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Abstract. The aim of this paper is to introduce and study the
class of gωβ-closed sets. This class of sets is finer than g-closed sets
and ωβ−closed sets. We study the fundamental properties of this
class of sets. Further, we introduce and study gωβ-open sets, gωβ-
neighborhoodsets, gωβ-continuous functions, gωβ-irresolute functions
and gωβ-closed functions.

1. Introduction

Through this work, a space will always mean a topological space on which
no separation axiom is assumed unless explicitly stated. Let (X, τ) be a
space and let A be a subset of X . For A ⊆ X , the closure and the interior
of A in X are denoted by Cl(A) and Int(A), respectively. It is well-known
that a subset A of a space (X, τ) is β-open [1] if A ⊆ Cl(Int(Cl(A))). The
complement of β-open set is called β-closed. W is called ωβ-open [3](resp.
ω-open [5]) if for each x ∈ W , there exists a β-open set U (resp. U ∈ τ)
such that x ∈ U and U −W is countable. The complement of an ωβ-open
(resp. ω-open) set is called ωβ-closed (ω-closed). The intersection of all
ωβ-closed sets of X containing A is called the ωβ-closure of A and denoted
by ωβCl(A). And the union of all ωβ-open sets of X contained in A is
called ωβ-interior of A and is denoted by ωβInt(A).

In 1970, Levine [7] introduced the notion of generalized closed sets. He
defined a subset A of a space (X, τ) to be generalized closed (briefly, g-
closed) if Cl(A) ⊆ U whenever U ∈ τ and A ⊆ U . Generalized semi-closed
[6] (resp. generalized β-closed [10], generalized ω-closed [4]) sets are defined
by replacing the closure operator in Levine’s original definition by the semi-
closure (resp. β-closure, ω-closure) operator.

In this paper, we follow a similar line to introduce generalized ωβ-closed
sets by utilizing the ωβ-closure operator. We define gωβ-open sets and gωβ-
neighborhoods and study the properties of each one. The gωβ-continuous,
gωβ-irresolute and gωβ-closed functions are studied and we find the rela-
tionship between them and other well-known functions.

Now we begin to recall some known notions, definitions, and results
which will be used in the work.
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Definition 1.1. [3] A space (X, τ) is called a β-anti locally countable space
if each non-empty β-open set is an uncountable set.

Proposition 1.2. [3] Let (X, τ) be a topological space.

i. The intersection of an ωβ-open set and an ω-open set is ωβ-open.
ii. The intersection of any family of ωβ-closed set is ωβ-closed.

Definition 1.3. [2] A function f : (X, τ)→ (Y, σ) is called

i. ωβ-continuous if f−1(V ) is ωβ-open in (X, τ) for each open set V ⊆ Y .
ii. ωβ-irresolute if f−1(V ) is ωβ-open in (X, τ) for each ωβ-open set V

in (Y, σ).
iii. ωβ-open if f(V ) is ωβ-open in (Y, σ) for each ωβ-open set V in (X, τ).
iv. ωβ-closed if f(V ) is ωβ-closed in (Y, σ) for each ωβ-closed set V in

(X, τ).

Definition 1.4. [3] A topological space (X, τ) is said to be

i. ωβ-regular if each pair of a point and a closed set not containing the
point can be separated by disjoint ωβ-open sets.

ii. ωβ-normal if every two disjoint closed sets can be separated by ωβ-open
sets.

2. Generalized ωβ-Closed Sets

In this section we introduce gωβ-closed sets in a topological space and
study some of their properties.

Definition 2.1. A subset A of a space (X, τ) is called generalized ωβ-closed
(briefly, gωβ-closed) if ωβCl(A) ⊆ U whenever U ∈ τ and A ⊆ U .

We denote the family of all generalized ωβ-closed (resp. generalized
closed) subsets of a space (X, τ) by GωβC(X, τ) (resp. GC(X, τ)).

Proposition 2.2. Let (X, τ) be a topological space. Then
GωβC(X, τ) = P(X) if one of the following properties holds.

i. (X, τ) is a countable space (i.e., X is countable).
ii. ωβ-open and ωβ-closed coincide in (X, τ).

Proof.
i) It is obvious.
ii) Suppose A ⊆ U , where U is open in X . Since U is ωβ-open, it is ωβ-
closed by hypothesis. Hence, ωβCl(A) ⊆ U and A is gωβ-closed. Then,
GωβC(X, τ) = P(X). �

Every ωβ-closed set is gωβ-closed. However, the converse is not true in
general as the following example shows.
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Example 2.3. Let X = R with the topology τ = τcoc and let A = [0, 1].
Then A is gωβ-closed in (X, τ) since the only open set containing A is X.
However, A is not ωβ-closed in (X, τ).

Example 2.4. Let X = {1, 2, 3} with τ = {φ,X, {1}, {1, 2}} and let A =
{1}. Then A is gωβ-closed. But A is not g-closed since A ⊆ A and Cl(A) =
X 6⊂ A.

Example 2.5. Let X = {1, 2, 3, 4, 5} with the topology τ = {φ,X, {1},
{1, 2, 3}}. Set A = {1}. Then A is gωβ-closed since the space X is count-
able. However, A is not gβ-closed in (X, τ) since {1} ⊆ {1, 2, 3} ∈ τ but
X = βCl({1}) 6⊂ {1, 2, 3}.

Example 2.6. Let X = R with the topology τ = {φ,X,R − Q} and put
A = R−Q. Then A is gωβ-closed. But A is not gω-closed, since A is open
and A ⊆ A, ωCl(A) 6⊂ A (because A is not ω-closed).

We have the following relation for gωβ-closed sets with other known sets.

Closed → ω-closed
↓ ↓

g−closed → gω−closed
↓ ↓

gβ-closed → gωβ-closed
↑ ↑

Closed → β-closed → ωβ-closed ← ω-closed

Theorem 2.7. Let A be a gωβ-closed subset of (X, τ). Then
ωβCl(A)−A does not contain any non-empty closed sets.

Proof. Suppose by contrary that ωβCl(A)−A contains a non-empty closed
set F . Then A ⊆ X − F and X − F is open in (X, τ). Thus, ωβCl(A) ⊆
X − F or equivalently, F ⊆ X − ωβCl(A). This implies that F ⊆ (X −
ωβCl(A)) ∩ (ωβCl(A)−A) = φ. �

Corollary 2.8. Let A be a gωβ-closed subset of (X, τ). Then A is ωβ-
closed if and only if ωβCl(A)−A is closed.

Proof. LetA be a gωβ-closed set. IfA is ωβ-closed, then we have ωβCl(A)−
A = φ which is a closed set. Conversely, let ωβCl(A)−A be closed. Then by
Theorem 2.7, ωβCl(A) −A does not contain any non-empty closed subset
and since ωβCl(A)−A is a closed subset of itself, then ωβCl(A)−A = φ.
This implies that A = ωβCl(A) and so A is ωβ-closed. �

Proposition 2.9. Let (X, τ) be a topological space. Then the following are
equivalent.

i. Every open set of X is ωβ-closed.
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ii. Every subset of X is gωβ-closed.

Proof. (i)→ (ii) Let A ⊆ U ∈ τ . Then by (i), U is ωβ-closed, so ωβCl(A) ⊆
ωβCl(U) = U . Thus, A is gωβ-closed.
(ii)→ (i) Let U ∈ τ . Then by (ii), U is gωβ-closed and hence, ωβCl(U) ⊆
U . So U is ωβ-closed. �

Proposition 2.10. If A is open and gωβ-closed, then ωβCl(A)−A = φ.

Proof. It is obvious. �

Theorem 2.11. If A is a gωβ-closed set and B is any set such that A ⊆
B ⊆ ωβCl(A), then B is gωβ-closed.

Proof. Let U ∈ τ and B ⊆ U . Then A ⊆ B ⊆ U . Since A ∈ gωβ-closed,
ωβCl(B) ⊆ ωβCl(ωβCl(A)) = ωβCl(A) ⊆ U and the result follows. �

Definition 2.12. Let A be a subset of a space X. A point x ∈ X is said
to be a ωβ-limit point of A if for each ωβ-open set U containing x, we
have U ∩ (A − {x}) 6= φ. The set of all ωβ-limit points of A is called the
ωβ-derived set of A and is denoted by Dωβ(A).

Since every open set is ωβ-open, we have Dωβ(A) ⊆ D(A) for any subset
A ⊆ X , where D(A) is the derived set of A. Moreover, since every closed
set is ωβ-closed, we have A ⊆ ωβCl(A) ⊆ Cl(A).

The proof of the following result is straightforward and is omitted.

Lemma 2.13. If D(A) = Dωβ(A), then we have Cl(A) = ωβCl(A).

Corollary 2.14. If D(A) ⊆ Dωβ(A) for any subset A of X. Then for any
subsets F and B of X, we have ωβCl(F ∪B) = ωβCl(F ) ∪ ωβCl(B).

Proposition 2.15. If A and B are gωβ-closed sets such that D(A) ⊆
Dωβ(A) and D(B) ⊆ Dωβ(B). Then A ∪B is gωβ-closed.

Proof. Let U be an open set such that A ∪ B ⊆ U . Since A and B are
gωβ-closed sets, we have ωβCl(A) ⊆ U and ωβCl(B) ⊆ U . Since D(A) ⊆
Dωβ(A), D(A) = Dωβ(A) and by Lemma 2.13, Cl(A) = ωβCl(A). Simi-
larly, Cl(B) = ωβCl(B). Thus, ωβCl(A ∪B) = ωβCl(A) ∪ ωβCl(B) ⊆ U ,
which implies that A ∪B is gωβ-closed. �

The following example shows that the countable union of gωβ-closed sets
need not be gωβ-closed.

Example 2.16. Let X = R with the usual topology τu. For each n ∈ N,

put An = [ 1
n
, 1] and A =

∞

∪
n∈N

An. Then A is a countable union of gωβ-

closed sets but A is not gωβ-closed since U = (0, 2) ∈ τu, A ⊆ U and
ωβCl(A) = [0, 1] 6⊂ U .
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Proposition 2.17. Let A, B be subsets of a topological space (X, τ). Then
A ∩B is gωβ-closed whenever one of the following properties holds.

i. A is open and gωβ-closed, and B is ωβ-closed.
ii. A is gωβ-closed and B is closed.

Proof. i) By Proposition 2.10, A is ωβ-closed. Hence by Proposition 1.2,
A ∩B is ωβ-closed in X which implies that A ∩B is gωβ-closed in X .
ii) Let U be an open set in (X, τ) such that A ∩B ⊆ U . Put W = X −B.
Then A ⊆ U ∪W ∈ τ . Since A ∈ gωβ−closed, ωβCl(A) ⊆ U ∪W . Now
ωβCl(A∩B) ⊆ ωβCl(A)∩ωβCl(B) ⊆ ωβCl(A)∩Cl(B) = ωβCl(A)∩B ⊆
(U ∪W ) ∩B ⊆ U . �

The finite intersection of gωβ-closed sets need not be gωβ-closed. Let X
be an uncountable set and let A be a subset of X such that A and X −A
are uncountable. Let τ = {φ,X,A}. Choose x1, x2 /∈ A and x1 6= x2. Then
A1 = A ∪ {x1} and A2 = A ∪ {x2} are two gωβ-closed subsets of (X, τ)
(Since the only open set containing A1, A2 is X). But A1 ∩ A2 = A is not
gωβ-closed since A ⊆ A ∈ τ and ωβCl(A) 6= A.

Theorem 2.18. A subset A of a topological space (X, τ) is gωβ-closed if
and only if Cl({x}) ∩ A 6= φ for every x ∈ ωβCl(A).

Proof. Let A be a gωβ-closed set in X and suppose, if possible, that there
exists x ∈ ωβCl(A) such that Cl({x})∩A = φ. Therefore, A ⊆ (X\Cl{x}),
and so ωβCl(A) ⊆ (X\Cl({x})). Hence, x /∈ ωβCl(A) which is a contra-
diction.

Conversely, suppose that the condition of the theorem holds and let U
be any open set containing A. Let x ∈ ωβCl(A). Then by hypothesis
Cl({x}) ∩ A 6= φ, there exists z ∈ Cl({x}) ∩ A and so z ∈ A ⊆ U . Thus,
{x} ∩ U 6= φ. Hence, x ∈ U , which implies that ωβCl(A) ⊆ U . �

Theorem 2.19. For an element x ∈ X, either {x} is closed or X\{x} is
gωβ-closed.

Proof. Suppose {x} is not closed in (X, τ). Then X\{x} is not open and
the only open set containing X\{x} is X . This implies ωβCl(X\{x}) ⊆ X .
Hence, X\{x} is a gωβ-closed set in X . �

Definition 2.20. A space (X, τ) is called an ωβ-T1/2 space if every gen-
eralized ωβ-closed set is ωβ-closed.

Example 2.21. Any set with indiscrete topology is an example for an ωβ-
T1/2 space.

Theorem 2.22. A space (X, τ) is an ωβ-T1/2 space if and only if every
singleton is either closed or ωβ-open.
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Proof. Necessity. Suppose {x} is not a closed subset for some x ∈ X , hence
by Theorem 2.19, X − {x} is gωβ-closed. By assumption, X − {x} is ωβ-
closed. Hence, {x} is ωβ-open.
Sufficiency. Let A be a gωβ-closed subset of (X, τ) and x ∈ ωβCl(A). We
show that x ∈ A. If {x} is closed and x /∈ A, then x ∈ (ωβCl(A) − A).
Thus, ωβCl(A) − A contains a nonempty closed set {x}, a contradiction
to Theorem 2.7. So x ∈ A. If {x} is ωβ-open, since x ∈ ωβCl(A), then
for every ωβ-open set U containing x, we have U ∩ A 6= φ. Hence, x ∈ A.
Therefore, A is ωβ-closed. �

Theorem 2.23. Let (X, τ) be a β-antilocally countable space. Then (X, τ)
is a T1-space if it is an ωβ-T1/2 space.

Proof. Let x ∈ X and suppose that {x} is not closed. Then by Theorem
2.19 A = X−{x} is gωβ-closed. Therefore, by assumption, A is ωβ-closed,
and thus, {x} is ωβ-open. So there exists a β-open set U such that x ∈ U
and U−{x} is countable. It follows that U is a nonempty countable β-open
subset of x ∈ X , a contradiction. �

Recall that the kernel of a set A [9], denoted ker(A), is the intersection
of all open supersets of A.

Proposition 2.24. A subset A of X is gωβ-closed if and only if ωβCl(A) ⊆
ker(A).

Proof. Since A is gωβ-closed, ωβCl(A) ⊆ G for any open set G with A ⊆ G
and hence, ωβCl(A) ⊆ ker(A). Conversely, let G be an open set such that
A ⊆ G. By hypothesis, ωβCl(A) ⊆ ker(A) ⊆ ker(G) = G and hence, A is
gωβ-closed. �

3. Generalized ωβ-Open Sets and Generalized

ωβ-Neighborhoods

Definition 3.1. A subset A ⊆ X is called generalized ωβ-open (briefly,
gωβ-open) if its complement is generalized ωβ-closed. We denote the family
of all generalized ωβ-open subsets of a space (X, τ) by GωβO(X, τ).

Remark 3.2. ωβCl(X −A) = X − ωβInt(A).

Corollary 3.3. A subset A ⊆ X is gωβ-open if and only if F ⊆ ωβInt(A),
where F is a closed set and F ⊆ A.

Proof. Necessity. Let A be gωβ-open. Let F be a closed set such that
F ⊆ A. Then X − A ⊆ X − F , where X − F is an open set. Since A is
gωβ-open, X−ωβInt(A) = ωβCl(X−A) ⊆ X−F . That is F ⊆ ωβInt(A).
Sufficiency. Suppose F ⊆ ωβInt(A) whenever F is a closed set and F ⊆ A.
Let X−A ⊆ U where U is open, then X−U ⊆ A where X−U is closed. By
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hypothesisX−U ⊆ ωβInt(A). That is ωβCl(X−A) ⊆ X−ωβInt(A) ⊆ U .
This implies X −A is gωβ-closed and A is gωβ-open. �

Proposition 3.4. If ωβInt(A) ⊆ B ⊆ A and A is gωβ-open, then B is
gωβ-open.

Proof. ωβInt(A) ⊆ B ⊆ A implies X − A ⊆ X − B ⊆ X − ωβInt(A).
That is, X − A ⊆ X −B ⊆ ωβCl(X − A). Since X − A is gωβ-closed, by
Theorem 2.11, X −B is gωβ-closed and B is gωβ-open. �

Proposition 3.5. If A ⊆ X is gωβ-closed, then ωβCl(A)−A is gωβ-open.

Proof. Let A be gωβ-closed. Let F be a closed set such that F ⊆ ωβCl(A)−
A. Then by Theorem 2.7, F = φ. So F ⊆ ωβInt(ωβCl(A)−A). This shows
ωβCl(A)−A is gωβ-open. �

Remark 3.6. For any A ⊆ X, ωβInt(ωβCl(A)−A) = φ.

Proposition 3.7. Let A ⊆ B ⊆ X and let ωβCl(A)\A be gωβ-open. Then
ωβCl(A)\B is also gωβ−open.

Proof. Suppose ωβCl(A)\A is gωβ-open and let F be a closed subset of
(X, τ) with F ⊆ ωβCl(A)\B. Then F ⊆ ωβCl(A)\A. By Corollary 3.3
and Remark 3.6 F ⊆ ωβInt(ωβCl(A)\A) = φ. Thus, F = φ and hence,
F ⊆ ωβInt(ωβCl(A)\B). �

Proposition 3.8. If a set A is gωβ-open in a topological space (X, τ), then
G = X whenever G is open in (X, τ) and ωβInt(A) ∪ Ac ⊆ G.

Proof. Suppose that G is open and ωβInt(A) ∪ Ac ⊆ G. Now Gc ⊆
ωβCl(Ac) ∩A = ωβCl(Ac)−Ac. Since Gc is closed and Ac is gωβ-closed,
by Theorem 2.7 Gc = φ and hence, G = X . �

Theorem 3.9. Let (X, τ) be a topological space and A, B ⊆ X. If one of
the following conditions holds, then A ∩B is gωβ-open

i. A is gωβ-open and B is ω-open.
ii. B is gωβ-open and ωβInt(B) ⊆ A.

Proof. i) Let F be any closed subset of X such that F ⊆ A∩B. Hence, F ⊆
A and by Corollary 3.3, F ⊆ ωβInt(A) = ∪{U : U is ωβ-open and U ⊆ A}.
Obviously, F ⊆ ∪(U ∩ B), where U is an ωβ-open set in X contained in
A. By Theorem 1.2, U ∩ B is an ωβ-open set contained in A ∩ B for each
ωβ-open set U contained in A, so F ⊆ ωβInt(A∩B), and by Corollary 3.3,
A ∩B is gωβ-open in X .
ii) Since B is gωβ-open and ωβInt(B) ⊂ A ∩ B ⊆ B. By Proposition 3.4,
A ∩Bis gωβ-open. �
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Analogous to a neighborhood in a spaceX , we define a gωβ-neighborhood
in a space X as follows.

Definition 3.10. Let X be a topological space and let x ∈ X. A subset
N of X is called a gωβ-neighborhood of x if there exists a gωβ-open set G
such that x ∈ G ⊆ N .

Definition 3.11. A subset N of a space X is called a gωβ-neighbor-hood
of A ⊆ X if there exists a gωβ-open set G such that A ⊆ G ⊆ N .

Theorem 3.12. Every neighborhood N of x ∈ X is a gωβ-neighbor-hood
of x.

Proof. Let N be a neighborhood of a point x ∈ X , there exists an open set
G such that x ∈ G ⊆ N . Since every open set is a gωβ-open set G, N is a
gωβ−neighborhood of x. �

In general, a gωβ-neighborhood N of x ∈ X need not be a neighborhood
of x ∈ X , as seen from the following example.

Example 3.13. Let X = {a, b, c, d} with a topology τ = {φ,X, {a}, {b},
{a, b}, {a, b, c}}. Then GωβO(X) = P(X). The set {a, c} is a gωβ-
neighborhood of the point c, since {c} is the gωβ-open set such that c ∈
{c} ⊆ {a, c}. However, the set {a, c} is not a neighborhood of the point c,
since there exists no open set G such that c ∈ G ⊆ {a, c}.

Theorem 3.14. If a subset N of a space X is gωβ-open, then N is a
gωβ-neighborhood of each of its point.

Proof. Suppose N is gωβ-open. Let x ∈ N . We claim that N is a gωβ-
neighborhood of x. For N is a gωβ-open set such that x ∈ N ⊆ N . Since x
is an arbitrary point of N , it follows that N is a gωβ-neighborhood of each
of its points. �

Theorem 3.15. Let X be a topological space. If F is a gωβ-closed subset
of X and x ∈ F c. Then there exists a gωβ-neighborhood N of x such that
N ∩ F = φ.

Proof. Let F be a gωβ-closed subset of X and x ∈ F c. Then F c is gωβ-
open set of X . So by Theorem 3.14, F c contains a gωβ-neighborhood of
each of its points. Hence there exists a gωβ-neighbor-hood N of x such
that N ⊆ F c. That is N ∩ F = φ. �

Definition 3.16. Let x be a point in a space X. The set of all gωβ-
neighborhoods of x is called the gωβ-neighborhood system at x, and is de-
noted by gωβ −N(x).
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Theorem 3.17. Let X be a topological space and for each x ∈ X, let
gωβ−N(x) be the collection of all gωβ- neighborhoods of x. Then we have
the following results.

i. For all x ∈ X, gωβ −N(x) 6= φ.
ii. If N ∈ gωβ −N(x), then x ∈ N .
iii. If N ∈ gωβ −N(x) and N ⊆M , then M ∈ gωβ −N(x).
iv. If N ∈ gωβ − N(x), then there exists M ∈ gωβ − N(x) such that

M ⊆ N and M ∈ gωβ −N(y) for every y ∈M .

Proof.
i) Since X is a gωβ-open set, it is a gωβ-neighborhood of every x ∈ X .
Hence there exists at least one gωβ−neighborhood (namely X) for each
x ∈ X . Hence, gωβ −N(x) 6= φ for every x ∈ X .
ii) If N ∈ gωβ−N(x), then N is a gωβ-neighborhood of x. So by Definition
3.10, x ∈ N .
iii) Let N ∈ gωβ − N(x) and N ⊆ M . Then there is a gωβ-open set G
such that x ∈ G ⊆ N . Since N ⊆ M , x ∈ G ⊆ M and so M is a gωβ-
neighborhood of x. Hence, M ∈ gωβ −N(x).
iv) If N ∈ gωβ − N(x), then there exists a gωβ-open set M such that
x ∈M ⊆ N . Since M is a gωβ-open set, it is a gωβ-neighborhood of each
point of M . Therefore, M ∈ gωβ −N(y) for each y ∈M . �

Theorem 3.18. Let X be a non-empty set, and for each x ∈ X, let gωβ−
N(x) be a non-empty collection of subsets of X satisfying the following
conditions

i. If N ∈ gωβ −N(x) then x ∈ N .
ii. If N,M ∈ gωβ −N(x) then M ∩N ∈ gωβ −N(x).

Let τ consist of the empty set and all those non-empty subsets of G of X
having the property that x ∈ G implies that there exists an N ∈ gωβ−N(x)
such that x ∈ N ⊆ G. Then τ is a topology for X.

Proof. φ ∈ τ by definition. We now show that X ∈ τ . Let x be any
arbitrary element of X . Since gωβ − N(x) is non-empty, there is an N ∈
gωβ − N(x) such that x ∈ N by (i). Since N is a subset of X , we have
x ∈ N ⊆ X . Hence, X ∈ τ . Let G1, G2 ∈ τ . If x ∈ G1 ∩ G2, then
x ∈ G1 and x ∈ G2. Since G1, G2 ∈ τ , there exists N,M ∈ gωβ − N(x),
such that x ∈ N ⊆ G1 and x ∈ M ⊆ G2. Then x ∈ N ∩M ⊆ G1 ∩ G2,
but N ∩ M ∈ gωβ − N(x) by (ii). Hence, G1 ∩ G2 ∈ τ . Finally, let
Gα ∈ τ for every α ∈ ∆. If x ∈ ∪{Gα : α ∈ ∆}, then x ∈ Gα(x) for some
α(x) ∈ ∆. Since Gα(x) ∈ τ , there exists an N ∈ gωβ − N(x) such that
x ∈ N ⊂ Gα(x) ⊆ ∪{Gα : α ∈ ∆}. Hence, ∪{Gα : α ∈ ∆} ∈ τ . It follows
that τ is a topology for X . �
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4. gωβ-Continuity, gωβ-Irresoluteness and gωβ-Closedness

In this section we define generalized ωβ-continuity, generalized ωβ-irreso-
luteness and gωβ-closed functions and some of the basic properties are
studied. First we give some properties about the generalized ωβ-closure.
The intersection of all gωβ-closed (resp. g-closed [8]) sets of X containing A
is called gωβ−closure (resp. g-closure) of A, and it is denoted by ωβCl∗(A)
(resp. Cl∗(A)).

Lemma 4.1. For an x ∈ X, x ∈ ωβCl∗(A) if and only if V ∩ A 6= φ for
every gωβ-open set V containing x.

Proof. It is trivial. �

Lemma 4.2. Let A and B be subsets of (X, τ), then the following properties
hold.

i. ωβCl∗(φ) = φ and ωβCl∗(X) = X.
ii. If A ⊆ B, then ωβCl∗(A) ⊆ ωβCl∗(B).
iii. A ⊆ ωβCl∗(A).
iv. ωβCl∗(A) = ωβCl∗(ωβCl∗(A)).
v. ωβCl∗(A) ∪ ωβCl∗(B) ⊆ ωβCl∗(A ∪B).
vi. ωβCl∗(A) ∩ ωβCl∗(B) ⊇ ωβCl∗(A ∩B).

Definition 4.3. Let (X, τ) be a topological space

i. τ∗ = {U ⊆ X |Cl∗(X − U) = X − U} [8].
ii. τωβ

∗ = {W ⊆ X |ωβCl∗(X −W ) = X −W}.

Proposition 4.4. For a subset A of (X, τ), the following implications hold.

i. A ⊆ ωβCl∗(A) ⊆ ωβCl(A) ⊆ Cl(A).
ii. τ ⊆ ωβO(X, τ) ⊆ τωβ

∗.
iii. A ⊆ ωβCl∗(A) ⊆ Cl∗(A) ⊆ Cl(A).
iv. τ ⊆ {g − open sets} ⊆ τ∗ ⊆ τωβ

∗.

Theorem 4.5. If GωβO(X, τ) is a topology, then τωβ
∗ is a topology.

Proof. Clearly φ,X ∈ τωβ
∗. Let A,B ∈ τωβ

∗. Now ωβCl∗(X − (A ∩B)) =
ωβCl∗((X −A)∪ (X −B)) = ωβCl∗(X −A)∪ωβCl∗(X−B) = (X −A)∪
(X − B) = X − (A ∩ B). Hence, A ∩ B ∈ τωβ

∗. Let {Ai : i ∈ ∆} ∈ τωβ
∗.

Then ωβCl∗(X −∪Ai) = ωβCl∗(∩(X −Ai)) ⊂ ∩ωβCl∗(X −Ai) = ∩(X −
Ai) = X −∪Ai. Since X −∪Ai ⊂ ωβCl∗(X −∪Ai), ωβCl∗(∪(X −Ai)) =
∪ωβCl∗(X −Ai) and hence, ∪Ai ∈ τωβ

∗. Thus, τωβ
∗ is a topology. �

Theorem 4.6. For a topological space (X, τ), the following properties hold.

i. A space (X, τ) is gωβ − T1/2 if and only if τωβ
∗ = ωβO(X, τ).

ii. Every gωβ-closed is closed if and only if τωβ
∗ = τ .
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Proof. i) Necessity. Let A ∈ τ
ωβ

∗. Then ωβCl∗(X − A) = X − A. Since
(X, τ) is gωβ-T1/2, ωβCl(X − A) = ωβCl∗(X − A) = X − A. Hence,
A ∈ ωβO(X, τ). By Proposition 4.4, τωβ

∗ = ωβO(X, τ).
Sufficiency. Suppose τωβ

∗ = ωβO(X, τ). Let A be gωβ-closed set. Then
ωβCl∗(A) = A. This implies X − A ∈ τωβ

∗ = ωβO(X, τ). So A is ωβ-
closed.
Proof of (ii) is similar to (i). �

Definition 4.7. A function f : (X, τ)→ (Y, σ) is said to be gωβ-continuous
if f−1(V ) is gωβ-closed in X for every closed set V of Y .

Continuity implies gωβ-continuity but the converse need not be true.

Example 4.8. Let X = R with the topology τ = τu and let Y = {1, 2} with
the topology σ = {φ, Y, {1}}. Let f : (X, τ)→ (Y, σ) be the function defined
by

f(x) =

{

2, x ∈ R−Q;

1, x ∈ Q.

Then f is gωβ-continuous but not continuous, since f−1({2}) = R − Q is
not closed in (X, τ).

Remark 4.9.

i) If τωβ
∗ = τ in X, then continuity and gωβ-continuity coincide.

ii) Every gωβ-continuous function defined on gωβ-T1/2 space is ωβ-contin-
uous.
iii) A function f : (X, τ) → (Y, σ) is gωβ-continuous if and only if the
inverse image of every open set in Y is gωβ−open in X.

Theorem 4.10. If f : (X, τ)→ (Y, σ) is gωβ-continuous, then
f(ωβCl∗(A)) ⊆ Cl(f(A)) for every subset A of X.

Proof. Let A ⊆ X . Then Cl(f(A)) is closed in Y . By assumption
f−1(Cl(f(A))) is gωβ-closed in X . And A ⊆ f−1(f(A)) ⊆ f−1(Cl(f(A)))
implies ωβCl∗(A) ⊆ f−1(Cl(f(A))). Hence, f(ωβCl∗(A)) ⊆ Cl(f(A)). �

However, the converse does not hold.

Example 4.11. Let X = R with the topology τ = τcoc and let Y = {1, 2}
with the topology σ = {φ, Y, {1}}. Let f : (X, τ) → (Y, σ) be the func-
tion defined by f(x) = 2 for all x ∈ R − Q. If we take A = R − Q,
then f(ωβCl∗(A)) ⊆ Cl(f(A)). However f is not gωβ-continuous since
f−1({2}) = R−Q is not gωβ-closed in (X, τ).

Theorem 4.12. Let f : (X, τ)→ (Y, σ) be a function
a) If for each point x ∈ X and each open set V containing f(x) there exists
a gωβ-open set U containing x such that f(U) ⊆ V , then for every subset

80 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1



On GENERALIZED ωβ-CLOSED SETS

A of X, f(ωβCl∗(A)) ⊆ Cl(f(A)).
b) The following statements are equivalent.

i. For every subset A of X, f(ωβCl∗(A)) ⊆ Cl(f(A)).
ii. Suppose τωβ

∗ is a topology. The function f : (X, τωβ
∗) → (Y, σ) is

continuous.

Proof.
a) Let y ∈ f(ωβCl∗(A)). Let V be an open set containing y. Then by
hypothesis, there exists x ∈ ωβCl∗(A) such that f(x) = y and a gωβ-
open set U containing x such that f(U) ⊆ V . Therefore, by Lemma 4.1
U ∩ A 6= φ. Then f(U ∩ A) 6= φ. This implies V ∩ f(A) 6= φ. Hence,
y ∈ Cl(f(A)).
b) (i)→ (ii) Let A be closed in (Y, σ). By hypothesis,
f(ωβCl∗(f−1(A))) ⊆ Cl(f(f−1(A))) ⊆ Cl(A) = A. That is,
ωβCl∗(f−1(A)) ⊆ f−1(A). Also, f−1(A) ⊆ ωβCl∗(f−1(A)). Thus, f−1(A)
is closed in (X, τωβ

∗) and so f is continuous.
(ii) → (i) For every subset A of X , Cl(f(A)) is closed in (Y, σ). Since
f : (X, τωβ

∗) → (Y, σ) is continuous, f−1(Cl(f(A))) is closed in (X, τωβ
∗)

and hence, ωβCl∗(f−1(Cl(f(A)))) = f−1(Cl(f(A))). Moreover, we have
A ⊆ f−1(f(A)) ⊆ f−1(Cl(f(A))) and by Lemma 4.2, ωβCl∗(A) ⊆
ωβCl∗(f−1(Cl(f(A)))) = f−1(Cl(f(A))). Therefore, we obtain
f(ωβCl∗(A)) ⊆ Cl(f(A)). �

Theorem 4.13. If f : (X, τ)→ (Y, σ) is a continuous and ωβ-closed func-
tion, then f(A) is gωβ-closed in Y for every gωβ-closed set A in X.

Proof. Let A be any gωβ-closed set of X and U be any open set of Y con-
taining f(A). Since f is continuous, f−1(U) is open in X and A ⊆ f−1(U).
Therefore, we have ωβCl(A) ⊆ f−1(U) and hence, f(ωβCl(A)) ⊆ U . Since
f is ωβ-closed, ωβCl(f(A)) ⊆ ωβCl(f(ωβCl(A))) = f(ωβCl(A)) ⊆ U .
Hence, f(A) is gωβ-closed in Y . �

Definition 4.14. A function f : (X, τ)→ (Y, σ) is said to be gωβ-irresolute
if f−1(V ) is gωβ-closed in X for every gωβ−closed set V of Y .

It follows easily from the definition that a function f is gωβ-irresolute if
and only if the inverse image of every gωβ-open set in Y is gωβ-open in X .

Note that if a function is gωβ-irresolute then it is gωβ-continuous, but
not conversely.

Example 4.15. Let X = R with the topology τ = τcoc and let Y = {1, 2}
with the topology σ = {φ, Y, {1}}. Let f : (X, τ) → (Y, σ) be the function
defined by

f(x) =

{

1, x ∈ R−Q;

2, x ∈ Q.
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Then f is gωβ-continuous but not gωβ-irresolute, since f−1({1}) = R−Q

is not gωβ−closed in (X, τ).

Proposition 4.16. If f : (X, τ)→ (Y, σ) is an gωβ-continuous and σωβ
∗ =

σ holds, then f is gωβ-irresolute.

The proof follows from Remark 4.9.

Theorem 4.17. If f : (X, τ) → (Y, σ) is an ωβ-irresolute open bijection,
then f is gωβ-irresolute.

Proof. Let F be any gωβ-closed set of Y and U be an open set of X
containing f−1(F ). Since f is open, f(U) is open in Y and F ⊆ f(U). Since
F is gωβ-closed, ωβCl(F ) ⊆ f(U) and hence, f−1(ωβCl(F )) ⊆ U . Since
f is ωβ-irresolute, f−1(ωβCl(F )) is ωβ-closed. Hence, ωβCl(f−1(F )) ⊆
ωβCl(f−1(ωβCl(F ))) = f−1(ωβCl(F )) ⊆ U .
Therefore, f−1(F ) is gωβ-closed and f is gωβ-irresolute. �

The composition of two gωβ-continuous functions need not be gωβ-
continuous as can be seen from the following example.

Example 4.18. Consider X = R with the topology τ = τcoc, Y = {1, 2}
with the topologies σ = {φ, Y, {1}} and ρ = {φ, Y, {2}}. Let f : (X, τ) →
(Y, σ) be the function define by

f(x) =

{

1, x ∈ R−Q;

2, x ∈ Q.

And g : (Y, σ) → (Y, ρ) be the identity function. Then f and g are gωβ-
continuous. However, g ◦ f is not gωβ−continuous since (g ◦ f)−1(1) =
R−Q is not gωβ-closed in (X, τ).

Theorem 4.19. Let f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, ρ) be any two
functions. Then

i. g ◦ f is gωβ-continuous, if g is continuous and f is gωβ-contin-uous.
ii. g ◦ f is gωβ-irresolute, if g is gωβ-irresolute and f is gωβ-irresolute.
iii. g◦f is gωβ-continuous, if g is gωβ-continuous and f is gωβ-irresolute.
iv. g ◦ f is ωβ-continuous, if f is ωβ-irresolute and g is gωβ-contin-uous

and Y is a gωβ-T1/2 space.
v. g ◦ f is gωβ-continuous, if f, g are gωβ-continuous and σωβ

∗ = σ.

Proof.
i) Let V be closed in (Z, ρ). Then g−1(V ) is closed in (Y, σ), since g is
continuous. gωβ-continuity of f implies that f−1(g−1(V )) is gωβ-closed in
(X, τ). Hence, g ◦ f is gωβ-continuous.
ii) Let V be gωβ-closed in (Z, ρ). Then g−1(V ) is gωβ-closed in (Y, σ), since
g is gωβ−irresolute. gωβ-irresoluteness of f implies that f−1(g−1(V )) is
gωβ-closed in (X, τ). Hence, g ◦ f is gωβ-irresolute.
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iii) Let V be closed in (Z, ρ). Then g−1(V ) is gωβ-closed in (Y, σ), since
g is gωβ-continuous. gωβ−irresoluteness of f implies that f−1(g−1(V )) is
gωβ-closed in (X, τ). Hence, g ◦ f is gωβ-continuous.
iv) Let V be closed in (Z, ρ). Then g−1(V ) is gωβ-closed in (Y, σ), since g
is gωβ-continuous. As (Y, σ) is an ωβ-T1/2 space, g−1(V ) is ωβ-closed in
(X, τ). Hence, g ◦ f is ωβ-irresolute.
v) The proof follows from Remark 4.9. �

Theorem 4.20. Let f : (X, τ)→ (Y, σ) be a function

i. If f is gωβ-irresolute and X is gωβ-T1/2, then f is ωβ-irresolute.
ii. If f is gωβ-continuous and X is gωβ-T1/2, then f is ωβ-continuous.

Proof.
i) Let V be ωβ-closed in Y . Since f is gωβ-irresolute and every ωβ-closed
is gωβ-closed, f−1(V ) is gωβ-closed in X . Since X is gωβ-T1/2, f

−1(V ) is
ωβ-closed in X . Hence, f is ωβ-irresolute.
ii) Let V be closed in Y . Since f is gωβ-continuous, f−1(V ) is gωβ-closed
in X . By assumption, it is ωβ−closed. Therefore, f is ωβ-continuous. �

Theorem 4.21. Let f : (X, τ)→ (Y, σ) be an ωβ-closed and gωβ-irresolute
surjection. If (X, τ) is an ωβ-T1/2 space, then (Y, σ) is also an ωβ-T1/2

space.

Proof. Let F be any gωβ-closed set of Y . Since f is gωβ-irresolute, f−1(F )
is gωβ-closed in X . Since X is ωβ-T1/2, f

−1(F ) is ωβ-closed in X . As f

is ωβ-closed, f(f−1(F )) = F is ωβ−closed in Y . This shows that (Y, σ) is
also gωβ-T1/2 space. �

Definition 4.22. A function f : (X, τ)→ (Y, σ) is said to be gωβ∗-contin-
uous if the inverse image of every ωβ-closed set in Y is gωβ-closed in X.

Remark 4.23. The class of all gωβ∗-continuous functions lie inbetween
the class of all gωβ-irresolute functions and the class of all gωβ-continuous
functions, as seen in the following proposition.

Proposition 4.24. Let f : (X, τ)→ (Y, σ) be a function.

i. If f is gωβ-irresolute, then it is gωβ∗-continuous.
ii. If f is gωβ∗-continuous, then it is gωβ-continuous.

The authors were unable to find an example to show that the converse
of (i) in Proposition 4.24 is not always true. However, the function defined
in Example 4.15 is gωβ-continuous but not gωβ∗-continuous.

Proposition 4.25. If a bijection f : (X, τ) → (Y, σ) is open and gωβ∗-
continuous, then it is gωβ-irresolute.
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Proof. Let A be gωβ-closed in Y . Let f−1(A) ⊆ U , where U is open in X .
Since f is open, f(U) is open in Y . A ⊆ f(U) implies that ωβCl(A) ⊆ f(U).
That is, f−1(ωβCl(A)) ⊆ U . Since f is gωβ∗-continuous,
ωβCl(f−1(ωβCl(A))) ⊆ U and so ωβCl(f−1(A)) ⊆ U . This shows that
f−1(A) is gωβ-closed in X . Hence, f is gωβ-irresolute. �

Proposition 4.26. Let a bijection f : (X, τ)→ (Y, σ) be open gωβ∗-contin-
uous and ωβ-closed. If X is gωβ-T1/2, then Y is gωβ − T1/2.

Proof. Let A be gωβ-closed in Y . By Proposition 4.25, f−1(A) is gωβ-
closed in X . By hypothesis, f−1(A) is ωβ-closed in X . Since f is bijective
and ωβ-closed, A = f(f−1(A)) is ωβ-closed in Y . That is, Y is an ωβ-T1/2

space. �

Definition 4.27. A function f : (X, τ)→ (Y, σ) is called a generalized ωβ-
closed function (written as gωβ-closed function) if for each closed set F in
X, f(F ) is a gωβ-closed set of Y .

Every closed function is a gωβ-closed function, but not conversely.

Example 4.28. Let X = {1, 2} with the topologies τ = {φ,X, {1}} and
σ = {φ,X, {2}}. Let f : (X, τ) → (X, σ) be the identity function. Then f
is gωβ-closed but not closed, since f({2}) = 2 is not closed in (X, σ).

Theorem 4.29. A function f : (X, τ) → (Y, σ) is gωβ-closed if and only
if for each subset S of Y and for each open set U containing f−1(S), there
is a gωβ-open set V of Y such that S ⊆ V and f−1(V ) ⊆ U .

Proof. Necessity. Let S be a subset of Y and U be an open set of X such
that f−1(S) ⊆ U . Then Y −f(X−U), say V , is a gωβ−open set containing
S such that f−1(V ) ⊆ U .
Sufficiency. Let F be a closed set of X , then f−1(Y − f(F )) ⊆ X − F and
X − F is open. By hypothesis, there is a gωβ-open set V of Y such that
Y − f(F ) ⊆ V and f−1(V ) ⊆ X −F . Therefore, we have F ⊆ X − f−1(V )
and hence, Y − V ⊆ f(F ) ⊆ f(X − f−1(V )) ⊆ Y − V . This implies
f(F ) = Y − V , since Y − V is gωβ-closed, f(F ) is gωβ-closed and thus, f
is a gωβ-closed function. �

Theorem 4.30. If a function f : (X, τ) → (Y, σ) is gωβ-closed, then
ωβCl∗(f(A)) ⊆ f(Cl(A)) for every subset A of (X, τ).

Proof. Suppose that f is gωβ-closed and A ⊆ X . Then Cl(A) is closed
in X and so f(Cl(A)) is gωβ-closed in (Y, σ). We have f(A) ⊆ f(Cl(A))
by Lemma 4.2, ωβCl∗(f(A)) ⊆ ωβCl∗(f(Cl(A))). Since f(Cl(A)) is gωβ-
closed in (Y, σ), ωβCl∗(f(Cl(A))) = f(Cl(A)), we have ωβCl∗(f(A)) ⊆
f(Cl(A)) for every subset Aof (X, τ). �
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Theorem 4.31. If f : (X, τ) → (Y, σ) is continuous, gωβ-closed and A is
a g-closed subset of X, then f(A) is gωβ-closed.

Proof. Let f(A) ⊆ U , where U is an open subset of Y , then f−1(U) is an
open set containing A. Since A is g-closed, we have Cl(A) ⊆ f−1(U) and
f(Cl(A)) ⊆ U . Since f is gωβ-closed, f(Cl(A)) is gωβ-closed. Therefore,
ωβCl(f(Cl(A))) ⊆ U which implies that ωβCl(f(A)) ⊆ U . Hence, f(A) is
gωβ-closed. �

Theorem 4.32. Let f : (X, τ)→ (Y, σ) be a bijective, open, and gωβ∗ −
continuous function. Then f is a gωβ-irresolute function.

Proof. Let V be any gωβ-closed subset of Y and let U be any open sub-
set of X such that f−1(V ) ⊆ U . Clearly V ⊆ f(U), since f is an open
function, f(U) is open and V is gωβ-closed. Hence, ωβCl(V ) ⊆ f(U)
and f−1(ωβCl(V )) ⊆ U . Since f is gωβ∗−continuous and ωβCl(V ) is
ωβ−closed in Y , then f−1(ωβCl(V )) is a gωβ-closed subset of U and so
ωβCl(f−1(ωβCl(V ))) ⊆ U . So ωβCl(f−1(V )) ⊆ U . Therefore, f−1(V ) is
a gωβ-closed subset. Hence, f is a gωβ-irresolute function. �

Proposition 4.33. If f : (X, τ) → (Y, σ) is bijective, ωβ-closed and con-
tinuous, then the inverse function f−1 : (Y, σ)→ (X, τ) is gωβ-irresolute.

Proof. Let A be gωβ-closed in (X, τ). Let (f−1)−1(A) = f(A) ⊆ U , where
U is open in (Y, σ). Then A ⊆ f−1(U), since f−1(U) is open in (X, τ) and
A is gωβ-closed in (X, τ), ωβCl(A) ⊆ f−1(U) and hence, f(ωβCl(A)) ⊆
U . Since f is ωβ-closed, f(ωβCl(A)) is ωβ-closed in (Y, σ) and f(A) ⊂
f(ωβCl(A) and hence, ωβCl(f(A)) ⊆ U . Thus, f(A) is gωβ-closed in
(Y, σ) and so f−1 is gωβ-irresolute. �

Theorem 4.34. If f : (X, τ) → (Y, σ) is a continuous surjection and
g : (Y, σ) → (Z, ρ) is a function such that g ◦ f : (X, τ) → (Z, ρ) is gωβ-
closed, then g is gωβ-closed.

Proof. Let V be a closed set of Y . Since f−1(V ) is closed in X , g(V ) =
(g ◦ f)(f−1(V )) is gωβ-closed in Z. Hence, g is gωβ-closed. �

Theorem 4.35. If f : (X, τ) → (Y, σ) is a continuous, onto and gωβ-
closed function from a normal space (X, τ) to a space (Y, σ), then (Y, σ) is
ωβ-normal.

Proof. Let A and B be disjoint closed sets of Y . Since X is normal, then
there exist disjoint open sets U and V in X such that f−1(A) ⊆ U and
f−1(B) ⊆ V . By Theorem 4.29, there exist gωβ-open sets G and H in
Y such that A ⊂ G, B ⊂ H , f−1(G) ⊆ U , f−1(H) ⊆ V and f−1(G) ∩
f−1(H) = φ. Hence, G ∩ H = φ. Since G is gωβ-open and A is a closed

MISSOURI J. OF MATH. SCI., SPRING 2014 85



H. H. ALJARRAH, M. S. M. NOORANI, AND T. NOIRI

set such that A ⊆ G, A ⊆ ωβInt(G). Similarly, B ⊆ ωβInt(H). Hence,
ωβInt(G) ∩ ωβInt(H) ⊂ G ∩H = φ. Therefore, Y is ωβ-normal. �

Theorem 4.36. If f : (X, τ)→ (Y, σ) is a continuous, ωβ-open and gωβ-
closed surjection from a regular space (X, τ) to a space (Y, σ), then (Y, σ)
is ωβ-regular.

Proof. Let y ∈ Y and U be an open set containing y in Y , then there
exists x ∈ X such that f(x) = y. Now, f−1(U) is an open set in X
containing x. But X is regular, then there exists an open set V such
that x ∈ V ⊆ Cl(V ) ⊆ f−1(U) and y ∈ f(V ) ⊆ f(Cl(V )) ⊆ U . But
f(Cl(V )) is gωβ-closed. Then we have ωβCl(f(Cl(V ))) ⊆ U . Therefore,
y ∈ f(V ) ⊆ ωβCl(f(V )) ⊆ U and f(V ) is ωβ-open in Y (because f is
ωβ-open). Hence, Y is ωβ-regular. �
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