SOME INVARIANT PROPERTIES OF CURVES IN THE TAXICAB GEOMETRY

IDRIS ŐREN AND H. ANIL COBAN

ABSTRACT. Let E_T^2 be the group of all isometries of the 2-dimensional taxicab space R_T^2 . For the taxicab group E_T^2 , the taxicab type of curves is introduced. All possible taxicab types are found. For every taxicab type, an invariant parametrization of a curve is described. The E_T^2 -equivalence of curves is reduced to the problem of the E_T^2 equivalence of paths.

1. INTRODUCTION

The 2-dimensional taxicab space can be introduced using the metric $d_T(x,y) = |x_1 - y_1| + |x_2 - y_2|$ instead of the well-known Euclidean metric $d_E(x,y) = [(x_1-y_1)^2 + (x_2-y_2)^2]^{\frac{1}{2}}$, where $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$. This space will be denoted by \mathbb{R}^2_T . \mathbb{R}^2_T is also known as the taxicab plane geometry (shortly, taxicab geometry) [9, 10]. Let $E_T^2 = \{F: R_T^2 \to R_T^2: Fx = gx + b, g \in D_4, b \in R_T^2\}$, where the

group D_4 is the (Euclidean) symmetry group of the square.

The 2-dimensional taxicab group is introduced in [14]. For $n \ge 2$, geometric properties in the n-dimensional taxicab space are investigated in $\left[1,\,2,\,6,\,11\right]$. The taxicab arc length of a curve in the 2-dimensional taxicab space is defined in [17].

Invariant parametrizations and global properties of curves and paths in some spaces are considered in papers [3, 8, 12, 13] and some books [5, 7]. Similar problems for taxicab geometry have not yet appeared in the literature. These results are important for the theory of curves, the problems of E_T^2 -equivalence of curves and some physical applications. For example, the taxicab geometry plays an important role in ecology, firespread simulation with square-cell, grid-based maps [4, 15, 18]. Non-linear differential equations in taxicab geometry are introduced in [16].

This paper is organized as follows: In Section 2, the definitions of taxicab curve, taxicab type and the taxicab arc length function of a curve is given. In section 3, the definition of an invariant parametrization of a curve are given. Invariant parametrization of a curve with a fixed taxicab type are

MISSOURI J. OF MATH. SCI., FALL 2014

IDRIS ŐREN and H. ANIL COBAN

described. In Theorem 3.6, the problems of the E_T^2 -equivalence of curves are reduced to that of paths.

Future research could include problems and applications concerning E_T^2 equivalence of curves as well as the complete system of differential invariants of a curve in R_T^2 .

2. The Taxicab Type of a Curve

Let R be the field of real numbers and I = (a, b) an open interval of R.

Definition 2.1. A C^{∞} mapping $x \colon I \to R_T^2$ will be called an *I*-path (shortly, a path) in R_T^2 .

Definition 2.2. An I_1 -path x(t) and an I_2 -path y(r) in R_T^2 will be called *D*-equivalent if a C^{∞} -diffeomorphism $\varphi: I_2 \to I_1$ exists such that $\varphi'(r) > 0$ and $y(r) = x(\varphi(r))$ for all $r \in I_2$. A class of *D*-equivalent paths in R_T^2 will be called a curve in R_T^2 . A path $x \in \alpha$ will be called a parametrization of a curve α .

We denote the group $\{F : R_T^2 \to R_T^2 : Fx = gx + b, g \in D_4, b \in R_T^2\}$ of all transformations of R_T^2 by E_T^2 , where gx is the multiplication of a matrix g and a column vector $x \in R_T^2$.

If x(t) is an *I*-path then Fx(t) is an *I*-path in R_T^2 for any $F \in E_T^2$. Let G be a subgroup of E_T^2 .

Definition 2.3. Two *I*-paths x(t) and y(t) in R_T^2 are called *G*-equivalent if there exists $F \in G$ such that y(t) = Fx(t). This being the case, we write $x(t) \stackrel{G}{\sim} y(t)$.

Let $\alpha = \{h_{\tau}, \tau \in Q\}$ be a curve in R_T^2 , where h_{τ} is a parametrization of α . Then $F\alpha = \{Fh_{\tau}, \tau \in Q\}$ is a curve in R_T^2 for any $F \in E_T^2$.

Definition 2.4. Two curves α and β in R_T^2 are called *G*-equivalent if $\beta = F\alpha$ for some $F \in G$. This being the case, we write $\alpha \stackrel{G}{\sim} \beta$.

Let $x(t) = (x_1(t), x_2(t))$ be an *I*-path in R_T^2 , $x'(t) = (x'_1(t), x'_2(t))$ be the derivative of the path x(t). For $p, q \in I = (a, b), p < q$, we let

$$l_x(p,q) = \int_p^q (|x_1'(t)| + |x_2'(t)|) dt.$$

Obviously, the finite and infinite limits $l_x(a,q) = \lim_{p \to a} l_x(p,q) \leq +\infty$ and $l_x(p,b) = \lim_{q \to b} l_x(p,q) \leq +\infty$ exist. We have the following four possibilities:

$$l_x(a,q) < +\infty, \quad l_x(p,b) < +\infty \tag{2.1}$$

108

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 2

INVARIANT PROPERTIES IN THE TAXICAB GEOMETRY

$$l_x(a,q) < +\infty, \quad l_x(p,b) = +\infty \tag{2.2}$$

$$l_x(a,q) = +\infty, \quad l_x(p,b) < +\infty \tag{2.3}$$

$$l_x(a,q) = +\infty, \quad l_x(p,b) = +\infty.$$
(2.4)

Suppose that the case (2.1) holds for some $p, q \in I$. Then $l = l_x(a, q) + l_x(p, b) - l_x(p, q)$, where $0 \leq l \leq +\infty$, does not depend on $p, q \in I$. In this case we say that x belongs to the taxicab type of (0, l). In cases (2.2), (2.3), and (2.4), we say that x has taxicab types $(0, +\infty)$, $(-\infty, 0)$, and $(-\infty, +\infty)$, respectively. The taxicab type of a path x will be denoted by L(x).

Remark 2.5. The following examples 2.6–2.9 below show that there exist paths of all types (0, l), where $l < +\infty$, $(0, +\infty)$, $(-\infty, 0)$, $(-\infty, +\infty)$.

Example 2.6. Consider the *I*-path x(t) = (rcost, rsint) in E_T^2 , where $I = (0, \pi/2)$ and r > 0. Then

$$l_x(p,q) = r \int_p^q (sint + cost) dt = r(-cosq + sinq + cosp - sinp)$$

for all 0 .

Since $l_x(0,q) = \lim_{p \to 0} l_x(p,q) < +\infty$ and $l_x(p,\frac{\pi}{2}) = \lim_{q \to \frac{\pi}{2}} l_x(p,q) < +\infty$, the type of the path is (0,l).

Example 2.7. Consider the *I*-path $x(t) = (t, e^t)$ in E_T^2 , where $I = (0, +\infty)$. Then

$$l_x(p,q) = \int_{p}^{q} (1+e^t)dt = q - p + e^q - e^p$$

for all 0 .

Since $l_x(0,q) = \lim_{p\to 0} l_x(p,q) < +\infty$ and $l_x(p,+\infty) = \lim_{q\to +\infty} l_x(p,q) = +\infty$, the type of the path is $(0,+\infty)$.

Example 2.8. Consider the *I*-path $x(t) = (t, t^2)$ in E_T^2 , where $I = (-\infty, 0)$. Then

$$l_x(p,q) = \int_{p}^{q} (1-2t)dt = q - p - q^2 + p^2$$

for all $-\infty .$

Since $l_x(-\infty, q) = \lim_{p \to -\infty} l_x(p, q) = +\infty$ and $l_x(p, 0) = \lim_{q \to 0} l_x(p, q) < +\infty$, the type of the path is $(-\infty, 0)$.

MISSOURI J. OF MATH. SCI., FALL 2014

Example 2.9. Consider the *I*-path $x(t) = (t, t^2)$ in E_T^2 , where $I = (-\infty, +\infty)$. Then

$$l_x(p,q) = \int_p^q (1+2|t|)dt = q - p + q^2 + p^2$$

for all p < 0 < q.

Since

$$l_x(-\infty,q) = \lim_{p \to -\infty} l_x(p,q) = +\infty$$

and $l_x(p,+\infty) = \lim_{q \to \infty} l_x(p,q) = +\infty$,

the type of the path is $(-\infty, +\infty)$.

Proposition 2.10. Let x(t) be an *I*-path in R_T^2 . Then $l_x(p,q) = l_{gx}(p,q)$ for all $g \in D_4$

Proof. Since x(t) is an *I*-path in R_T^2 , gx(t) is an *I*-path in R_T^2 for all $g \in D_4$. Since the derivative of the *I*-path x(t) is $x'(t) = (x'_1(t), x'_2(t))$, we have [gx(t)]' = gx'(t) for all $g \in D_4$ and for all $t \in I$. Then an *I*-path gx'(t) can be written in forms $(x'_1(t), x'_2(t)), (-x'_1(t), x'_2(t)), (x'_1(t), -x'_2(t)), (-x'_1(t), -x'_2(t)), (x'_1(t), (-x'_2(t), x'_1(t)), (-x'_2(t), x'_1(t)), (-x'_1(t), (-x'_1(t)), (-x'$

Corollary 2.11. Let x(t) be an *I*-path in R_T^2 . Then $l_x(p,q) = l_{Fx}(p,q)$ for all $F \in E_T^2$.

Proof. It follows from Proposition 2.10.

 \square

Proposition 2.12. Let x(t) and y(t) be two *I*-paths in R_T^2 . Then

(i) if $x \stackrel{E_T^2}{\sim} y$ then L(x) = L(y).

(ii) if x, y are parametrizations of a curve α then L(x) = L(y).

Proof. It is obvious.

The taxicab type of a path $x \in \alpha$, will be called the taxicab type of the curve α and denoted by $L(\alpha)$. $L(\alpha)$ is an E_T^2 -invariant of a curve α .

Definition 2.13. An *I*-path x(t) is called regular if $x'(t) \neq 0$ for all $t \in I$.

If x(t) is a regular path and a path y(t) for all $t \in I$ is *D*-equivalent to x(t), the y(t) is also a regular path for all $t \in I$. A curve α is called regular if it contains a regular path.

110

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 2

INVARIANT PROPERTIES IN THE TAXICAB GEOMETRY

3. Invariant Parametrization of the Taxicab Curve

Now we define an invariant parametrization of a regular curve in R_T^2 . Let I = (a, b) and x(t) be a regular *I*-path in R_T^2 . We define the taxicab arc length function $s_x(t)$ for each taxicab type as follows. We put $s_x(t) = l_x(a,t)$ for the case L(x) = (0,l), where $l \leq +\infty$, and $s_x(t) = -l_x(t,b)$ for the case $L(x) = (-\infty, 0)$. Let $L(x) = (-\infty, +\infty)$. We choose a fixed point in every interval I = (a,b) of R and denote it by a_I . Let $a_I = 0$ for $I = (-\infty, +\infty)$. We set $s_x(t) = l_x(a_I, t)$.

Since $s'_x(t) > 0$ for all $t \in I$, the inverse function of $s_x(t)$ exists. Let us denote it by $t_x(s)$. The domain of $t_x(s)$ is L(x) and $t'_x(s) > 0$ for all $s \in L(x)$.

Proposition 3.1. Let I = (a, b) and x be a regular I-path in R_T^2 . Then

- (i) $s_{Fx}(t) = s_x(t)$ and $t_{Fx}(s) = t_x(s)$ for all $F \in E_T^2$;
- (ii) the equalities $s_{x(\varphi)}(r) = s_x(\varphi(r)) + s_0$ and $\varphi(t_{x(\varphi)}(s+s_0)) = t_x(s)$ hold for any C^{∞} -diffeomorphism $\varphi : J = (c,d) \to I$ such that $\varphi'(r) > 0$ for all $r \in J$, where $s_0 = 0$ for $L(x) \neq (-\infty, +\infty)$ and $s_0 = l_x(\varphi(a_J), a_I)$ for $L(x) = (-\infty, +\infty)$.

Proof. The statement (i) is obvious. Let us prove statement (ii). Let $L(x) = (-\infty, +\infty)$. Then we have

$$s_{x(\varphi)}(r) = \int_{a_J}^r \left(\left| \frac{d}{dr} x_1(\varphi(r)) \right| + \left| \frac{d}{dr} x_2(\varphi(r)) \right| \right) dr$$
$$= \int_{a_J}^r \frac{d\varphi}{dr} \left(\left| \frac{d}{d\varphi} x_1(\varphi(r)) \right| + \left| \frac{d}{d\varphi} x_2(\varphi(r)) \right| \right) dr$$
$$= l_x(\varphi(a_J), \varphi(r)) = l_x(a_I, \varphi(r)) + l_x(\varphi(a_J), a_I).$$

Thus, $s_{x(\varphi)}(r) = s_x(\varphi(r)) + s_0$, where $s_0 = l_x(\varphi(a_J), a_I)$. This implies that $\varphi(t_{x(\varphi)}(s+s_0)) = t_x(s)$. For $L(x) \neq (-\infty, +\infty)$, it is easy to see that $s_0 = 0$.

Let α be a regular curve, $x \in \alpha$. Then $x(t_x(s))$ is a parametrization of α .

Definition 3.2. The parametrization of the form $x(t_x(s))$ of a regular curve α is called an invariant parametrization of α .

Denote the set of all invariant parametrizations of α by $I_p(\alpha)$. Every $y \in I_p(\alpha)$ is a *J*-path, where $J = L(\alpha)$.

Proposition 3.3. Let α be a regular curve, $x \in \alpha$ and x be a *J*-path, where $J = L(\alpha)$. Then the following conditions are equivalent:

MISSOURI J. OF MATH. SCI., FALL 2014

İDRİS ŐREN and H. ANIL COBAN

- (i) x is an invariant parametrization of α ;
- (*ii*) $|x'_1(s)| + |x'_2(s)| = 1$ for all $s \in L(\alpha)$;
- (iii) $s_x(s) = s$ for all $s \in L(\alpha)$.

Proof. $(i) \to (ii)$. Let $x \in I_p(\alpha)$. Then there exists $y \in \alpha$ such that $x(s) = y(t_y(s))$. By Proposition 3.1, $s_x(s) = s_{y(t_y)}(s) = s_y(t_y(s)) + s_0 = s + s_0$, where s_0 is as in Proposition 3.1. Since s_0 does not depend on s, we have $\frac{ds_x(s)}{ds} = |x'_1(s)| + |x'_2(s)| = 1$ for all $s \in L(\alpha)$.

 $(ii) \rightarrow (iii)$. Let $|x'_1(s)| + |x'_2(s)| = 1$ for all $s \in L(\alpha)$. Using the definition of $s_x(t)$, we get $\frac{ds_x(s)}{ds} = |x'_1(s)| + |x'_2(s)| = 1$. Therefore $s_x(s) = s+c$ for some $c \in R$. In the case $L(x) \neq (-\infty, +\infty)$, conditions $s_x(s) = s+c$ and $s_x(s) \in L(\alpha)$ for all $s \in L(\alpha)$ implies c = 0, that is, $s_x(s) = s$. In the case $L(\alpha) = (-\infty, +\infty)$, equalities $s_x(s) = l_x(a_J, s) = l_x(0, s) = s + c$ implies $0 = l_x(0, 0) = c$, that is, $s_x(s) = s$.

 $(iii) \rightarrow (i)$. Since $s_x(s) = s$ implies $t_x(s) = s$, we get $x(s) = x(t_x(s)) \in I_p(\alpha)$.

Proposition 3.4. Let α be a regular curve and $L(\alpha) \neq (-\infty, +\infty)$. Then there exists a unique invariant parametrization of α .

Proof. Let $x, y \in \alpha$, x be an I_1 -path. Then there exists a C^{∞} - diffeomorphism $\varphi : I_2 \to I_1$ such that $\varphi'(r) > 0$ and $y(r) = x(\varphi(r))$ for all $r \in I_2$. By Proposition 3.3 and $L(\alpha) \neq (-\infty, +\infty)$, we obtain $y(t_y(s)) = x(\varphi(t_y(s)) = x(\varphi(t_x(\varphi))) = x(t_x(s))$.

Proposition 3.5. Let α be a regular curve, $L(\alpha) = (-\infty, +\infty)$ and $x \in I_p(\alpha)$. Then $I_p(\alpha) = \{y : y(s) = x(s+c), c \in (-\infty, +\infty)\}.$

Proof. Let $x, y \in I_p(\alpha)$. Then there exist $h, k \in \alpha$ such that $x(s) = h(t_h(s)), y(s) = k(t_k(s))$, where h is an I_1 -path and k is an I_2 -path. Since $h, k \in \alpha$ there exists $\varphi : I_2 \to I_1$ such that $\varphi'(r) > 0$ and $k(r) = h(\varphi(r))$ for all $r \in I_2$. By Proposition 3.1, $y(s) = k(t_k(s)) = h(\varphi(t_k(s))) = h(\varphi(t_k(s))) = h(\varphi(t_k(s-s_0))) = x(s-s_0)$.

Let $x \in I_p(\alpha)$ and $s' \in (-\infty, +\infty)$. We proof $x(\theta) \in I_p(\alpha)$, where $\theta(s) = s + s'$. By Proposition 3.3, $|x_1'(s)| + |x_2'(s)| = 1$ and $s_x(s) = s$. Put $z(s) = x(\theta(s))$. Since θ is a C^{∞} -diffeomorphism of $(-\infty, +\infty)$ onto $(-\infty, +\infty)$, then $z = x(\theta) \in \alpha$. Using Proposition 3.1 and $s_x(s) = s$, we get $s_z(s) = s_{x(\theta)}(s) = s_x(\theta(s)) + s_1 = (s + s') + s_1$, where

$$s_{1} = \int_{\theta(0)}^{0} \left(\left| x_{1}^{'}(s) \right| + \left| x_{2}^{'}(s) \right| \right) ds$$

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 2

for $s \in L(\alpha)$.

This, in view of $|x'_1(s)| + |x'_2(s)| = 1$, implies $s_1 = -\theta(0) = -s'$. Then $s_z(s) = (s+s') - s' = s$. By Proposition 3.3, $z \in I_p(\alpha)$.

Theorem 3.6. Let α, β be regular curves and $x \in I_p(\alpha), y \in I_p(\beta)$. Then

- (i) for $L(\alpha) = L(\beta) \neq (-\infty, +\infty)$, $\alpha \stackrel{E_T^2}{\sim} \beta$ if and only if $x \stackrel{E_T^2}{\sim} y$;
- (ii) for $L(\alpha) = L(\beta) = (-\infty, +\infty)$, $\alpha \stackrel{E_T^2}{\sim} \beta$ if and only if $x \stackrel{E_T^2}{\sim} y(\psi_c)$ for some $c \in (-\infty, +\infty)$, where $\psi_c(s) = s + c$.

Proof. (i). Let $\alpha \overset{E_T^2}{\sim} \beta$ and $h \in \alpha$. Then there exists $F \in E_T^2$ such that $\beta = F\alpha$. This implies $Fh \in \beta$. Using Propositions 3.1–3.4, we get $x(s) = h(t_h(s)), y(s) = (Fh)(t_{Fh}(s))$ and $Fx(s) = F(h(t_h(s))) = (Fh)(t_h(s)) = (Fh)(t_{Fh}(s)) = y(s)$. Thus $x \overset{E_T^2}{\sim} y$. Conversely, let $x \overset{E_T^2}{\sim} y$, that is, there exists $F \in E_T^2$ such that Fx = y. Then $\alpha \overset{E_T^2}{\sim} \beta$.

(ii). Let $\alpha \stackrel{E_T^2}{\sim} \beta$. Then there exist *J*-paths $h \in \alpha, k \in \beta$ and $F \in E_T^2$ such that k(t) = Fh(t). We have $k(t_k(s)) = k(t_{Fh}(s)) = k(t_h(s)) = (Fh)(t_h(s))$. By Proposition 3.5, $x(s) = k(t_k(s + s_1)), y(s) = h(t_h(s + s_2))$ for some $s_1, s_2 \in (-\infty, +\infty)$. Therefore, $x(s - s_1) = Fy(s - s_2)$. This implies that $x \stackrel{E_T^2}{\sim} y(\psi_c)$, where $\psi_c(s) = s + c$ and $c = s_1 - s_2$. Conversely, let $x \stackrel{E_T^2}{\sim} y(\psi_c)$ for some $c \in (-\infty, +\infty)$, where $\psi_c = s + c$. Then there exists $F \in E_T^2$ such that y(s + c) = Fx(s). Since $y(s + c) \in \beta$, then $\alpha \stackrel{E_T^2}{\sim} \beta$.

Theorem 3.6 reduces problems of the E_T^2 -equivalence regular curves to that of paths only for the case $L(\alpha) = L(\beta) \neq (-\infty, +\infty)$. Let G be a subgroup of E_T^2 .

Definition 3.7. *J*-paths x(t) and y(t) will be called

 $[G, (-\infty, +\infty)]$ -equivalent, if there exist $g \in G$ and $d \in (-\infty, +\infty)$ such that y(t) = gx(t+d) for all $t \in J$.

Theorem 3.6 reduces problems of the *G*-equivalence of regular curves to $[G, (-\infty, +\infty)]$ -equivalence of paths for the case $L(\alpha) = L(\beta) = (-\infty, +\infty)$.

Acknowledgment

The authors are very grateful to the referee for helpful comments and valuable suggestions.

References

 Z. Akca and R. Kaya, On the distance formulae in three dimensional taxicab space, Hadronic Journal, 27.5 (2004), 521–532.

MISSOURI J. OF MATH. SCI., FALL 2014

İDRİS ŐREN and H. ANIL COBAN

- Z. Akca and R. Kaya, On the norm in higher dimensional taxicab spaces, Hadronic J. Suppl., 19 (2004), 491–501.
- [3] R. G. Aripov and D. Khadjiev, The complete system of differential and integral invariants of a curve in Euclidean geometry, Russian Mathematics, 51.7 (2007), 1–14.
- [4] D. Caballero, Taxicab geometry: some problems and solutions for square grid-based fire spread simulation, V. International Conference on Forest Fire Research, 2006.
- [5] S. S. Chern, Curves and surfaces in Euclidean space, Global Diff. Geom., 27 (1989), 99–139.
- [6] Ö. Gelisken and R. Kaya, The taxicab space group, Acta Math.Hungar., 122.1-2 (2009), 187–200.
- [7] D. Khadjiev, An Application of Invariant Theory to Differential Geometry of Curves, Fan Publ., Tashkent, 1988. [Russian]
- [8] D. Khadjiev and Ö. Pekşen, The complete system of global integral and differential invariants for equi-Affine curves, Differ. Geom. Appl., (2004), no. 20, 167–175.
- [9] E. F. Krause, Taxicab Geometry, Addison–Wesley, Menlo Park, 1975.
- [10] K. Menger, You Will Like Geometry, Guidebook for Illinois Institute of Technology Geometry Exhibit, Museum of Science and Industry, Chicago, III., 1952.
- [11] M. Őzcan, S. Ekmekci, and A. Bayar, A note on the variation of taxicab length under rotations, Pi Mu Epsilon Journal, 11.7 (Fall 2002), 381–384.
- [12] Ö. Pekşen, D. Khadjiev, and İ. Ören, Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry, Turk. J. Math., 36.1 (2012), 147-160.
- [13] Y. Sagiroglu and Ö. Pekşen, The equivalence of centro-equi-affine curves, Turk. J. Math, ${\bf 34}$ (2010), 95–104 .
- [14] D. J. Schattschneider, The taxicab group, Amer. Math. Monthly, 97.7 (1984), 423– 428.
- [15] M. W. Sohn, Distance and cosine measures of niche overlap, Soc. Networks, 23 (2001), 141–165.
- [16] R. A. Struble, Non-linear Differential Equations, McGraw-Hill Comp., New York, 1962.
- [17] K. P. Thompson, The nature of length, area, and volume in taxicab geometry, Int. Electron. J. Geom., 4.2 (2011), 193–207.
- [18] D. L. Warren, R. E. Glor, and M. Turelli, Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution, Evolution, 62.11 (2008), 2868–2883.

MSC2010: 51K05, 51K99, 51N30, 51F20, 53A55, 53A35

Key words and phrases: Curve, Taxicab geometry, Invariant parametrization

Department of Mathematics, Karadeniz Technical University, Faculty of Science, 61080 Trabzon, Turkey

E-mail address: orenidris@gmail.com

DEPARTMENT OF MATHEMATICS, KARADENIZ TECHNICAL UNIVERSITY, FACULTY OF SCIENCE, 61080 TRABZON, TURKEY

 $E\text{-}mail\ address: hacoban@ktu.edu.tr$

114

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 2