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Abstract. In this article we prove that A and A−1 are stochastic if
and only of A is a permutation matrix. Then we extend this result to
show that A and A−1 are nonnegative if and only if it is a product of a
diagonal matrix with all positive diagonal entries and a permutation
matrix.

1. Introduction

Applications abound with nonnegative matrices. For example, the dis-
crete Laplacian leads to a nonnegative matrix. The matrix exp(At) that
defines the solution of the system of differential equations is nonnegative
in some applications. The system of difference equations p(k) = Ap(k− 1)
has a nonnegative coefficient matrix A in many applications. Nonnegative
matrices are so pervasive that any result of nonnegative matrices should be
interesting.

A short proof of the fact that A and A−1 are stochastic matrices if and
only if A is a permutation matrix is given in [1]. Here we present another
proof of this fact. This proof is longer, but shows the power of canonical
forms of stochastic matrices. Then we extend this result to show that A

and A−1 are nonnegative if and only if it is a product of a diagonal matrix
with all positive diagonal entries and a permutation matrix.

A matrix is called stochastic if it is a nonnegative matrix for which each
of its row sums equals 1. Clearly, if A is a permutation matrix, then A

and A−1 are stochastic. Now we prove in three steps that if A and A−1

are stochastic, then A is a permutation matrix. In Section 2 we state a key
spectral property of A when A and A−1 are stochastic. In Section 3 we
mention a canonical form of a stochastic matrix. In Section 4 we develop a
canonical form of A when A and A−1 are stochastic. This canonical form
immediately gives us the result that if A and A−1 are stochastic, then A

is a permutation matrix. Finally, in Section 5 we extend this result to the
case when A and A−1 are nonnegative.
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2. Spectral Property

Here we state a key spectral property of A when A and A−1 are stochas-
tic.

Theorem 2.1. If A and A−1 are stochastic, then all eigenvalues of A lie
on the unit circle in the complex plane.

Proof. We use the fact [3] that all eigenvalues of a stochastic matrix A are
on the closed unit disk {λ ∈ C : |λ| ≤ 1}. Suppose A has eigenvalues which
are inside the unit circle {λ ∈ C : |λ| = 1}. Then A−1 has eigenvalues
which are outside the unit circle. But that is impossible because A−1 is
stochastic. So all eigenvalues of A must be on the unit circle. �

3. Canonical Form of Stochastic Matrices

What we discuss in this section can be found in [2] or [3]. But for
the convenience of readers, we present it here. If a stochastic matrix A

is reducible, then, by definition, there exists a permutation matrix P and
square matrices X and Z such that

PTAP =

[

X Y

0 Z

]

.

We denote this by writing

A ∼

[

X Y

0 Z

]

.

If X or Z is reducible, then another symmetric permutation can be per-
formed to produce

[

X Y

0 Z

]

∼





R S T

0 U V

0 0 W



 ,

where R, U , and W are square. Repeating this process eventually yields

A ∼











X11 X12 · · · X1m

0 X22 · · · X2m

...
...

. . .
...

0 0 · · · Xmm











,

where each Xii is irreducible. Finally, if there exist rows having nonzero
entries only in diagonal blocks, then symmetrically permute all such rows
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to the bottom to produce

A ∼





























A11 A12 · · · A1r A1,r+1 A1,r+2 · · · A1m

0 A22 · · · A2r A2,r+1 A2,r+2 · · · A2m

...
...

. . .
...

...
...

. . .
...

0 0 · · · Arr Ar,r+1 Ar,r+2 · · · Arm

0 0 · · · 0 Ar+1,r+1 0 · · · 0
0 0 · · · 0 0 Ar+2,r+2 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · Amm





























, (1)

where each Aii is irreducible for 1 ≤ i ≤ m. The form given on the right-
hand side of (1) is called the canonical form of a stochastic matrix A.

Now we mention an important spectral property of Aii for 1 ≤ i ≤ r in
the canonical form (1).

Theorem 3.1. In the canonical form (1), we have ρ(Aii) < 1 for 1 ≤ i ≤ r.
Here ρ(Aii) denotes the spectral radius of Aii.

Proof. This is clearly true when Aii is 1 × 1. So suppose that the order of
Aii is at least 2. Because there must be at least one Aij , with i < j, which
is nonnegative and not zero, it follows that

Aiie ≤ e and Aiie 6= e,

where e is the vector of all 1’s. It is clear that ρ(Aii) ≤ 1. Suppose
ρ(Aii) = 1. Let y > 0 be the left Perron vector of Aii so that yTAii = yT

and let x = e − Aiie ≥ 0. Since Aiie 6= e, x has a positive component. So
yTx > 0. On the other hand,

yTx = yT (e−Aiie) = yT e− yTAiie = yT e− yT e = 0,

which is a contradiction. So we see that ρ(Aii) < 1. �

4. Canonical Form When A and A−1 are Stochastic

Throughout this section we assume that A and A−1 are stochastic. Since
all eigenvalues of A are on the unit circle by Theorem 2.1 and σ(A) =
⋃m

i=1
σ(Aii), Theorem 3.1 implies that r = 0 in (1), and hence the canonical

form (1) reduces to

A ∼











A11 0 · · · 0
0 A22 · · · 0
...

...
. . .

...
0 0 · · · Amm











, (2)

where each Akk for 1 ≤ k ≤ m is irreducible.
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Now we find further structure in (2). We divide Akk for k = 1, 2, . . . ,m
into two groups. Let the first group be made of all Akk which are 1×1, and
the second group all Akk whose orders are greater than 1. Without loss of
generality, we may assume that Akk are 1 × 1 for 1 ≤ k ≤ s and that the
orders of Akk are greater than 1 for s+ 1 ≤ k ≤ t with s+ t = m.

Since each Akk is stochastic, we have

Akk = 1 for 1 ≤ k ≤ s. (3)

Now consider Akk with s+ 1 ≤ k ≤ m. Observe that all the eigenvalues
of Akk are on the unit circle. Since the order of Akk is greater than 1 and
Akk is irreducible, it has more than one eigenvalue on the unit circle. So
Akk is an imprimitive matrix.

Let us recall the following Frobenius canonical form for imprimitive ma-
trices [4].

Theorem 4.1. For each imprimitive matrix B with index of imprimitivity
h ≥ 2,

B ∼















0 B12 0 · · · 0
0 0 B23 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Bh−1,h

Bh1 0 · · · 0 0















,

where the zero blocks on the main diagonal are square. Recall that ∼ denotes
permutation similarity.

Suppose that the order of the imprimitive stochastic matrix Akk is h.
Since all eigenvalues of Akk are on the unit circle and they are all simple,
it follows that the index of imprimitivity of Akk is also h. Hence, using
Theorem 4.1 with B = Akk and using the fact that Akk is stochastic we see
that, for s+ 1 ≤ k ≤ m,

Akk ∼















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
1 0 · · · 0 0















≡ Pk. (4)
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Using (3) and (4), we see that (2) further reduces to

A ∼





























1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 Ps+1 0 · · · 0
0 0 · · · 0 0 Ps+2 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · Pt





























, (5)

where the (1,1)-block is the s× s identity matrix. Since each Pk for s+1 ≤
k ≤ t is a permutation matrix, it follows that A is a permutation matrix.
In summary we have the following result.

Theorem 4.2. A matrix and its inverse are stochastic if and only if it is
a permutation matrix.

5. Extension to Nonnegative Matrices

We extend our result from stochastic matrices to nonnegative matrices.
In fact we have the following theorem.

Theorem 5.1. A matrix and its inverse are nonnegative matrices if and
only if it is the product of a diagonal matrix with all positive diagonal entries
and a permutation matrix.

Proof. Suppose that A = DP , where D is a diagonal matrix with all posi-
tive diagonal entries and P is a permutation matrix. Then clearly both A

and A−1 = P−1D−1 are nonnegative matrices.
Conversely, suppose that A and A−1 are nonnegative matrices. Since A

is invertible and nonnegative, each row of A has at least one positive entry.
So if we let D be a diagonal matrix with each diagonal entry the sum of
the corresponding row of A, then D is a diagonal matrix with all positive
diagonal entries. Observe that if we let P = D−1A, then P is an invertible
stochastic matrix. Since P−1 = A−1D is nonnegative and

e = Ie = P−1Pe = P−1e,

P−1 is a stochastic matrix. So by Theorem 4.2 P is a permutation matrix,
and A = DP . �
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