ON GENERALIZED $\omega\beta$ -CLOSED SETS

H. H. ALJARRAH, M. S. M. NOORANI, AND T. NOIRI

ABSTRACT. The aim of this paper is to introduce and study the class of $g\omega\beta$ -closed sets. This class of sets is finer than g-closed sets and $\omega\beta$ -closed sets. We study the fundamental properties of this class of sets. Further, we introduce and study $g\omega\beta$ -open sets, $g\omega\beta$ -neighborhoodsets, $g\omega\beta$ -continuous functions, $g\omega\beta$ -irresolute functions and $g\omega\beta$ -closed functions.

1. INTRODUCTION

Through this work, a space will always mean a topological space on which no separation axiom is assumed unless explicitly stated. Let (X, τ) be a space and let A be a subset of X. For $A \subseteq X$, the closure and the interior of A in X are denoted by Cl(A) and Int(A), respectively. It is well-known that a subset A of a space (X, τ) is β -open [1] if $A \subseteq Cl(Int(Cl(A)))$. The complement of β -open set is called β -closed. W is called $\omega\beta$ -open [3](resp. ω -open [5]) if for each $x \in W$, there exists a β -open set U (resp. $U \in \tau$) such that $x \in U$ and U - W is countable. The complement of an $\omega\beta$ -open (resp. ω -open) set is called $\omega\beta$ -closed (ω -closed). The intersection of all $\omega\beta$ -closed sets of X containing A is called the $\omega\beta$ -closure of A and denoted by $\omega\beta Cl(A)$. And the union of all $\omega\beta$ -open sets of X contained in A is called $\omega\beta$ -interior of A and is denoted by $\omega\beta Int(A)$.

In 1970, Levine [7] introduced the notion of generalized closed sets. He defined a subset A of a space (X, τ) to be generalized closed (briefly, g-closed) if $Cl(A) \subseteq U$ whenever $U \in \tau$ and $A \subseteq U$. Generalized semi-closed [6] (resp. generalized β -closed [10], generalized ω -closed [4]) sets are defined by replacing the closure operator in Levine's original definition by the semi-closure (resp. β -closure, ω -closure) operator.

In this paper, we follow a similar line to introduce generalized $\omega\beta$ -closed sets by utilizing the $\omega\beta$ -closure operator. We define $g\omega\beta$ -open sets and $g\omega\beta$ neighborhoods and study the properties of each one. The $g\omega\beta$ -continuous, $g\omega\beta$ -irresolute and $g\omega\beta$ -closed functions are studied and we find the relationship between them and other well-known functions.

Now we begin to recall some known notions, definitions, and results which will be used in the work.

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

Definition 1.1. [3] A space (X, τ) is called a β -anti locally countable space if each non-empty β -open set is an uncountable set.

Proposition 1.2. [3] Let (X, τ) be a topological space.

- i. The intersection of an $\omega\beta$ -open set and an ω -open set is $\omega\beta$ -open.
- ii. The intersection of any family of $\omega\beta$ -closed set is $\omega\beta$ -closed.

Definition 1.3. [2] A function $f: (X, \tau) \to (Y, \sigma)$ is called

- i. $\omega\beta$ -continuous if $f^{-1}(V)$ is $\omega\beta$ -open in (X, τ) for each open set $V \subseteq Y$.
- ii. $\omega\beta$ -irresolute if $f^{-1}(V)$ is $\omega\beta$ -open in (X, τ) for each $\omega\beta$ -open set V in (Y, σ) .
- iii. $\omega\beta$ -open if f(V) is $\omega\beta$ -open in (Y, σ) for each $\omega\beta$ -open set V in (X, τ) .
- iv. $\omega\beta$ -closed if f(V) is $\omega\beta$ -closed in (Y,σ) for each $\omega\beta$ -closed set V in (X,τ) .

Definition 1.4. [3] A topological space (X, τ) is said to be

- i. $\omega\beta$ -regular if each pair of a point and a closed set not containing the point can be separated by disjoint $\omega\beta$ -open sets.
- ii. $\omega\beta$ -normal if every two disjoint closed sets can be separated by $\omega\beta$ -open sets.

2. Generalized $\omega\beta$ -Closed Sets

In this section we introduce $g\omega\beta$ -closed sets in a topological space and study some of their properties.

Definition 2.1. A subset A of a space (X, τ) is called generalized $\omega\beta$ -closed (briefly, $g\omega\beta$ -closed) if $\omega\beta Cl(A) \subseteq U$ whenever $U \in \tau$ and $A \subseteq U$.

We denote the family of all generalized $\omega\beta$ -closed (resp. generalized closed) subsets of a space (X, τ) by $G\omega\beta C(X, \tau)$ (resp. $GC(X, \tau)$).

Proposition 2.2. Let (X, τ) be a topological space. Then $G\omega\beta C(X, \tau) = P(X)$ if one of the following properties holds.

i. (X, τ) is a countable space (i.e., X is countable). ii. $\omega\beta$ -open and $\omega\beta$ -closed coincide in (X, τ) .

Proof.

i) It is obvious.

ii) Suppose $A \subseteq U$, where U is open in X. Since U is $\omega\beta$ -open, it is $\omega\beta$ closed by hypothesis. Hence, $\omega\beta Cl(A) \subseteq U$ and A is $g\omega\beta$ -closed. Then, $G\omega\beta C(X,\tau) = P(X)$.

Every $\omega\beta$ -closed set is $g\omega\beta$ -closed. However, the converse is not true in general as the following example shows.

MISSOURI J. OF MATH. SCI., SPRING 2014

Example 2.3. Let $X = \mathbb{R}$ with the topology $\tau = \tau_{coc}$ and let A = [0, 1]. Then A is $g\omega\beta$ -closed in (X, τ) since the only open set containing A is X. However, A is not $\omega\beta$ -closed in (X, τ) .

Example 2.4. Let $X = \{1, 2, 3\}$ with $\tau = \{\phi, X, \{1\}, \{1, 2\}\}$ and let $A = \{1\}$. Then A is $g\omega\beta$ -closed. But A is not g-closed since $A \subseteq A$ and $Cl(A) = X \not\subset A$.

Example 2.5. Let $X = \{1, 2, 3, 4, 5\}$ with the topology $\tau = \{\phi, X, \{1\}, \{1, 2, 3\}\}$. Set $A = \{1\}$. Then A is $g\omega\beta$ -closed since the space X is countable. However, A is not $g\beta$ -closed in (X, τ) since $\{1\} \subseteq \{1, 2, 3\} \in \tau$ but $X = \beta Cl(\{1\}) \not\subset \{1, 2, 3\}$.

Example 2.6. Let $X = \mathbb{R}$ with the topology $\tau = \{\phi, X, \mathbb{R} - \mathbb{Q}\}$ and put $A = \mathbb{R} - \mathbb{Q}$. Then A is $g\omega\beta$ -closed. But A is not $g\omega$ -closed, since A is open and $A \subseteq A$, $\omega Cl(A) \not\subset A$ (because A is not ω -closed).

We have the following relation for $g\omega\beta$ -closed sets with other known sets.

$$\begin{array}{c} \text{Closed} \rightarrow \omega\text{-closed} \\ \downarrow \qquad \downarrow \\ g-\text{closed} \rightarrow g\omega\text{-closed} \\ \downarrow \qquad \downarrow \\ g\beta\text{-closed} \rightarrow g\omega\beta\text{-closed} \\ \uparrow \qquad \uparrow \\ \text{Closed} \rightarrow \beta\text{-closed} \leftarrow \omega\text{-closed} \end{array}$$

Theorem 2.7. Let A be a $g\omega\beta$ -closed subset of (X, τ) . Then $\omega\beta Cl(A) - A$ does not contain any non-empty closed sets.

Proof. Suppose by contrary that $\omega\beta Cl(A) - A$ contains a non-empty closed set F. Then $A \subseteq X - F$ and X - F is open in (X, τ) . Thus, $\omega\beta Cl(A) \subseteq X - F$ or equivalently, $F \subseteq X - \omega\beta Cl(A)$. This implies that $F \subseteq (X - \omega\beta Cl(A)) \cap (\omega\beta Cl(A) - A) = \phi$.

Corollary 2.8. Let A be a $g\omega\beta$ -closed subset of (X, τ) . Then A is $\omega\beta$ closed if and only if $\omega\beta Cl(A) - A$ is closed.

Proof. Let A be a $g\omega\beta$ -closed set. If A is $\omega\beta$ -closed, then we have $\omega\beta Cl(A) - A = \phi$ which is a closed set. Conversely, let $\omega\beta Cl(A) - A$ be closed. Then by Theorem 2.7, $\omega\beta Cl(A) - A$ does not contain any non-empty closed subset and since $\omega\beta Cl(A) - A$ is a closed subset of itself, then $\omega\beta Cl(A) - A = \phi$. This implies that $A = \omega\beta Cl(A)$ and so A is $\omega\beta$ -closed.

Proposition 2.9. Let (X, τ) be a topological space. Then the following are equivalent.

i. Every open set of X is $\omega\beta$ -closed.

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

ii. Every subset of X is $g\omega\beta$ -closed.

Proof. (i) \rightarrow (ii) Let $A \subseteq U \in \tau$. Then by (i), U is $\omega\beta$ -closed, so $\omega\beta Cl(A) \subseteq \omega\beta Cl(U) = U$. Thus, A is $g\omega\beta$ -closed.

(ii) \rightarrow (i) Let $U \in \tau$. Then by (ii), U is $g\omega\beta$ -closed and hence, $\omega\beta Cl(U) \subseteq U$. So U is $\omega\beta$ -closed.

Proposition 2.10. If A is open and $g\omega\beta$ -closed, then $\omega\beta Cl(A) - A = \phi$.

Proof. It is obvious.

Theorem 2.11. If A is a $g\omega\beta$ -closed set and B is any set such that $A \subseteq B \subseteq \omega\beta Cl(A)$, then B is $g\omega\beta$ -closed.

Proof. Let $U \in \tau$ and $B \subseteq U$. Then $A \subseteq B \subseteq U$. Since $A \in g\omega\beta$ -closed, $\omega\beta Cl(B) \subseteq \omega\beta Cl(\omega\beta Cl(A)) = \omega\beta Cl(A) \subseteq U$ and the result follows. \Box

Definition 2.12. Let A be a subset of a space X. A point $x \in X$ is said to be a $\omega\beta$ -limit point of A if for each $\omega\beta$ -open set U containing x, we have $U \cap (A - \{x\}) \neq \phi$. The set of all $\omega\beta$ -limit points of A is called the $\omega\beta$ -derived set of A and is denoted by $D_{\omega\beta}(A)$.

Since every open set is $\omega\beta$ -open, we have $D_{\omega\beta}(A) \subseteq D(A)$ for any subset $A \subseteq X$, where D(A) is the derived set of A. Moreover, since every closed set is $\omega\beta$ -closed, we have $A \subseteq \omega\beta Cl(A) \subseteq Cl(A)$.

The proof of the following result is straightforward and is omitted.

Lemma 2.13. If $D(A) = D_{\omega\beta}(A)$, then we have $Cl(A) = \omega\beta Cl(A)$.

Corollary 2.14. If $D(A) \subseteq D_{\omega\beta}(A)$ for any subset A of X. Then for any subsets F and B of X, we have $\omega\beta Cl(F \cup B) = \omega\beta Cl(F) \cup \omega\beta Cl(B)$.

Proposition 2.15. If A and B are $g\omega\beta$ -closed sets such that $D(A) \subseteq D_{\omega\beta}(A)$ and $D(B) \subseteq D_{\omega\beta}(B)$. Then $A \cup B$ is $g\omega\beta$ -closed.

Proof. Let U be an open set such that $A \cup B \subseteq U$. Since A and B are $g\omega\beta$ -closed sets, we have $\omega\beta Cl(A) \subseteq U$ and $\omega\beta Cl(B) \subseteq U$. Since $D(A) \subseteq D_{\omega\beta}(A)$, $D(A) = D_{\omega\beta}(A)$ and by Lemma 2.13, $Cl(A) = \omega\beta Cl(A)$. Similarly, $Cl(B) = \omega\beta Cl(B)$. Thus, $\omega\beta Cl(A \cup B) = \omega\beta Cl(A) \cup \omega\beta Cl(B) \subseteq U$, which implies that $A \cup B$ is $g\omega\beta$ -closed.

The following example shows that the countable union of $g\omega\beta$ -closed sets need not be $g\omega\beta$ -closed.

Example 2.16. Let $X = \mathbb{R}$ with the usual topology τ_u . For each $n \in \mathbb{N}$, put $A_n = [\frac{1}{n}, 1]$ and $A = \bigcup_{n \in \mathbb{N}}^{\infty} A_n$. Then A is a countable union of $g\omega\beta$ -closed sets but A is not $g\omega\beta$ -closed since $U = (0, 2) \in \tau_u$, $A \subseteq U$ and $\omega\beta Cl(A) = [0, 1] \not\subset U$.

MISSOURI J. OF MATH. SCI., SPRING 2014

73

Proposition 2.17. Let A, B be subsets of a topological space (X, τ) . Then $A \cap B$ is $g\omega\beta$ -closed whenever one of the following properties holds.

i. A is open and $g\omega\beta$ -closed, and B is $\omega\beta$ -closed.

ii. A is $g\omega\beta$ -closed and B is closed.

Proof. i) By Proposition 2.10, A is $\omega\beta$ -closed. Hence by Proposition 1.2, $A \cap B$ is $\omega\beta$ -closed in X which implies that $A \cap B$ is $g\omega\beta$ -closed in X. ii) Let U be an open set in (X, τ) such that $A \cap B \subseteq U$. Put W = X - B. Then $A \subseteq U \cup W \in \tau$. Since $A \in g\omega\beta$ -closed, $\omega\beta Cl(A) \subseteq U \cup W$. Now $\omega\beta Cl(A \cap B) \subseteq \omega\beta Cl(A) \cap \omega\beta Cl(B) \subseteq \omega\beta Cl(A) \cap Cl(B) = \omega\beta Cl(A) \cap B \subseteq (U \cup W) \cap B \subseteq U$.

The finite intersection of $g\omega\beta$ -closed sets need not be $g\omega\beta$ -closed. Let X be an uncountable set and let A be a subset of X such that A and X - A are uncountable. Let $\tau = \{\phi, X, A\}$. Choose $x_1, x_2 \notin A$ and $x_1 \neq x_2$. Then $A_1 = A \cup \{x_1\}$ and $A_2 = A \cup \{x_2\}$ are two $g\omega\beta$ -closed subsets of (X, τ) (Since the only open set containing A_1, A_2 is X). But $A_1 \cap A_2 = A$ is not $g\omega\beta$ -closed since $A \subseteq A \in \tau$ and $\omega\beta Cl(A) \neq A$.

Theorem 2.18. A subset A of a topological space (X, τ) is $g\omega\beta$ -closed if and only if $Cl(\{x\}) \cap A \neq \phi$ for every $x \in \omega\beta Cl(A)$.

Proof. Let A be a $g\omega\beta$ -closed set in X and suppose, if possible, that there exists $x \in \omega\beta Cl(A)$ such that $Cl(\{x\}) \cap A = \phi$. Therefore, $A \subseteq (X \setminus Cl\{x\})$, and so $\omega\beta Cl(A) \subseteq (X \setminus Cl(\{x\}))$. Hence, $x \notin \omega\beta Cl(A)$ which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any open set containing A. Let $x \in \omega\beta Cl(A)$. Then by hypothesis $Cl(\{x\}) \cap A \neq \phi$, there exists $z \in Cl(\{x\}) \cap A$ and so $z \in A \subseteq U$. Thus, $\{x\} \cap U \neq \phi$. Hence, $x \in U$, which implies that $\omega\beta Cl(A) \subseteq U$. \Box

Theorem 2.19. For an element $x \in X$, either $\{x\}$ is closed or $X \setminus \{x\}$ is $g \omega \beta$ -closed.

Proof. Suppose $\{x\}$ is not closed in (X, τ) . Then $X \setminus \{x\}$ is not open and the only open set containing $X \setminus \{x\}$ is X. This implies $\omega \beta Cl(X \setminus \{x\}) \subseteq X$. Hence, $X \setminus \{x\}$ is a $g \omega \beta$ -closed set in X.

Definition 2.20. A space (X, τ) is called an $\omega\beta$ -T_{1/2} space if every generalized $\omega\beta$ -closed set is $\omega\beta$ -closed.

Example 2.21. Any set with indiscrete topology is an example for an $\omega\beta$ -T_{1/2} space.

Theorem 2.22. A space (X, τ) is an $\omega\beta$ -T_{1/2} space if and only if every singleton is either closed or $\omega\beta$ -open.

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

Proof. Necessity. Suppose $\{x\}$ is not a closed subset for some $x \in X$, hence by Theorem 2.19, $X - \{x\}$ is $g\omega\beta$ -closed. By assumption, $X - \{x\}$ is $\omega\beta$ -closed. Hence, $\{x\}$ is $\omega\beta$ -open.

Sufficiency. Let A be a $g\omega\beta$ -closed subset of (X, τ) and $x \in \omega\beta Cl(A)$. We show that $x \in A$. If $\{x\}$ is closed and $x \notin A$, then $x \in (\omega\beta Cl(A) - A)$. Thus, $\omega\beta Cl(A) - A$ contains a nonempty closed set $\{x\}$, a contradiction to Theorem 2.7. So $x \in A$. If $\{x\}$ is $\omega\beta$ -open, since $x \in \omega\beta Cl(A)$, then for every $\omega\beta$ -open set U containing x, we have $U \cap A \neq \phi$. Hence, $x \in A$. Therefore, A is $\omega\beta$ -closed.

Theorem 2.23. Let (X, τ) be a β -antilocally countable space. Then (X, τ) is a T_1 -space if it is an $\omega\beta$ - $T_{1/2}$ space.

Proof. Let $x \in X$ and suppose that $\{x\}$ is not closed. Then by Theorem 2.19 $A = X - \{x\}$ is $g\omega\beta$ -closed. Therefore, by assumption, A is $\omega\beta$ -closed, and thus, $\{x\}$ is $\omega\beta$ -open. So there exists a β -open set U such that $x \in U$ and $U - \{x\}$ is countable. It follows that U is a nonempty countable β -open subset of $x \in X$, a contradiction. \Box

Recall that the kernel of a set A [9], denoted ker(A), is the intersection of all open supersets of A.

Proposition 2.24. A subset A of X is $g\omega\beta$ -closed if and only if $\omega\beta Cl(A) \subseteq \ker(A)$.

Proof. Since A is $g\omega\beta$ -closed, $\omega\beta Cl(A) \subseteq G$ for any open set G with $A \subseteq G$ and hence, $\omega\beta Cl(A) \subseteq \ker(A)$. Conversely, let G be an open set such that $A \subseteq G$. By hypothesis, $\omega\beta Cl(A) \subseteq \ker(A) \subseteq \ker(G) = G$ and hence, A is $g\omega\beta$ -closed.

3. Generalized $\omega\beta$ -Open Sets and Generalized $\omega\beta$ -Neighborhoods

Definition 3.1. A subset $A \subseteq X$ is called generalized $\omega\beta$ -open (briefly, $g\omega\beta$ -open) if its complement is generalized $\omega\beta$ -closed. We denote the family of all generalized $\omega\beta$ -open subsets of a space (X, τ) by $G\omega\beta O(X, \tau)$.

Remark 3.2. $\omega\beta Cl(X - A) = X - \omega\beta Int(A).$

Corollary 3.3. A subset $A \subseteq X$ is $g\omega\beta$ -open if and only if $F \subseteq \omega\beta Int(A)$, where F is a closed set and $F \subseteq A$.

Proof. Necessity. Let A be $g\omega\beta$ -open. Let F be a closed set such that $F \subseteq A$. Then $X - A \subseteq X - F$, where X - F is an open set. Since A is $g\omega\beta$ -open, $X - \omega\beta Int(A) = \omega\beta Cl(X - A) \subseteq X - F$. That is $F \subseteq \omega\beta Int(A)$. Sufficiency. Suppose $F \subseteq \omega\beta Int(A)$ whenever F is a closed set and $F \subseteq A$. Let $X - A \subseteq U$ where U is open, then $X - U \subseteq A$ where X - U is closed. By

MISSOURI J. OF MATH. SCI., SPRING 2014

H. H. ALJARRAH, M. S. M. NOORANI, AND T. NOIRI

hypothesis $X - U \subseteq \omega\beta Int(A)$. That is $\omega\beta Cl(X - A) \subseteq X - \omega\beta Int(A) \subseteq U$. This implies X - A is $g\omega\beta$ -closed and A is $g\omega\beta$ -open. \Box

Proposition 3.4. If $\omega\beta Int(A) \subseteq B \subseteq A$ and A is $g\omega\beta$ -open, then B is $g\omega\beta$ -open.

Proof. $\omega\beta Int(A) \subseteq B \subseteq A$ implies $X - A \subseteq X - B \subseteq X - \omega\beta Int(A)$. That is, $X - A \subseteq X - B \subseteq \omega\beta Cl(X - A)$. Since X - A is $g\omega\beta$ -closed, by Theorem 2.11, X - B is $g\omega\beta$ -closed and B is $g\omega\beta$ -open.

Proposition 3.5. If $A \subseteq X$ is $g\omega\beta$ -closed, then $\omega\beta Cl(A) - A$ is $g\omega\beta$ -open.

Proof. Let A be $g\omega\beta$ -closed. Let F be a closed set such that $F \subseteq \omega\beta Cl(A) - A$. Then by Theorem 2.7, $F = \phi$. So $F \subseteq \omega\beta Int(\omega\beta Cl(A) - A)$. This shows $\omega\beta Cl(A) - A$ is $g\omega\beta$ -open.

Remark 3.6. For any $A \subseteq X$, $\omega\beta Int(\omega\beta Cl(A) - A) = \phi$.

Proposition 3.7. Let $A \subseteq B \subseteq X$ and let $\omega\beta Cl(A) \setminus A$ be $g\omega\beta$ -open. Then $\omega\beta Cl(A) \setminus B$ is also $g\omega\beta$ -open.

Proof. Suppose $\omega\beta Cl(A)\backslash A$ is $g\omega\beta$ -open and let F be a closed subset of (X, τ) with $F \subseteq \omega\beta Cl(A)\backslash B$. Then $F \subseteq \omega\beta Cl(A)\backslash A$. By Corollary 3.3 and Remark 3.6 $F \subseteq \omega\beta Int(\omega\beta Cl(A)\backslash A) = \phi$. Thus, $F = \phi$ and hence, $F \subseteq \omega\beta Int(\omega\beta Cl(A)\backslash B)$.

Proposition 3.8. If a set A is $g\omega\beta$ -open in a topological space (X, τ) , then G = X whenever G is open in (X, τ) and $\omega\beta Int(A) \cup A^c \subseteq G$.

Proof. Suppose that G is open and $\omega\beta Int(A) \cup A^c \subseteq G$. Now $G^c \subseteq \omega\beta Cl(A^c) \cap A = \omega\beta Cl(A^c) - A^c$. Since G^c is closed and A^c is $g\omega\beta$ -closed, by Theorem 2.7 $G^c = \phi$ and hence, G = X.

Theorem 3.9. Let (X, τ) be a topological space and $A, B \subseteq X$. If one of the following conditions holds, then $A \cap B$ is $g\omega\beta$ -open

i. A is $g\omega\beta$ -open and B is ω -open.

ii. B is $g\omega\beta$ -open and $\omega\beta Int(B) \subseteq A$.

Proof. i) Let F be any closed subset of X such that $F \subseteq A \cap B$. Hence, $F \subseteq A$ and by Corollary 3.3, $F \subseteq \omega\beta Int(A) = \cup \{U : U \text{ is } \omega\beta\text{-open and } U \subseteq A\}$. Obviously, $F \subseteq \cup (U \cap B)$, where U is an $\omega\beta$ -open set in X contained in A. By Theorem 1.2, $U \cap B$ is an $\omega\beta$ -open set contained in $A \cap B$ for each $\omega\beta$ -open set U contained in A, so $F \subseteq \omega\beta Int(A \cap B)$, and by Corollary 3.3, $A \cap B$ is $g\omega\beta$ -open in X.

ii) Since B is $g\omega\beta$ -open and $\omega\beta Int(B) \subset A \cap B \subseteq B$. By Proposition 3.4, $A \cap B$ is $g\omega\beta$ -open.

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

Analogous to a neighborhood in a space X, we define a $g\omega\beta$ -neighborhood in a space X as follows.

Definition 3.10. Let X be a topological space and let $x \in X$. A subset N of X is called a $g\omega\beta$ -neighborhood of x if there exists a $g\omega\beta$ -open set G such that $x \in G \subseteq N$.

Definition 3.11. A subset N of a space X is called a $g\omega\beta$ -neighbor-hood of $A \subseteq X$ if there exists a $g\omega\beta$ -open set G such that $A \subseteq G \subseteq N$.

Theorem 3.12. Every neighborhood N of $x \in X$ is a $g\omega\beta$ -neighborhood of x.

Proof. Let N be a neighborhood of a point $x \in X$, there exists an open set G such that $x \in G \subseteq N$. Since every open set is a $g\omega\beta$ -open set G, N is a $g\omega\beta$ -neighborhood of x.

In general, a $g\omega\beta$ -neighborhood N of $x \in X$ need not be a neighborhood of $x \in X$, as seen from the following example.

Example 3.13. Let $X = \{a, b, c, d\}$ with a topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then $G\omega\beta O(X) = P(X)$. The set $\{a, c\}$ is a $g\omega\beta$ -neighborhood of the point c, since $\{c\}$ is the $g\omega\beta$ -open set such that $c \in \{c\} \subseteq \{a, c\}$. However, the set $\{a, c\}$ is not a neighborhood of the point c, since there exists no open set G such that $c \in G \subseteq \{a, c\}$.

Theorem 3.14. If a subset N of a space X is $g\omega\beta$ -open, then N is a $g\omega\beta$ -neighborhood of each of its point.

Proof. Suppose N is $g\omega\beta$ -open. Let $x \in N$. We claim that N is a $g\omega\beta$ -neighborhood of x. For N is a $g\omega\beta$ -open set such that $x \in N \subseteq N$. Since x is an arbitrary point of N, it follows that N is a $g\omega\beta$ -neighborhood of each of its points.

Theorem 3.15. Let X be a topological space. If F is a $g\omega\beta$ -closed subset of X and $x \in F^c$. Then there exists a $g\omega\beta$ -neighborhood N of x such that $N \cap F = \phi$.

Proof. Let F be a $g\omega\beta$ -closed subset of X and $x \in F^c$. Then F^c is $g\omega\beta$ open set of X. So by Theorem 3.14, F^c contains a $g\omega\beta$ -neighborhood of
each of its points. Hence there exists a $g\omega\beta$ -neighborhood N of x such
that $N \subseteq F^c$. That is $N \cap F = \phi$.

Definition 3.16. Let x be a point in a space X. The set of all $g\omega\beta$ -neighborhoods of x is called the $g\omega\beta$ -neighborhood system at x, and is denoted by $g\omega\beta - N(x)$.

MISSOURI J. OF MATH. SCI., SPRING 2014

Theorem 3.17. Let X be a topological space and for each $x \in X$, let $g\omega\beta - N(x)$ be the collection of all $g\omega\beta$ - neighborhoods of x. Then we have the following results.

- *i.* For all $x \in X$, $g\omega\beta N(x) \neq \phi$.
- ii. If $N \in g\omega\beta N(x)$, then $x \in N$.
- *iii.* If $N \in g\omega\beta N(x)$ and $N \subseteq M$, then $M \in g\omega\beta N(x)$.
- iv. If $N \in g\omega\beta N(x)$, then there exists $M \in g\omega\beta N(x)$ such that $M \subseteq N$ and $M \in g\omega\beta N(y)$ for every $y \in M$.

Proof.

i) Since X is a $g\omega\beta$ -open set, it is a $g\omega\beta$ -neighborhood of every $x \in X$. Hence there exists at least one $g\omega\beta$ -neighborhood (namely X) for each $x \in X$. Hence, $g\omega\beta - N(x) \neq \phi$ for every $x \in X$.

ii) If $N \in g\omega\beta - N(x)$, then N is a $g\omega\beta$ -neighborhood of x. So by Definition 3.10, $x \in N$.

iii) Let $N \in g\omega\beta - N(x)$ and $N \subseteq M$. Then there is a $g\omega\beta$ -open set G such that $x \in G \subseteq N$. Since $N \subseteq M$, $x \in G \subseteq M$ and so M is a $g\omega\beta$ -neighborhood of x. Hence, $M \in g\omega\beta - N(x)$.

iv) If $N \in g\omega\beta - N(x)$, then there exists a $g\omega\beta$ -open set M such that $x \in M \subseteq N$. Since M is a $g\omega\beta$ -open set, it is a $g\omega\beta$ -neighborhood of each point of M. Therefore, $M \in g\omega\beta - N(y)$ for each $y \in M$.

Theorem 3.18. Let X be a non-empty set, and for each $x \in X$, let $g\omega\beta - N(x)$ be a non-empty collection of subsets of X satisfying the following conditions

i. If $N \in g\omega\beta - N(x)$ then $x \in N$.

ii. If $N, M \in g\omega\beta - N(x)$ then $M \cap N \in g\omega\beta - N(x)$.

Let τ consist of the empty set and all those non-empty subsets of G of X having the property that $x \in G$ implies that there exists an $N \in g\omega\beta - N(x)$ such that $x \in N \subseteq G$. Then τ is a topology for X.

Proof. $\phi \in \tau$ by definition. We now show that $X \in \tau$. Let x be any arbitrary element of X. Since $g\omega\beta - N(x)$ is non-empty, there is an $N \in g\omega\beta - N(x)$ such that $x \in N$ by (i). Since N is a subset of X, we have $x \in N \subseteq X$. Hence, $X \in \tau$. Let $G_1, G_2 \in \tau$. If $x \in G_1 \cap G_2$, then $x \in G_1$ and $x \in G_2$. Since $G_1, G_2 \in \tau$, there exists $N, M \in g\omega\beta - N(x)$, such that $x \in N \subseteq G_1$ and $x \in M \subseteq G_2$. Then $x \in N \cap M \subseteq G_1 \cap G_2$, but $N \cap M \in g\omega\beta - N(x)$ by (ii). Hence, $G_1 \cap G_2 \in \tau$. Finally, let $G_\alpha \in \tau$ for every $\alpha \in \Delta$. If $x \in \cup \{G_\alpha : \alpha \in \Delta\}$, then $x \in G_{\alpha(x)}$ for some $\alpha(x) \in \Delta$. Since $G_{\alpha(x)} \in \tau$, there exists an $N \in g\omega\beta - N(x)$ such that $x \in N \subset G_{\alpha(x)} \subseteq \cup \{G_\alpha : \alpha \in \Delta\}$. Hence, $\cup \{G_\alpha : \alpha \in \Delta\} \in \tau$. It follows that τ is a topology for X.

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

On GENERALIZED $\omega\beta$ -CLOSED SETS

4. $g\omega\beta$ -Continuity, $g\omega\beta$ -Irresoluteness and $g\omega\beta$ -Closedness

In this section we define generalized $\omega\beta$ -continuity, generalized $\omega\beta$ -irresoluteness and $g\omega\beta$ -closed functions and some of the basic properties are studied. First we give some properties about the generalized $\omega\beta$ -closure. The intersection of all $g\omega\beta$ -closed (resp. g-closed [8]) sets of X containing A is called $g\omega\beta$ -closure (resp. g-closure) of A, and it is denoted by $\omega\beta Cl^*(A)$ (resp. $Cl^*(A)$).

Lemma 4.1. For an $x \in X$, $x \in \omega \beta Cl^*(A)$ if and only if $V \cap A \neq \phi$ for every $g\omega\beta$ -open set V containing x.

Proof. It is trivial.

Lemma 4.2. Let A and B be subsets of (X, τ) , then the following properties hold.

i. $\omega\beta Cl^*(\phi) = \phi$ and $\omega\beta Cl^*(X) = X$. ii. If $A \subseteq B$, then $\omega\beta Cl^*(A) \subseteq \omega\beta Cl^*(B)$. iii. $A \subseteq \omega\beta Cl^*(A)$. iv. $\omega\beta Cl^*(A) = \omega\beta Cl^*(\omega\beta Cl^*(A))$. v. $\omega\beta Cl^*(A) \cup \omega\beta Cl^*(B) \subseteq \omega\beta Cl^*(A \cup B)$. vi. $\omega\beta Cl^*(A) \cap \omega\beta Cl^*(B) \supseteq \omega\beta Cl^*(A \cap B)$.

Definition 4.3. Let (X, τ) be a topological space

i. $\tau^* = \{U \subseteq X | Cl^*(X - U) = X - U\}$ [8]. *ii.* $\tau_{\omega\beta}^* = \{W \subseteq X | \omega\beta Cl^*(X - W) = X - W\}.$

Proposition 4.4. For a subset A of (X, τ) , the following implications hold.

i. $A \subseteq \omega \beta Cl^*(A) \subseteq \omega \beta Cl(A) \subseteq Cl(A)$. *ii.* $\tau \subseteq \omega \beta O(X, \tau) \subseteq \tau_{\omega\beta}^*$. *iii.* $A \subseteq \omega \beta Cl^*(A) \subseteq Cl^*(A) \subseteq Cl(A)$. *iv.* $\tau \subseteq \{g - open \ sets\} \subseteq \tau^* \subseteq \tau_{\omega\beta}^*$.

Theorem 4.5. If $G\omega\beta O(X,\tau)$ is a topology, then $\tau_{\omega\beta}^*$ is a topology.

 $\begin{array}{l} Proof. \ \text{Clearly} \ \phi, X \in \tau_{\omega\beta}^*. \ \text{Let} \ A, B \in \tau_{\omega\beta}^*. \ \text{Now} \ \omega\beta Cl^*(X - (A \cap B)) = \\ \omega\beta Cl^*((X - A) \cup (X - B)) = \omega\beta Cl^*(X - A) \cup \omega\beta Cl^*(X - B) = (X - A) \cup \\ (X - B) = X - (A \cap B). \ \text{Hence}, \ A \cap B \in \tau_{\omega\beta}^*. \ \text{Let} \ \{A_i : i \in \Delta\} \in \tau_{\omega\beta}^*. \\ \text{Then} \ \omega\beta Cl^*(X - \cup A_i) = \omega\beta Cl^*(\cap (X - A_i)) \subset \cap \omega\beta Cl^*(X - A_i) = \cap (X - A_i) = X - \cup A_i. \ \text{Since} \ X - \cup A_i \subset \omega\beta Cl^*(X - \cup A_i), \ \omega\beta Cl^*(\cup (X - A_i)) = \\ \cup \omega\beta Cl^*(X - A_i) \ \text{and} \ \text{hence}, \ \cup A_i \in \tau_{\omega\beta}^*. \ \text{Thus}, \ \tau_{\omega\beta}^* \ \text{is a topology.} \end{array}$

Theorem 4.6. For a topological space (X, τ) , the following properties hold.

i. A space (X, τ) is $g\omega\beta - T_{1/2}$ if and only if $\tau_{\omega\beta}^* = \omega\beta O(X, \tau)$.

ii. Every $g\omega\beta$ -closed is closed if and only if $\tau_{\omega\beta}^* = \tau$.

MISSOURI J. OF MATH. SCI., SPRING 2014

Proof. i) Necessity. Let $A \in \tau_{\omega\beta}^*$. Then $\omega\beta Cl^*(X - A) = X - A$. Since (X, τ) is $g\omega\beta$ -T_{1/2}, $\omega\beta Cl(X - A) = \omega\beta Cl^*(X - A) = X - A$. Hence, $A \in \omega\beta O(X, \tau)$. By Proposition 4.4, $\tau_{\omega\beta}^* = \omega\beta O(X, \tau)$.

Sufficiency. Suppose $\tau_{\omega\beta}^* = \omega\beta O(X, \tau)$. Let A be $g\omega\beta$ -closed set. Then $\omega\beta Cl^*(A) = A$. This implies $X - A \in \tau_{\omega\beta}^* = \omega\beta O(X, \tau)$. So A is $\omega\beta$ -closed.

Proof of (ii) is similar to (i).

Definition 4.7. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $g\omega\beta$ -continuous if $f^{-1}(V)$ is $g\omega\beta$ -closed in X for every closed set V of Y.

Continuity implies $g\omega\beta$ -continuity but the converse need not be true.

Example 4.8. Let $X = \mathbb{R}$ with the topology $\tau = \tau_u$ and let $Y = \{1, 2\}$ with the topology $\sigma = \{\phi, Y, \{1\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 2, & x \in \mathbb{R} - \mathbb{Q}; \\ 1, & x \in \mathbb{Q}. \end{cases}$$

Then f is $g\omega\beta$ -continuous but not continuous, since $f^{-1}(\{2\}) = \mathbb{R} - \mathbb{Q}$ is not closed in (X, τ) .

Remark 4.9.

i) If $\tau_{\omega\beta}^* = \tau$ in X, then continuity and $g\omega\beta$ -continuity coincide. ii) Every $g\omega\beta$ -continuous function defined on $g\omega\beta$ -T_{1/2} space is $\omega\beta$ -continuous.

iii) A function $f: (X, \tau) \to (Y, \sigma)$ is $g\omega\beta$ -continuous if and only if the inverse image of every open set in Y is $g\omega\beta$ -open in X.

Theorem 4.10. If $f: (X, \tau) \to (Y, \sigma)$ is $g\omega\beta$ -continuous, then $f(\omega\beta Cl^*(A)) \subseteq Cl(f(A))$ for every subset A of X.

Proof. Let $A \subseteq X$. Then Cl(f(A)) is closed in Y. By assumption $f^{-1}(Cl(f(A)))$ is $g\omega\beta$ -closed in X. And $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(Cl(f(A)))$ implies $\omega\beta Cl^*(A) \subseteq f^{-1}(Cl(f(A)))$. Hence, $f(\omega\beta Cl^*(A)) \subseteq Cl(f(A))$. \Box

However, the converse does not hold.

Example 4.11. Let $X = \mathbb{R}$ with the topology $\tau = \tau_{coc}$ and let $Y = \{1, 2\}$ with the topology $\sigma = \{\phi, Y, \{1\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function defined by f(x) = 2 for all $x \in \mathbb{R} - \mathbb{Q}$. If we take $A = \mathbb{R} - \mathbb{Q}$, then $f(\omega\beta Cl^*(A)) \subseteq Cl(f(A))$. However f is not $g\omega\beta$ -continuous since $f^{-1}(\{2\}) = \mathbb{R} - \mathbb{Q}$ is not $g\omega\beta$ -closed in (X, τ) .

Theorem 4.12. Let $f: (X, \tau) \to (Y, \sigma)$ be a function a) If for each point $x \in X$ and each open set V containing f(x) there exists a $g\omega\beta$ -open set U containing x such that $f(U) \subseteq V$, then for every subset

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

A of X, $f(\omega\beta Cl^*(A)) \subseteq Cl(f(A))$.

b) The following statements are equivalent.

- *i.* For every subset A of X, $f(\omega\beta Cl^*(A)) \subseteq Cl(f(A))$.
- ii. Suppose $\tau_{\omega\beta}^*$ is a topology. The function $f: (X, \tau_{\omega\beta}^*) \to (Y, \sigma)$ is continuous.

Proof.

a) Let $y \in f(\omega\beta Cl^*(A))$. Let V be an open set containing y. Then by hypothesis, there exists $x \in \omega\beta Cl^*(A)$ such that f(x) = y and a $g\omega\beta$ open set U containing x such that $f(U) \subseteq V$. Therefore, by Lemma 4.1 $U \cap A \neq \phi$. Then $f(U \cap A) \neq \phi$. This implies $V \cap f(A) \neq \phi$. Hence, $y \in Cl(f(A))$.

b) (i) \rightarrow (ii) Let A be closed in (Y, σ) . By hypothesis,

 $f(\omega\beta Cl^*(f^{-1}(A))) \subseteq Cl(f(f^{-1}(A))) \subseteq Cl(A) = A$. That is,

 $\omega\beta Cl^*(f^{-1}(A)) \subseteq f^{-1}(A)$. Also, $f^{-1}(A) \subseteq \omega\beta Cl^*(f^{-1}(A))$. Thus, $f^{-1}(A)$ is closed in $(X, \tau_{\omega\beta}^*)$ and so f is continuous.

(ii) \rightarrow (i) For every subset A of X, Cl(f(A)) is closed in (Y, σ) . Since $f: (X, \tau_{\omega\beta}^*) \rightarrow (Y, \sigma)$ is continuous, $f^{-1}(Cl(f(A)))$ is closed in $(X, \tau_{\omega\beta}^*)$ and hence, $\omega\beta Cl^*(f^{-1}(Cl(f(A)))) = f^{-1}(Cl(f(A)))$. Moreover, we have $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(Cl(f(A)))$ and by Lemma 4.2, $\omega\beta Cl^*(A) \subseteq \omega\beta Cl^*(f^{-1}(Cl(f(A)))) = f^{-1}(Cl(f(A)))$. Therefore, we obtain $f(\omega\beta Cl^*(A)) \subseteq Cl(f(A))$.

Theorem 4.13. If $f: (X, \tau) \to (Y, \sigma)$ is a continuous and $\omega\beta$ -closed function, then f(A) is $g\omega\beta$ -closed in Y for every $g\omega\beta$ -closed set A in X.

Proof. Let A be any $g\omega\beta$ -closed set of X and U be any open set of Y containing f(A). Since f is continuous, $f^{-1}(U)$ is open in X and $A \subseteq f^{-1}(U)$. Therefore, we have $\omega\beta Cl(A) \subseteq f^{-1}(U)$ and hence, $f(\omega\beta Cl(A)) \subseteq U$. Since f is $\omega\beta$ -closed, $\omega\beta Cl(f(A)) \subseteq \omega\beta Cl(f(\omega\beta Cl(A))) = f(\omega\beta Cl(A)) \subseteq U$. Hence, f(A) is $g\omega\beta$ -closed in Y.

Definition 4.14. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $g\omega\beta$ -irresolute if $f^{-1}(V)$ is $g\omega\beta$ -closed in X for every $g\omega\beta$ -closed set V of Y.

It follows easily from the definition that a function f is $g\omega\beta$ -irresolute if and only if the inverse image of every $g\omega\beta$ -open set in Y is $g\omega\beta$ -open in X.

Note that if a function is $g\omega\beta$ -irresolute then it is $g\omega\beta$ -continuous, but not conversely.

Example 4.15. Let $X = \mathbb{R}$ with the topology $\tau = \tau_{coc}$ and let $Y = \{1, 2\}$ with the topology $\sigma = \{\phi, Y, \{1\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 1, & x \in \mathbb{R} - \mathbb{Q}; \\ 2, & x \in \mathbb{Q}. \end{cases}$$

MISSOURI J. OF MATH. SCI., SPRING 2014

H. H. ALJARRAH, M. S. M. NOORANI, AND T. NOIRI

Then f is $g\omega\beta$ -continuous but not $g\omega\beta$ -irresolute, since $f^{-1}(\{1\}) = \mathbb{R} - \mathbb{Q}$ is not $g\omega\beta$ -closed in (X, τ) .

Proposition 4.16. If $f: (X, \tau) \to (Y, \sigma)$ is an $g\omega\beta$ -continuous and $\sigma_{\omega\beta}^* = \sigma$ holds, then f is $g\omega\beta$ -irresolute.

The proof follows from Remark 4.9.

Theorem 4.17. If $f: (X, \tau) \to (Y, \sigma)$ is an $\omega\beta$ -irresolute open bijection, then f is $g\omega\beta$ -irresolute.

Proof. Let F be any $g\omega\beta$ -closed set of Y and U be an open set of X containing $f^{-1}(F)$. Since f is open, f(U) is open in Y and $F \subseteq f(U)$. Since F is $g\omega\beta$ -closed, $\omega\beta Cl(F) \subseteq f(U)$ and hence, $f^{-1}(\omega\beta Cl(F)) \subseteq U$. Since f is $\omega\beta$ -irresolute, $f^{-1}(\omega\beta Cl(F))$ is $\omega\beta$ -closed. Hence, $\omega\beta Cl(f^{-1}(F)) \subseteq U$.

Therefore, $f^{-1}(F)$ is $g\omega\beta$ -closed and f is $g\omega\beta$ -irresolute.

The composition of two $g\omega\beta$ -continuous functions need not be $g\omega\beta$ -continuous as can be seen from the following example.

Example 4.18. Consider $X = \mathbb{R}$ with the topology $\tau = \tau_{coc}$, $Y = \{1, 2\}$ with the topologies $\sigma = \{\phi, Y, \{1\}\}$ and $\rho = \{\phi, Y, \{2\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the function define by

$$f(x) = \begin{cases} 1, & x \in \mathbb{R} - \mathbb{Q}; \\ 2, & x \in \mathbb{Q}. \end{cases}$$

And $g: (Y, \sigma) \to (Y, \rho)$ be the identity function. Then f and g are $g\omega\beta$ continuous. However, $g \circ f$ is not $g\omega\beta$ -continuous since $(g \circ f)^{-1}(1) = \mathbb{R} - \mathbb{Q}$ is not $g\omega\beta$ -closed in (X, τ) .

Theorem 4.19. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \rho)$ be any two functions. Then

- i. $g \circ f$ is $g \omega \beta$ -continuous, if g is continuous and f is $g \omega \beta$ -continuous.
- ii. $g \circ f$ is $g\omega\beta$ -irresolute, if g is $g\omega\beta$ -irresolute and f is $g\omega\beta$ -irresolute.
- iii. $g \circ f$ is $g \omega \beta$ -continuous, if g is $g \omega \beta$ -continuous and f is $g \omega \beta$ -irresolute.
- iv. $g \circ f$ is $\omega\beta$ -continuous, if f is $\omega\beta$ -irresolute and g is $g\omega\beta$ -continuous and Y is a $g\omega\beta$ - $T_{1/2}$ space.

v. $g \circ f$ is $g\omega\beta$ -continuous, if f, g are $g\omega\beta$ -continuous and $\sigma_{\omega\beta}^* = \sigma$.

Proof.

i) Let V be closed in (Z, ρ) . Then $g^{-1}(V)$ is closed in (Y, σ) , since g is continuous. $g\omega\beta$ -continuity of f implies that $f^{-1}(g^{-1}(V))$ is $g\omega\beta$ -closed in (X, τ) . Hence, $g \circ f$ is $g\omega\beta$ -continuous.

ii) Let V be $g\omega\beta$ -closed in (Z, ρ) . Then $g^{-1}(V)$ is $g\omega\beta$ -closed in (Y, σ) , since g is $g\omega\beta$ -irresolute. $g\omega\beta$ -irresoluteness of f implies that $f^{-1}(g^{-1}(V))$ is $g\omega\beta$ -closed in (X, τ) . Hence, $g \circ f$ is $g\omega\beta$ -irresolute.

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

iii) Let V be closed in (Z, ρ) . Then $g^{-1}(V)$ is $g\omega\beta$ -closed in (Y, σ) , since g is $g\omega\beta$ -continuous. $g\omega\beta$ -irresoluteness of f implies that $f^{-1}(g^{-1}(V))$ is $g\omega\beta$ -closed in (X, τ) . Hence, $g \circ f$ is $g\omega\beta$ -continuous.

iv) Let V be closed in (Z, ρ) . Then $g^{-1}(V)$ is $g\omega\beta$ -closed in (Y, σ) , since g is $g\omega\beta$ -continuous. As (Y, σ) is an $\omega\beta$ -T_{1/2} space, $g^{-1}(V)$ is $\omega\beta$ -closed in (X, τ) . Hence, $g \circ f$ is $\omega\beta$ -irresolute.

v) The proof follows from Remark 4.9.

Theorem 4.20. Let $f: (X, \tau) \to (Y, \sigma)$ be a function

- i. If f is $g\omega\beta$ -irresolute and X is $g\omega\beta$ -T_{1/2}, then f is $\omega\beta$ -irresolute.
- ii. If f is $g\omega\beta$ -continuous and X is $g\omega\beta$ -T_{1/2}, then f is $\omega\beta$ -continuous.

Proof.

i) Let V be $\omega\beta$ -closed in Y. Since f is $g\omega\beta$ -irresolute and every $\omega\beta$ -closed is $g\omega\beta$ -closed, $f^{-1}(V)$ is $g\omega\beta$ -closed in X. Since X is $g\omega\beta$ -T_{1/2}, $f^{-1}(V)$ is $\omega\beta$ -closed in X. Hence, f is $\omega\beta$ -irresolute.

ii) Let V be closed in Y. Since f is $g\omega\beta$ -continuous, $f^{-1}(V)$ is $g\omega\beta$ -closed in X. By assumption, it is $\omega\beta$ -closed. Therefore, f is $\omega\beta$ -continuous. \Box

Theorem 4.21. Let $f: (X, \tau) \to (Y, \sigma)$ be an $\omega\beta$ -closed and $g\omega\beta$ -irresolute surjection. If (X, τ) is an $\omega\beta$ -T_{1/2} space, then (Y, σ) is also an $\omega\beta$ -T_{1/2} space.

Proof. Let F be any $g\omega\beta$ -closed set of Y. Since f is $g\omega\beta$ -irresolute, $f^{-1}(F)$ is $g\omega\beta$ -closed in X. Since X is $\omega\beta$ -T_{1/2}, $f^{-1}(F)$ is $\omega\beta$ -closed in X. As f is $\omega\beta$ -closed, $f(f^{-1}(F)) = F$ is $\omega\beta$ -closed in Y. This shows that (Y, σ) is also $g\omega\beta$ -T_{1/2} space.

Definition 4.22. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $g\omega\beta^*$ -continuous if the inverse image of every $\omega\beta$ -closed set in Y is $g\omega\beta$ -closed in X.

Remark 4.23. The class of all $g\omega\beta^*$ -continuous functions lie inbetween the class of all $g\omega\beta$ -irresolute functions and the class of all $g\omega\beta$ -continuous functions, as seen in the following proposition.

Proposition 4.24. Let $f: (X, \tau) \to (Y, \sigma)$ be a function.

- i. If f is $g\omega\beta$ -irresolute, then it is $g\omega\beta^*$ -continuous.
- ii. If f is $g\omega\beta^*$ -continuous, then it is $g\omega\beta$ -continuous.

The authors were unable to find an example to show that the converse of (i) in Proposition 4.24 is not always true. However, the function defined in Example 4.15 is $g\omega\beta$ -continuous but not $g\omega\beta^*$ -continuous.

Proposition 4.25. If a bijection $f: (X, \tau) \to (Y, \sigma)$ is open and $g\omega\beta^*$ -continuous, then it is $g\omega\beta$ -irresolute.

MISSOURI J. OF MATH. SCI., SPRING 2014

H. H. ALJARRAH, M. S. M. NOORANI, AND T. NOIRI

Proof. Let A be $g\omega\beta$ -closed in Y. Let $f^{-1}(A) \subseteq U$, where U is open in X. Since f is open, f(U) is open in Y. $A \subseteq f(U)$ implies that $\omega\beta Cl(A) \subseteq f(U)$. That is, $f^{-1}(\omega\beta Cl(A)) \subseteq U$. Since f is $g\omega\beta^*$ -continuous,

 $\omega\beta Cl(f^{-1}(\omega\beta Cl(A))) \subseteq U$ and so $\omega\beta Cl(f^{-1}(A)) \subseteq U$. This shows that $f^{-1}(A)$ is $g\omega\beta$ -closed in X. Hence, f is $g\omega\beta$ -irresolute.

Proposition 4.26. Let a bijection $f: (X, \tau) \to (Y, \sigma)$ be open $g\omega\beta^*$ -continuous and $\omega\beta$ -closed. If X is $g\omega\beta$ -T_{1/2}, then Y is $g\omega\beta$ -T_{1/2}.

Proof. Let A be $g\omega\beta$ -closed in Y. By Proposition 4.25, $f^{-1}(A)$ is $g\omega\beta$ closed in X. By hypothesis, $f^{-1}(A)$ is $\omega\beta$ -closed in X. Since f is bijective and $\omega\beta$ -closed, $A = f(f^{-1}(A))$ is $\omega\beta$ -closed in Y. That is, Y is an $\omega\beta$ -T_{1/2} space.

Definition 4.27. A function $f: (X, \tau) \to (Y, \sigma)$ is called a generalized $\omega\beta$ closed function (written as $g\omega\beta$ -closed function) if for each closed set F in X, f(F) is a $g\omega\beta$ -closed set of Y.

Every closed function is a $g\omega\beta$ -closed function, but not conversely.

Example 4.28. Let $X = \{1, 2\}$ with the topologies $\tau = \{\phi, X, \{1\}\}$ and $\sigma = \{\phi, X, \{2\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity function. Then f is $g\omega\beta$ -closed but not closed, since $f(\{2\}) = 2$ is not closed in (X, σ) .

Theorem 4.29. A function $f: (X, \tau) \to (Y, \sigma)$ is $g\omega\beta$ -closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$, there is a $g\omega\beta$ -open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Necessity. Let S be a subset of Y and U be an open set of X such that $f^{-1}(S) \subseteq U$. Then Y - f(X - U), say V, is a $g\omega\beta$ -open set containing S such that $f^{-1}(V) \subseteq U$.

Sufficiency. Let F be a closed set of X, then $f^{-1}(Y - f(F)) \subseteq X - F$ and X - F is open. By hypothesis, there is a $g\omega\beta$ -open set V of Y such that $Y - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore, we have $F \subseteq X - f^{-1}(V)$ and hence, $Y - V \subseteq f(F) \subseteq f(X - f^{-1}(V)) \subseteq Y - V$. This implies f(F) = Y - V, since Y - V is $g\omega\beta$ -closed, f(F) is $g\omega\beta$ -closed and thus, f is a $g\omega\beta$ -closed function.

Theorem 4.30. If a function $f: (X, \tau) \to (Y, \sigma)$ is $g\omega\beta$ -closed, then $\omega\beta Cl^*(f(A)) \subseteq f(Cl(A))$ for every subset A of (X, τ) .

Proof. Suppose that f is $g\omega\beta$ -closed and $A \subseteq X$. Then Cl(A) is closed in X and so f(Cl(A)) is $g\omega\beta$ -closed in (Y, σ) . We have $f(A) \subseteq f(Cl(A))$ by Lemma 4.2, $\omega\beta Cl^*(f(A)) \subseteq \omega\beta Cl^*(f(Cl(A)))$. Since f(Cl(A)) is $g\omega\beta$ closed in (Y, σ) , $\omega\beta Cl^*(f(Cl(A))) = f(Cl(A))$, we have $\omega\beta Cl^*(f(A)) \subseteq$ f(Cl(A)) for every subset Aof (X, τ) .

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

Theorem 4.31. If $f: (X, \tau) \to (Y, \sigma)$ is continuous, $g\omega\beta$ -closed and A is a g-closed subset of X, then f(A) is $g\omega\beta$ -closed.

Proof. Let $f(A) \subseteq U$, where U is an open subset of Y, then $f^{-1}(U)$ is an open set containing A. Since A is g-closed, we have $Cl(A) \subseteq f^{-1}(U)$ and $f(Cl(A)) \subseteq U$. Since f is $g\omega\beta$ -closed, f(Cl(A)) is $g\omega\beta$ -closed. Therefore, $\omega\beta Cl(f(Cl(A))) \subseteq U$ which implies that $\omega\beta Cl(f(A)) \subseteq U$. Hence, f(A) is $g\omega\beta$ -closed.

Theorem 4.32. Let $f: (X, \tau) \to (Y, \sigma)$ be a bijective, open, and $g\omega\beta^* - continuous$ function. Then f is a $g\omega\beta$ -irresolute function.

Proof. Let V be any $g\omega\beta$ -closed subset of Y and let U be any open subset of X such that $f^{-1}(V) \subseteq U$. Clearly $V \subseteq f(U)$, since f is an open function, f(U) is open and V is $g\omega\beta$ -closed. Hence, $\omega\beta Cl(V) \subseteq f(U)$ and $f^{-1}(\omega\beta Cl(V)) \subseteq U$. Since f is $g\omega\beta^*$ -continuous and $\omega\beta Cl(V)$ is $\omega\beta$ -closed in Y, then $f^{-1}(\omega\beta Cl(V))$ is a $g\omega\beta$ -closed subset of U and so $\omega\beta Cl(f^{-1}(\omega\beta Cl(V))) \subseteq U$. So $\omega\beta Cl(f^{-1}(V)) \subseteq U$. Therefore, $f^{-1}(V)$ is a $g\omega\beta$ -closed subset. Hence, f is a $g\omega\beta$ -irresolute function.

Proposition 4.33. If $f: (X, \tau) \to (Y, \sigma)$ is bijective, $\omega\beta$ -closed and continuous, then the inverse function $f^{-1}: (Y, \sigma) \to (X, \tau)$ is $g\omega\beta$ -irresolute.

Proof. Let A be $g\omega\beta$ -closed in (X,τ) . Let $(f^{-1})^{-1}(A) = f(A) \subseteq U$, where U is open in (Y,σ) . Then $A \subseteq f^{-1}(U)$, since $f^{-1}(U)$ is open in (X,τ) and A is $g\omega\beta$ -closed in (X,τ) , $\omega\beta Cl(A) \subseteq f^{-1}(U)$ and hence, $f(\omega\beta Cl(A)) \subseteq U$. Since f is $\omega\beta$ -closed, $f(\omega\beta Cl(A))$ is $\omega\beta$ -closed in (Y,σ) and $f(A) \subset f(\omega\beta Cl(A))$ and hence, $\omega\beta Cl(f(A)) \subseteq U$. Thus, f(A) is $g\omega\beta$ -closed in (Y,σ) and so f^{-1} is $g\omega\beta$ -irresolute.

Theorem 4.34. If $f: (X, \tau) \to (Y, \sigma)$ is a continuous surjection and $g: (Y, \sigma) \to (Z, \rho)$ is a function such that $g \circ f: (X, \tau) \to (Z, \rho)$ is $g \omega \beta$ -closed, then g is $g \omega \beta$ -closed.

Proof. Let V be a closed set of Y. Since $f^{-1}(V)$ is closed in X, $g(V) = (g \circ f)(f^{-1}(V))$ is $g\omega\beta$ -closed in Z. Hence, g is $g\omega\beta$ -closed. \Box

Theorem 4.35. If $f: (X, \tau) \to (Y, \sigma)$ is a continuous, onto and $g\omega\beta$ closed function from a normal space (X, τ) to a space (Y, σ) , then (Y, σ) is $\omega\beta$ -normal.

Proof. Let A and B be disjoint closed sets of Y. Since X is normal, then there exist disjoint open sets U and V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By Theorem 4.29, there exist $g\omega\beta$ -open sets G and H in Y such that $A \subset G$, $B \subset H$, $f^{-1}(G) \subseteq U$, $f^{-1}(H) \subseteq V$ and $f^{-1}(G) \cap$ $f^{-1}(H) = \phi$. Hence, $G \cap H = \phi$. Since G is $g\omega\beta$ -open and A is a closed

MISSOURI J. OF MATH. SCI., SPRING 2014

set such that $A \subseteq G$, $A \subseteq \omega\beta Int(G)$. Similarly, $B \subseteq \omega\beta Int(H)$. Hence, $\omega\beta Int(G) \cap \omega\beta Int(H) \subset G \cap H = \phi$. Therefore, Y is $\omega\beta$ -normal.

Theorem 4.36. If $f: (X, \tau) \to (Y, \sigma)$ is a continuous, $\omega\beta$ -open and $g\omega\beta$ closed surjection from a regular space (X, τ) to a space (Y, σ) , then (Y, σ) is $\omega\beta$ -regular.

Proof. Let $y \in Y$ and U be an open set containing y in Y, then there exists $x \in X$ such that f(x) = y. Now, $f^{-1}(U)$ is an open set in X containing x. But X is regular, then there exists an open set V such that $x \in V \subseteq Cl(V) \subseteq f^{-1}(U)$ and $y \in f(V) \subseteq f(Cl(V)) \subseteq U$. But f(Cl(V)) is $g\omega\beta$ -closed. Then we have $\omega\beta Cl(f(Cl(V))) \subseteq U$. Therefore, $y \in f(V) \subseteq \omega\beta Cl(f(V)) \subseteq U$ and f(V) is $\omega\beta$ -open in Y (because f is $\omega\beta$ -open). Hence, Y is $\omega\beta$ -regular.

5. Acknowledgments

The authors wish to express their thanks to the referee for his/her useful comments and suggestions. This work is financially supported by the Malaysian Ministry of Science, Technology and Environment, Science Fund Grant no. UKMTOPDOWN-ST-06-FRGS0001-2012.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and βcontinuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] H. H. Aljarrah and M. S. M. Noorani, ωβ-continuous functions, Eur. J. Pure Appl. Math., 5 (2012), 129–140.
- [3] H. H. Aljarrah and M. S. M. Noorani, On $\omega\beta$ -open sets, (submitted).
- [4] K. Y. Al-Zoubi, On generalized ω-closed sets, Internat. J. Math. Math. Sci., 13 (2005), 2011–2021.
- [5] K. Y. Al-Zoubi and B. Al-Nashef, The topology of ω-open subsets, Al-Manarah Journal, 9 (2003), 169–179.
- [6] S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21 (1990), 717–719.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19.2 (1970), 89–96.
- [8] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1\2}, Mem. Fac. Sci. Kochi Univ. Ser A. Math., **17** (1996), 33–42.
- M. Mrsevic, On pairwise R_o and R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roum., **30** (1986), 141–148.
- [10] S. Tahiliani, Generalized β -closed functions, Bull. Call. Math. Soc., **98** (2006), 307–376.

MSC2010: 54C05, 54C08, 54C10

86

MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

Keywords: $g\omega\beta$ -closed, $g\omega\beta$ -open, $g\omega\beta$ -neighborhood, g-closed set, $g\omega\beta$ -continuous, $g\omega\beta$ -irresolute, $g\omega\beta$ -closed functions.

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia. $E\text{-mail} address: hiamaljarah@yahoo.com}$

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia. *E-mail address:* msn@ukm.my

2949-1 SHIOKITA-CHO, HINAGU, YATSUSHIRO-SHI, KUMAMOTO-KEN, 869-5142, JAPAN. *E-mail address:* t.noiri@nifty.com

MISSOURI J. OF MATH. SCI., SPRING 2014