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Abstract. Let E2

T
be the group of all isometries of the 2-dimensional

taxicab space R
2

T
. For the taxicab group E

2

T
, the taxicab type of

curves is introduced. All possible taxicab types are found. For every
taxicab type, an invariant parametrization of a curve is described.
The E

2

T
-equivalence of curves is reduced to the problem of the E

2

T
-

equivalence of paths.

1. Introduction

The 2-dimensional taxicab space can be introduced using the metric
dT (x, y) = |x1 − y1|+ |x2 − y2| instead of the well-known Euclidean metric

dE (x, y) = [(x1−y1)
2+(x2−y2)

2]
1

2 , where x = (x1, x2) , y = (y1, y2) ∈ R2.
This space will be denoted by R2

T . R
2
T is also known as the taxicab plane

geometry (shortly, taxicab geometry) [9, 10].
Let E2

T =
{

F : R2
T → R2

T : Fx = gx+ b, g ∈ D4, b ∈ R2
T

}

, where the
group D4 is the (Euclidean) symmetry group of the square.

The 2-dimensional taxicab group is introduced in [14]. For n ≥ 2, geo-
metric properties in the n-dimensional taxicab space are investigated in
[1, 2, 6, 11]. The taxicab arc length of a curve in the 2-dimensional taxicab
space is defined in [17].

Invariant parametrizations and global properties of curves and paths
in some spaces are considered in papers [3, 8, 12, 13] and some books
[5, 7]. Similar problems for taxicab geometry have not yet appeared in
the literature. These results are important for the theory of curves, the
problems of E2

T -equivalence of curves and some physical applications. For
example, the taxicab geometry plays an important role in ecology, fire-
spread simulation with square-cell, grid-based maps [4, 15, 18]. Non-linear
differential equations in taxicab geometry are introduced in [16].

This paper is organized as follows: In Section 2, the definitions of taxicab
curve, taxicab type and the taxicab arc length function of a curve is given.
In section 3, the definition of an invariant parametrization of a curve are
given. Invariant parametrization of a curve with a fixed taxicab type are
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described. In Theorem 3.6, the problems of the E2
T -equivalence of curves

are reduced to that of paths.
Future research could include problems and applications concerning E2

T -
equivalence of curves as well as the complete system of differential invariants
of a curve in R2

T .

2. The Taxicab Type of a Curve

Let R be the field of real numbers and I = (a, b) an open interval of R.

Definition 2.1. A C∞ mapping x : I → R2
T will be called an I-path

(shortly, a path) in R2
T .

Definition 2.2. An I1-path x (t) and an I2-path y (r) in R
2
T will be called

D-equivalent if a C∞ -diffeomorphism ϕ : I2 → I1 exists such that ϕ
′

(r) > 0
and y(r) = x(ϕ(r)) for all r ∈ I2. A class of D-equivalent paths in R2

T will
be called a curve in R2

T . A path x ∈ α will be called a parametrization of
a curve α.

We denote the group
{

F : R2
T → R2

T : Fx = gx+ b, g ∈ D4, b ∈ R2
T

}

of

all transformations of R2
T by E2

T , where gx is the multiplication of a matrix
g and a column vector x ∈ R2

T .
If x(t) is an I-path then Fx(t) is an I-path in R2

T for any F ∈ E2
T . Let

G be a subgroup of E2
T .

Definition 2.3. Two I-paths x(t) and y(t) in R2
T are called G-equivalent

if there exists F ∈ G such that y(t) = Fx(t). This being the case , we write

x(t)
G
∼ y(t).

Let α = {hτ , τ ∈ Q} be a curve in R2
T , where hτ is a parametrization of

α. Then Fα = {Fhτ , τ ∈ Q} is a curve in R2
T for any F ∈ E2

T .

Definition 2.4. Two curves α and β in R2
T are called G-equivalent if

β = Fα for some F ∈ G. This being the case, we write α
G
∼ β.

Let x(t) = (x1(t), x2(t)) be an I-path in R2
T , x

′

(t) = (x
′

1(t), x
′

2(t)) be the
derivative of the path x(t). For p, q ∈ I = (a, b), p < q, we let

lx(p, q) =

q
∫

p

(|x′1(t)|+ |x′2(t)|)dt.

Obviously, the finite and infinite limits lx(a, q) = limp→a lx(p, q) ≤ +∞
and lx(p, b) = limq→b lx(p, q) ≤ +∞ exist. We have the following four
possibilities:

lx(a, q) < +∞, lx(p, b) < +∞ (2.1)
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lx(a, q) < +∞, lx(p, b) = +∞ (2.2)

lx(a, q) = +∞, lx(p, b) < +∞ (2.3)

lx(a, q) = +∞, lx(p, b) = +∞. (2.4)

Suppose that the case (2.1) holds for some p, q ∈ I. Then l = lx(a, q) +
lx(p, b) − lx(p, q), where 0 ≤ l ≤ +∞, does not depend on p, q ∈ I. In
this case we say that x belongs to the taxicab type of (0, l). In cases (2.2),
(2.3), and (2.4), we say that x has taxicab types (0,+∞), (−∞, 0), and
(−∞,+∞), respectively. The taxicab type of a path x will be denoted by
L(x).

Remark 2.5. The following examples 2.6–2.9 below show that there exist
paths of all types (0, l), where l < +∞, (0,+∞), (−∞, 0), (−∞,+∞).

Example 2.6. Consider the I-path x(t) = (rcost, rsint) in E2
T , where

I = (0, π/2) and r > 0. Then

lx(p, q) = r

q
∫

p

(sint+ cost)dt = r(−cosq + sinq + cosp− sinp)

for all 0 < p < q < π
2 .

Since lx(0, q) = limp→0 lx(p, q) < +∞ and lx(p,
π
2 ) = limq→π

2
lx(p, q) <

+∞, the type of the path is (0, l).

Example 2.7. Consider the I-path x(t) = (t, et) inE2
T , where I = (0,+∞).

Then

lx(p, q) =

q
∫

p

(1 + et)dt = q − p+ eq − ep

for all 0 < p < q.
Since lx(0, q) = limp→0 lx(p, q) < +∞ and lx(p,+∞) = limq→+∞ lx(p, q) =

+∞, the type of the path is (0,+∞).

Example 2.8. Consider the I-path x(t) = (t, t2) in E2
T , where I = (−∞, 0).

Then

lx(p, q) =

q
∫

p

(1− 2t)dt = q − p− q2 + p2

for all −∞ < p < q < 0.
Since lx(−∞, q) = limp→−∞ lx(p, q) = +∞ and lx(p, 0) = limq→0 lx(p, q) <

+∞, the type of the path is (−∞, 0).
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Example 2.9. Consider the I-path x(t) = (t, t2) in E2
T , where I = (−∞,+∞).

Then

lx(p, q) =

q
∫

p

(1 + 2 |t|)dt = q − p+ q2 + p2

for all p < 0 < q.
Since

lx(−∞, q) = lim
p→−∞

lx(p, q) = +∞

and lx(p,+∞) = lim
q→∞

lx(p, q) = +∞,

the type of the path is (−∞,+∞).

Proposition 2.10. Let x(t) be an I-path in R2
T . Then lx(p, q) = lgx(p, q)

for all g ∈ D4

Proof. Since x(t) is an I-path in R2
T , gx(t) is an I-path in R2

T for all g ∈ D4.

Since the derivative of the I-path x(t) is x
′

(t) = (x
′

1(t), x
′

2(t)), we have

[gx(t)]
′

= gx
′

(t) for all g ∈ D4 and for all t ∈ I. Then an I-path gx
′

(t) can

be written in forms (x
′

1(t), x
′

2(t)), (−x
′

1(t), x
′

2(t)), (x
′

1(t), −x
′

2(t)), (−x
′

1(t),

−x
′

2(t)), (x
′

2(t), x
′

1(t)), (−x
′

2(t), x
′

1(t)), (x
′

2(t), −x
′

1(t)), (−x
′

2(t), −x
′

1(t)).
Clearly, lx(p, q) = lgx(p, q) for all g ∈ D4. �

Corollary 2.11. Let x(t) be an I-path in R2
T . Then lx(p, q) = lFx(p, q)

for all F ∈ E2
T .

Proof. It follows from Proposition 2.10. �

Proposition 2.12. Let x(t) and y(t) be two I-paths in R2
T . Then

(i) if x
E2

T∼ y then L(x) = L(y).
(ii) if x, y are parametrizations of a curve α then L(x) = L(y).

Proof. It is obvious. �

The taxicab type of a path x ∈ α, will be called the taxicab type of the
curve α and denoted by L(α). L(α) is an E2

T -invariant of a curve α.

Definition 2.13. An I-path x(t) is called regular if x
′

(t) 6= 0 for all t ∈ I.

If x(t) is a regular path and a path y(t) for all t ∈ I is D-equivalent to
x(t), the y(t) is also a regular path for all t ∈ I. A curve α is called regular
if it contains a regular path.
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3. Invariant Parametrization of the Taxicab Curve

Now we define an invariant parametrization of a regular curve in R2
T .

Let I = (a, b) and x(t) be a regular I-path in R2
T . We define the taxicab

arc length function sx(t) for each taxicab type as follows. We put sx(t) =
lx(a, t) for the case L(x) = (0, l), where l ≤ +∞, and sx(t) = −lx(t, b)
for the case L(x) = (−∞, 0). Let L(x) = (−∞,+∞). We choose a fixed
point in every interval I = (a, b) of R and denote it by aI . Let aI = 0 for
I = (−∞,+∞). We set sx(t) = lx(aI , t).

Since s
′

x(t) > 0 for all t ∈ I, the inverse function of sx(t) exists. Let

us denote it by tx(s). The domain of tx(s) is L(x) and t
′

x(s) > 0 for all
s ∈ L(x).

Proposition 3.1. Let I = (a, b) and x be a regular I-path in R2
T . Then

(i) sFx(t) = sx(t) and tFx(s) = tx(s) for all F ∈ E2
T ;

(ii) the equalities sx(ϕ)(r) = sx(ϕ(r)) + s0 and ϕ(tx(ϕ)(s+ s0)) = tx(s)
hold for any C∞-diffeomorphism ϕ : J = (c, d) → I such that

ϕ
′

(r) > 0 for all r ∈ J , where s0 = 0 for L(x) 6= (−∞,+∞) and

s0 = lx(ϕ(aJ ), aI) for L(x) = (−∞,+∞).

Proof. The statement (i) is obvious. Let us prove statement (ii). Let
L(x) = (−∞,+∞). Then we have

sx(ϕ)(r) =

r
∫

aJ

(∣

∣

∣

∣

d

dr
x1(ϕ(r))

∣

∣

∣

∣

+

∣

∣

∣

∣

d

dr
x2(ϕ(r))

∣

∣

∣

∣

)

dr

=

r
∫

aJ

dϕ

dr

(∣

∣

∣

∣

d

dϕ
x1(ϕ(r))

∣

∣

∣

∣

+

∣

∣

∣

∣

d

dϕ
x2(ϕ(r))

∣

∣

∣

∣

)

dr

= lx(ϕ(aJ ), ϕ(r)) = lx(aI , ϕ(r)) + lx(ϕ(aJ ), aI).

Thus, sx(ϕ)(r) = sx(ϕ(r)) + s0, where s0 = lx(ϕ(aJ ), aI). This implies
that ϕ(tx(ϕ)(s+ s0)) = tx(s). For L(x) 6= (−∞,+∞), it is easy to see that
s0 = 0. �

Let α be a regular curve, x ∈ α. Then x(tx(s)) is a parametrization of
α.

Definition 3.2. The parametrization of the form x(tx(s)) of a regular
curve α is called an invariant parametrization of α.

Denote the set of all invariant parametrizations of α by Ip(α). Every
y ∈ Ip(α) is a J-path, where J = L(α).

Proposition 3.3. Let α be a regular curve, x ∈ α and x be a J-path, where
J = L(α). Then the following conditions are equivalent:
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(i) x is an invariant parametrization of α;

(ii)
∣

∣

∣
x

′

1(s)
∣

∣

∣
+
∣

∣

∣
x

′

2(s)
∣

∣

∣
= 1 for all s ∈ L(α);

(iii) sx(s) = s for all s ∈ L(α).

Proof. (i) → (ii). Let x ∈ Ip(α). Then there exists y ∈ α such that x(s) =
y(ty(s)). By Proposition 3.1, sx(s) = sy(ty)(s) = sy(ty(s)) + s0 = s + s0,
where s0 is as in Proposition 3.1. Since s0 does not depend on s, we have
dsx(s)

ds
=
∣

∣

∣
x

′

1(s)
∣

∣

∣
+
∣

∣

∣
x

′

2(s)
∣

∣

∣
= 1 for all s ∈ L(α).

(ii) → (iii). Let
∣

∣

∣
x

′

1(s)
∣

∣

∣
+

∣

∣

∣
x

′

2(s)
∣

∣

∣
= 1 for all s ∈ L(α). Using the

definition of sx(t), we get
dsx(s)

ds
=

∣

∣

∣
x

′

1(s)
∣

∣

∣
+
∣

∣

∣
x

′

2(s)
∣

∣

∣
= 1. Therefore sx(s) =

s+c for some c ∈ R. In the case L(x) 6= (−∞,+∞), conditions sx(s) = s+c
and sx(s) ∈ L(α) for all s ∈ L(α) implies c = 0, that is, sx(s) = s. In the
case L(α) = (−∞,+∞), equalities sx(s) = lx(aJ , s) = lx(0, s) = s + c
implies 0 = lx(0, 0) = c, that is , sx(s) = s.

(iii) → (i). Since sx(s) = s implies tx(s) = s, we get x(s) = x(tx(s)) ∈
Ip(α). �

Proposition 3.4. Let α be a regular curve and L(α) 6= (−∞,+∞). Then

there exists a unique invariant parametrization of α.

Proof. Let x, y ∈ α, x be an I1-path. Then there exists a C∞- diffeomor-
phism ϕ : I2 → I1 such that ϕ′(r) > 0 and y(r) = x(ϕ(r)) for all r ∈ I2. By
Proposition 3.3 and L(α) 6= (−∞,+∞), we obtain y(ty(s)) = x(ϕ(ty(s)) =
x(ϕ(tx(ϕ)(s))) = x(tx(s)). �

Proposition 3.5. Let α be a regular curve, L(α) = (−∞,+∞) and x ∈
Ip(α). Then Ip(α) = {y : y(s) = x(s+ c), c ∈ (−∞,+∞)}.

Proof. Let x, y ∈ Ip(α). Then there exist h, k ∈ α such that x(s) =
h(th(s)), y(s) = k(tk(s)), where h is an I1-path and k is an I2-path. Since
h, k ∈ α there exists ϕ : I2 → I1 such that ϕ′(r) > 0 and k(r) = h(ϕ(r))
for all r ∈ I2. By Proposition 3.1, y(s) = k(tk(s)) = h(ϕ(tk(s)) =
h(ϕ(th(ϕ)(s)) = h(th(s− s0)) = x(s− s0).

Let x ∈ Ip(α) and s′ ∈ (−∞,+∞). We proof x(θ) ∈ Ip(α), where

θ(s) = s + s′. By Proposition 3.3,
∣

∣

∣
x

′

1(s)
∣

∣

∣
+

∣

∣

∣
x

′

2(s)
∣

∣

∣
= 1 and sx(s) = s.

Put z(s) = x(θ(s)). Since θ is a C∞-diffeomorphism of (−∞,+∞) onto
(−∞,+∞), then z = x(θ) ∈ α. Using Proposition 3.1 and sx(s) = s, we
get sz(s) = sx(θ)(s) = sx(θ(s)) + s1 = (s+ s′) + s1, where

s1 =

0
∫

θ(0)

(∣

∣

∣
x

′

1(s)
∣

∣

∣
+
∣

∣

∣
x

′

2(s)
∣

∣

∣

)

ds
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for s ∈ L(α).

This, in view of
∣

∣

∣
x

′

1(s)
∣

∣

∣
+

∣

∣

∣
x

′

2(s)
∣

∣

∣
= 1, implies s1 = −θ(0) = −s′. Then

sz(s) = (s+ s′)− s′ = s. By Proposition 3.3, z ∈ Ip(α). �

Theorem 3.6. Let α, β be regular curves and x ∈ Ip(α), y ∈ Ip(β). Then

(i) for L(α) = L(β) 6= (−∞,+∞), α
E2

T∼ β if and only if x
E2

T∼ y;

(ii) for L(α) = L(β) = (−∞,+∞), α
E2

T∼ β if and only if x
E2

T∼ y(ψc)
for some c ∈ (−∞,+∞), where ψc(s) = s+ c.

Proof. (i). Let α
E2

T∼ β and h ∈ α. Then there exists F ∈ E2
T such that

β = Fα. This implies Fh ∈ β. Using Propositions 3.1–3.4, we get x(s) =
h(th(s)), y(s) = (Fh)(tFh(s)) and Fx(s) = F (h(th(s))) = (Fh)(th(s)) =

(Fh)(tFh(s)) = y(s). Thus x
E2

T∼ y. Conversely, let x
E2

T∼ y, that is, there

exists F ∈ E2
T such that Fx = y. Then α

E2

T∼ β.

(ii). Let α
E2

T∼ β. Then there exist J-paths h ∈ α, k ∈ β and F ∈ E2
T such

that k(t) = Fh(t). We have k(tk(s)) = k(tFh(s)) = k(th(s)) = (Fh)(th(s)).
By Proposition 3.5, x(s) = k(tk(s + s1)), y(s) = h(th(s + s2)) for some
s1, s2 ∈ (−∞,+∞). Therefore, x(s − s1) = Fy(s − s2). This implies that

x
E2

T∼ y(ψc), where ψc(s) = s+ c and c = s1− s2. Conversely, let x
E2

T∼ y(ψc)
for some c ∈ (−∞,+∞), where ψc = s+ c. Then there exists F ∈ E2

T such

that y(s+ c) = Fx(s). Since y(s+ c) ∈ β, then α
E2

T∼ β. �

Theorem 3.6 reduces problems of the E2
T -equivalence regular curves to

that of paths only for the case L(α) = L(β) 6= (−∞,+∞). Let G be a
subgroup of E2

T .

Definition 3.7. J-paths x(t) and y(t) will be called
[G, (−∞,+∞)]-equivalent, if there exist g ∈ G and d ∈ (−∞,+∞) such
that y(t) = gx(t+ d) for all t ∈ J .

Theorem 3.6 reduces problems of the G-equivalence of regular curves to
[G, (−∞,+∞)]-equivalence of paths for the case L(α) = L(β) = (−∞,+∞).
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