . . . ,m}. Then we have

π(x) = π(
√
x) + x

∏
p≤
√
x

(
1− 1

p

)
+
∑
H

(−1)|H|−1
{

x∏
i∈H pi

}
− 1. (3.9)

Proof.
|A| mod

∏
i∈J pi∏

i∈J pi
is the fractional part of x∏

i∈J pi
and hence,

|A| mod
∏
i∈J pi∏

i∈J pi
=

{
x∏
i∈J pi

}
. (3.10)

Substituting (3.10) in to (3.7), we have

x− 1 =
∑

J 6=∅,J⊆{1,2,...,n}

(−1)|J|−1
(

x∏
i∈J pi

−
{

x∏
i∈J pi

})
. (3.11)

Consider the nonempty sets H, K, and M to be used as indexes, for which
all are subsets of index J . Let H ⊆ {1, 2, . . . ,m}, K ⊆ {m + 1,m +
2, . . . , n} and let L ⊆ H (including empty set). And also M is a set of all
possible combinations of L and K, so M = (L ∪ K). Consequently, the
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sum
∑
M

(−1)|M |−1
(

x∏
i∈M pi

−
{

x∏
i∈M pi

})
=

∑
√
x<p≤x

1, means the positive

integers ≤ x that are divisible by pj , j ∈ K are only the prime numbers
found between

√
x and x. Since J = H ∪M , we have

∑
J

f(J) =
∑
H

f(H) +∑
M

f(M), where f(J) is the summand found in (3.11). Hence, considering

these facts to (3.11), we have

x− 1 =
∑
H

(−1)|H|−1
(

x∏
i∈H pi

−
{

x∏
i∈H pi

})
+

∑
√
x<p≤x

1. (3.12)

From (3.12) we can say that the sum (over the primes less than or equal to
x) of numbers of positive integers less than or equal to x that are divisible
by the ith prime but not by the preceding primes is exactly equal to x− 1
and the sum (over the primes between

√
x and x) of numbers of positive

integers that are divisible by ith prime but not by the preceding primes is
exactly equal to the numbers of primes between

√
x and x.

It can be seen that,
∑

√
x<p≤x

1 = π(x)− π(
√
x) and

∑
H

(−1)|H|−1
x∏

i∈H pi
=

x

p1
+

(
x

p2
− x

p1p2

)
+

(
x

p3
− x

p1p3
− x

p2p3
+

x

p1p2p3

)
+ · · ·+

(
x

pm
− x

p1pm
− x

p2pm
+ · · ·+ (−1)m−1x

p1p2 · · · pm

)
=

x

p1
+

m−1∑
i=1

x

pi+1

i∏
j=1

(
1− 1

pj

)
. (3.13)

Combining (2.4) from Corollary 2.2 and (3.13), we obtain

∑
H

(−1)|H|−1
x∏

i∈H pi
= x− x

m∏
i=1

(
1− 1

pi

)
. (3.14)

Combining (3.12) with (3.14), we obtain the result

π(x) = π(
√
x) + x

∏
p≤
√
x

(
1− 1

p

)
+
∑
H

(−1)|H|−1
{

x∏
i∈H pi

}
− 1.

�
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4. An Alternative Proof of the Infinitude of Prime Numbers

Though there are many proofs of the infinitude of prime numbers in the
literature, the way we prove it here is new and different in that it uses the
explicit formula from the previous section which is gained by the application
of the inclusion-exclusion principle.

Theorem 4.1. Let P be the set of prime numbers; P = {p1, p2, . . . , pn}.
Then there are infinitely many elements of P (there are infinitely many
prime numbers).

Proof. Suppose there are finitely many prime numbers so that n is a finite
number. From Lemma 3.4 we have

π(x) = π(
√
x) + x

∏
p≤
√
x

(
1− 1

p

)
+

∑
H 6=∅

H⊆{1,2,··· ,m}

(−1)|H|−1
{

x∏
i∈H pi

}
− 1.

If there are only finitely many primes, then the number of terms in the last
sum is bounded by 2m and each term in the sum is bounded in absolute
value by 1, so the last sum is bounded. Also we know π(x) and π(

√
x)

are bounded. But the term x
∏
p≤
√
x

(
1− 1

p

)
is not bounded, because the

product is constant for large x. This is a contradiction to our premise that
there are finitely many prime numbers. Hence, there must be infinitely
many prime numbers. �

5. Appendix: Some Identities Derived From Identity (2.1)

• Geometric series formula:
n∑
i=1

ri = r−rn+1

1−r .

• An identity that R. Apéry used in his famous proof of irrationality

of ζ(3):
n∑
i=1

a1a2···ai−1

(x+a1)(x+a2)···(x+ai) = 1
x −

a1a2···an
x(x+a1)(x+a2)···(x+an) (see

[5]).

• The factorial: n!− 1
n! =

n−1∑
i=1

i
(
i! + 1

(i+1)!

)
.

• The limit: ex − 1 = lim
n→∞

1
n

n∑
i=0

(
1 + 1

n

)xi
.

• Identity on Riemann Zeta function; for pi ∈ P and <s > 1:

ζ(s) =
ps1
ps1−1

+
∞∑
i=1

1
psi+1−1

i∏
j=1

psj
psj−1

=

(
ps1−1
ps1
−
∞∑
i=1

1
psi+1

i∏
j=1

psj−1
psj

)−1
and possibly other identities could be derived.
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