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Abstract. We intend to solve Sudoku puzzles using various rules
based on the structures and properties of the puzzle. In this paper,
we shall present several structures related to either one potential
solution or two potential solutions.

1. Introduction

A Sudoku puzzle is a 9× 9 grid that is partially filled with integers from
1 to 9 as clues. A puzzle is given in Figure 1. The solution to a puzzle is a
fully filled grid with no duplications in each row, column, and each of the
nine 3× 3 squares. A puzzle is considered valid if it can be solved uniquely.
We also want to consider a well-constructed puzzle to be minimal, that is,
removal of any clue results in multiple solutions. Provan [3] gives a more
general definition of Sudoku. McGuire, Tugemann, and Civario [2] prove
the minimum number of clues for a Sudoku is 17. Surprisingly, we find
most 17-clue puzzles are easy to solve.

3 7

1 8

4 1

2 1 5 9

4 5 3

8 9

8 1 5 2

5 7 6

6 2 5

Figure 1. π-Sudoku
.
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There are numerous books and articles on Sudoku. We do not find any
deterministic algorithms to solve all puzzles. We shall study the structure
and properties of Sudoku puzzles and establish some strategies for solving
puzzles deterministically, i.e. without trial-and-error.

2. Elementary Strategies

We consider each row of nine cells as a row block, each column of nine cells
as a column block, and each of the nine 3× 3 cells as a square block. There
are nine blocks of each type. Now, we may also consider every cell to be at
the intersection of a row block, a column block, and a square block.

We number the nine row blocks from top down as R1, R2, . . ., R9, the
nine column blocks from left to right as C1, C2, . . ., C9, and the nine square
blocks in row-major order as S1, S2, . . ., S9. We use cij to denote the cell
in row i and column j.

If only one cell in a block is unfilled, then the solution to the cell is the
missing ninth number. The following rule is immediate.

Theorem 1. Let c be an unfilled cell. If every number except N appears

in at least one block of c, then the solution to c is N .

We will also simply state another rule that is often used. It follows from
the idea that in each block, one number appears exactly once.

Theorem 2. Let c be an unfilled cell in a square block S and let N be a

number that does not appear in any blocks containing c. If, in S, every

unfilled cell other than c lies in a row block or a column block that contains

N implicitly or explicitly, then the solution to c is N .

In Figure 1, the cell c83 in the square block S7 is unfilled. We examine
other unfilled cells in S7. The cells c71, c81, and c91 are in column block C1

which contains 2. And the cell c93 lies in row block R9 containing 2. With
Theorem 2, we can conclude that the solution to cell c83 is 2.

Applying Theorem 2 several times to the π-Sudoku in Figure 1, we reach
the partially solved puzzle in Figure 2.

We obtain the following rule from the Pigeonhole Principle.

Theorem 3. Let B be a block with n unfilled cells, and let N1, N2, ..., Nm

be numbers that do not appear in B, where m < n. If these m Ni’s are

possible solutions only to certain m cells in B, then these Ni’s are the only

possible solutions to these m cells.

In Figure 2, square block S1 has five unfilled cells. Two numbers 2
and 9 do not appear in S1 and can only be solutions to cells c12 and c32
by Theorem 2. We apply Theorem 3 to conclude that the only possible
solutions to these two cells are 2 and 9. From this point, we use Theorem
2 to find that the solution to cell c23 is 7.
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3 7

1 8

8 4 1

2 1 5 9

4 9 5 3

5 8 9

8 1 5 2

5 2 7 6

6 3 2 5

Figure 2. π-Sudoku: Applications of Theorem 2.

3. Almost 2-Perfect Components

When we are solving a Sudoku puzzle, we often identify possible solutions
for an unsolved cell. A 2-perfect component is a set of unfilled cells in which
if a number is a possible solution, then it is a possible solution to exactly
two unfilled cells of the set in every block.

21 21

21 21

21 21

Figure 3. A 2-perfect component
.

In Figure 3, we assume that 1 and 2 are only possible solutions to these
six cells. According to Theorem 3, numbers 1 and 2 are not solutions to
any cells in blocks R1, R2, R3, C3, C5, C9, S1, S2, and S3. In order to see
the pattern better, we leave all other cells blank. The following theorem
shows that no 2-perfect component exists in a Sudoku puzzle.
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Theorem 4. If there is a 2-perfect component, then the puzzle is not solv-

able.

Proof. Assume that there exists a solution to a 2-perfect component. Then
this solution consists of one of the two numbers which are only possible
solutions to these cells. Since this component is a 2-perfect component,
the other of the two numbers form another solution. It contradicts the
uniqueness of the solution to a Sudoku puzzle. Therefore, in a valid Sudoku
puzzle, a 2-perfect component does not exist. �

The above theorem provides a means to solve some puzzles. An almost

2-perfect component is a set of unfilled cells in which, among all potential
solutions, exactly one of them appears three times in its blocks while all
others appear two times only. That is just one additional number as a
possible solution to one cell of a 2-perfect component.

The cell containing three potential solutions is called the pivot cell and
that third number is called the pivot number. In an almost 2-perfect com-
ponent, removal of the pivot number would convert it to a 2-perfect com-
ponent. Therefore, we have the following two useful corollaries to solve
Sudoku puzzles.

Corollary 5 (Three-Number Rule). The solution to the pivot cell in a

almost 2-perfect component is the pivot number.

Figure 4 provides an example of the application of Corollary 5, the Three-
Number Rule, to solve the cell c92.

7 62 32 8 5 9 4 63 1

4 61 31 76 73 2 8 5 9

9 5 8 1 4 63 7 63 2

1 4 7 3 9 8 5 2 6

3 8 5 2 6 4 9 1 7

2 9 6 5 1 7 3 8 4

5 71 9 76 8 61 2 4 3

6 3 4 9 2 5 1 7 8

8
1

72 21 4 73 31 6 9 5

Figure 4. The solution to cell c92 is 1
.
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Corollary 6 (Rectangle Rule). A valid Sudoku puzzle does not contain a

2-perfect component of four cells.

In the following example, we have solved a puzzle up to this point. We
pay attention to five cells with multiple potential solutions. If cell c95 is not
a 2, then due to the pigeonhole principle, the potential solutions to cells c74
and c94 must be 6 and 2. Now, these two cells together with cells c71 and
c91 form a 2-perfect component involving four cells. Applying Corollary 6,
Rectangle Rule, we conclude that the solution to cell c95 is 2.

4 3 1 2 6 8

5 1 2 8 6 7 3 9 4

8 6

5 4 9 3 8 6

9 2 6 1 3 8

6 4 9

62
62
753 4 8

4 5 8 1 9 2 6

62
62
75

2
975 4 3

Figure 5. Application of Rectangle Rule
.

4. Alternate Cycle-of-N

We shall define several path-like structures. First we consider the adja-
cency between two unfilled cells. If N is a potential solution to ci1j1 and
ci2j2 that are in the same block, then we say these two cells are adjacent

and we write ci1j1 ↔ ci2j2 . Furthermore, if N is a potential solution only to
these two cells in the block, we call them 2-adjacent and, when it becomes
necessary, we write ci1j1 ⇔ ci2j2 .

Assume that N is a potential solution to m cells ci1j1 , ci2j2 , . . . , cimjm .
If cells citjt and cit+1jt+1

are adjacent for 1 ≤ t ≤ m − 1, then the m cells
form a walk-of-N of length m − 1. We use ci1j1 ↔ ci2j2 ↔ · · · ↔ cimjm

to denote this walk. Again, we may use “⇔” instead of “↔” when it is
applicable and necessary. A walk-of-N is closed if the “first” cell and the
“last” cell are identical. A path-of-N is a walk-of-N with no repeated cells.
A cycle-of-N is a closed walk-of-N in which there are no repeated cells.

Now, let ci1j1 ↔ ci2j2 ↔ · · · ↔ cimjm ↔ ci1j1 be an cycle-of-N of length
m ≥ 5. If ci2tj2t ⇔ ci2t+1j2t+1

, then we call this cycle-of-N an alternate
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cycle-of-N. Namely, every other adjacency is definitely a 2-adjacency start-
ing from the second one: ci2j2 ⇔ ci3j3 , ci4j4 ⇔ ci5j5 , . . . . Note if the length
m is odd, the first and the last adjacency do not need to be a 2-adjacency.
We call ci1j1 the pivot cell. The following theorem provides a tool in solving
more difficult Sudoku puzzles.

Theorem 7. If an alternate cycle-of-N of odd length is formed when solving

a Sudoku puzzle, then N is not the solution to the pivot cell.

Proof. Let ci1j1 ↔ ci2j2 ⇔ ci3j3 ↔ · · · ↔ cim−1jm−1
⇔ cimjm ↔ ci1j1 be an

alternate cycle-of-N of length m = 2k + 1 for some k ≥ 2. The pivot cell
is ci1j1 . Assume that N is the solution to ci1j1 . Then N is not a solution
to ci2j2 , which leads to the conclusion that N is a solution to ci3j3 due
to 2-adjacency. Repeating the argument, we find that the number N is
the solution to every odd-indexed cell of the cycle: ci1j1 , ci3j3 , . . . , cimjm ,
since these cells lie on an alternate cycle-of-N . However, ci1j1 and cimjm

belong to the same block and they may not have the same solution. The
contradiction proves the theorem. �

Now, we go back to the partial solution of π-Sudoku shown in Figure 6.
We observe that the potential solutions to the cells c78, c75, c15, c19, and
c28 include 4. In the figure, we denote this using a 4+.

3 7+ 85 4+ 6 1 4+

6 1 8 5 4+ 7

85 7+ 4 6 1 3

4 1 32 7 5

7+ 7+ 5 9 3 1

7 9 4

71 8 71 6 4+ 5 2 4+ 3

2 5 3 1 8 6

9 4 6 32 8 1 7 5

Figure 6. Alternate cycle-of-4 of length five in π-Sudoku
.

In Figure 6, we observe an alternate cycle-of-4 of length five,

c78 ↔ c75 ⇔ c15 ↔ c19 ⇔ c28 ↔ c78.

By Theorem 7, number 4 is not the solution to cell c78. Therefore, 9 is the
solution to cell c78.
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It is difficult to determine a longer alternate cycle-of-N in a puzzle.
However, it is often useful to solve a hard Sudoku puzzle. We provide the
following example to demonstrate another application of Theorem 7.

9 3 5 6

7 2 3 5 1 4

5 6 4 1 2+ 3 2+

4 8 5 3 7 1 6

6 2+ 7 3 5

3 5 7 2+ 1 6 2+ 8 4

6 5 2+ 8 1 4 7 2+

2 4 6 1

4 7 1 9 8 2+ 3

Figure 7. Alternate cycle-of-2 of length 7.

Figure 7 is a partial solution of another puzzle. There is an alternate
cycle-of-2 of length 7:

c64 ↔ c56 ⇔ c36 ↔ c38 ⇔ c98 ↔ c79 ⇔ c74 ↔ c64.

We conclude, by Theorem 7, that 2 is not the solution to cell c64. There-
fore, 9 is its solution.
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