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Abstract. A function f : [0, 1] → R is Riemann integrable if and
only if its Riemann sums f(T ) and f(T ′) get closer to each other

as δ → 0, uniformly over all δ-fine tagged divisions T and T ′. We
show that δ−1|f(T ) − f(T ′)| � Var(f). We also give an example of
a function f /∈ BV with |f(T ) − f(T ′)| = O(δ| ln δ|). As a lemma,
we show that any f ∈ BV can be approximated uniformly by a step
function g with Var(g) ≈ Var(f).

1. Introduction and Notation

Definition 1.1. A division of the interval [0, 1] is a finite partition

0 = s0 < s1 < s2 < · · · < sm = 1.

A tagged division is a division together with selected points σj ∈ [sj−1, sj ];
the number σj is called the tag of the subinterval [sj−1, sj ]. We shall denote
a typical tagged division by T = {(σj , [sj−1, sj ])}

m
j=1

. For any function

f : [0, 1] → R, the Riemann sum over the tagged division T is

f(T ) =

m∑

j=1

f(σj)(sj − sj−1).

Let δ be a positive number; a tagged division T is called δ-fine, written
T � δ, if maxi(si − si−1) < δ. (Some of the ideas in this paper will be
generalized in [2], where δ may be a positive function, not just a positive
number.)

Definition 1.2. (The following is equivalent to the usual definitions.) A
number v is the Riemann integral of a function f : [0, 1] → R if

for each number ε > 0 there exists a number δ > 0 such
that, whenever T is a δ-fine tagged division, then |f(T ) −
v| < ε.

Observation 1.3. (Cauchy condition) A function f : [0, 1] → R is Rie-
mann integrable if it has a Riemann integral. In other words, a function f
is Riemann integrable if and only if
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for each number ε > 0 there exists a number δ > 0 such
that, whenever T and T ′ are δ-fine tagged divisions, then
|f(T )− f(T ′)| < ε.

(That follows from the fact that the real number system is a complete metric
space.)

Remark 1.4. For any function f : [0, 1] → R and any number δ > 0, let
us denote

θδ(f) = sup
T,T ′�δ

|f(T )− f(T ′)|.

Here the supremum is over all tagged divisions T and T ′ that are δ-fine.
It is easy to show that θδ(f) < ∞ if and only if f is bounded, and that θδ
is a seminorm on the linear space of bounded (not necessarily measurable)
functions from [0, 1] into R. The Cauchy criterion for integrability is that
limδ↓0 θδ(f) = 0.

On the Riemann integrable functions, we may also define this seminorm:

ψδ(f) = sup
T�δ

∣∣∣∣f(T )−
∫ 1

0

f(s)ds

∣∣∣∣ .

It is evident that both seminorms, θδ and ψδ, vanish on constant functions
f . It is shown in [2] that these two seminorms vanish only on constant
functions. The two seminorms are equivalent on integrable functions; we
have

ψδ(f) ≤ θδ(f) ≤ 2ψδ(f).

(To prove ψ ≤ θ, hold T fixed and let f(T ′) →
∫
f .)

This paper’s main theorems state that

sup
δ>0

ψδ(f)

δ
≤ Var(f) ≤ lim inf

δ↓0

θδ(f)

δ

for any function f : [0, 1] → R. Consequently, a function f has bounded
variation if and only if its Riemann sums converge to its integral at a rate
of O(δ), and that rate cannot be improved even for functions that have
greater smoothness properties. In Example 4.1 we give an example of a
Riemann integrable function with unbounded variation; its approximations
converge at the slower rate of O(δ| ln δ|). Lemma 2.1, on the approximation
of bounded variation functions by step functions, may also be of interest in
its own right.

Our results should be contrasted with those of Chui [3], who investigates
the rate at which Rn(f ; a) →

∫
f as n→ ∞, where

Rn(f ; a) =
1

n

n∑

k=1

f

(
k − a

n

)
for a ∈ [0, 1].
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Chui’s sum Rn(f ; a) is just one of the many sums f(T ) that can be obtained
with a choice of T � 1/n; hence

∣∣Rn(f ; a)−
∫
f
∣∣ ≤ ψ1/n(f).

The quantities on the two sides of this inequality need not be close. For
instance, Chui shows that

Rn

(
f ;

1

2

)
−
∫
f = o(1/n) for f absolutely continuous, and

Rn

(
f ;

1

2

)
−
∫
f = O(1/n2) if f is differentiable with f ′ ∈ BV .

But our own Theorem 2.2 shows that ψ1/n(f) cannot converge to 0 any
faster than O(1/n).

On the other hand, some of Chui’s examples of slow convergence would
also apply to our own functions. Chui’s Theorem 2 shows that for any
sequence (εn) decreasing to 0, there exists a function f satisfying Rn(f ; 0)−∫
f ≥ εn; hence also ψ1/n(f) ≥ εn.
This paper is based on results in the first author’s doctoral dissertation

[1].

2. Upper Bound for Errors

Lemma 2.1. Suppose f : [0, 1] → R has bounded variation, and some num-
ber ε > 0 is given. Then there exists a step function g : [0, 1] → R such that

‖f − g‖sup ≤ ε and |Var(f)−Var(g)| ≤ ε,

where “Var” denotes variation.

Remarks. We emphasize that the step function need not be left- or right-
continuous.

One is tempted to make the stronger assertion that there exists a step
function g satisfying |Var(f − g)| ≤ ε. But that is not true, for instance
when f(s) = s.

Proof. Since f has bounded variation, it has a left-hand limit f(s−) at
each point s ∈ (0, 1] and a right-hand limit f(s+) at each point s ∈ [0, 1).
It has only countably many discontinuities, and each of those is a jump.
The size of a jump at s is the number |f(s)− f(s+)|+ |f(s)− f(s−)|; the
sum of the sizes of the jumps is less than or equal to the variation. Let
s1, s2, s3, . . . , sN be the locations of the largest jumps, chosen so that any
jump not in this finite set has size less than ε.
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Enlarge the set {s1, s2, . . . , sN}, adding finitely many points to obtain a
partition

0 = v0 < v1 < v2 < · · · < vM = 1

with the property that

Var(f)− ε ≤
P∑

j=1

|f(vj−1)− f(vj)| ≤ Var(f).

This pair of inequalities will be preserved if we add still more points to the
partition. We now add points to make the partition

0 = v0 < w0 < u1 < v1 < w1 < · · · < uM−1 < vM−1

< wM−1 < uM < vM = 1

as follows:
For each of i = 0, 1, 2, . . . ,M − 1, choose some point wi that is greater

than vi, and is close enough to vi to satisfy these conditions:

wi − vi <
1

2
(vi+1 − vi), sup

s ∈ (vi, wi]
|f(s)− f(wi)| < ε.

Likewise, for each of i = 1, 2, 3, . . . ,M , choose some point ui that is less
than vi, and is close enough to vi to satisfy these conditions:

vi − ui <
1

2
(vi − vi−1), sup

s ∈ [ui, vi)
|f(s)− f(ui)| < ε.

(The conditions involving 1
2
ensure that we actually do have wi−1 < ui.)

Finally, we add still a few more points to the partition, as follows: Sub-
divide each interval [wi−1, ui] into finitely many subintervals

wi−1 = x0i < x1i < x2i < · · · < xpi

i = ui

having the property that

sup
{
|f(s)− f(s′)| : s, s′ ∈ [xj−1

i , xji ]
}
< ε.

That such a subdivision is possible follows via a compactness argument,
using the fact that any jumps f has in [wi−1, ui] are smaller than ε.

Now define a step-function g : [0, 1] → R as follows:

g(s) =





f(xj−1

i ) if xj−1

i ≤ s < xji ,
f(ui) if ui ≤ s < vi,
f(vi) if s = vi,
f(wi) if vi < s ≤ wi.

MISSOURI J. OF MATH. SCI., SPRING 2014 51



J. A. Alewine

It is now easy to verify that ‖f − g‖sup ≤ ε and that

Var(g) =

M∑

i=1

{
|f(vi−1)− f(wi−1)|

+|f(ui)− f(vi)|+

pi∑

k=1

|f(xk−1
i )− f(xki )|

}
,

hence, Var(f)− ε ≤ Var(g) ≤ Var(f). �

Theorem 2.2. Suppose f : [0, 1] → R has bounded variation, δ is a positive
number, and T is a δ-fine tagged division of [0, 1]. Then

|f(T )−
∫ 1

0
f | ≤ δVar(f).

Proof. By Lemma 2.1, it suffices to consider the case where f is a step
function. Then we may describe f as taking constant values xj on disjoint
nonempty intervals Jj (j = 1, 2, 3, . . . , p) whose union is [0, 1]. Each Jj
may be open, closed, or half-open, and each Jj may have positive length
or (in the case where Jj is a single point) zero length. We may assume
the intervals Jj are arranged from left to right with increasing j. Then

Var(f) =
∑p−1

j=1
|xj − xj+1|.

Let rj be the right endpoint of Jj (which may or may not be a member
of Jj), and let r0 = 0. Then

0 = r0 ≤ r1 ≤ r2 ≤ · · · ≤ rp = 1,

with rj−1 = rj holding just in the case where Jj is a singleton. The length
of Jj is rj − rj−1, and we have

∫ 1

0

f =

p∑

j=1

(rj − rj−1)xj = xp +

p−1∑

j=1

(xj − xj+1)rj .

Let T = {(σi, [si−1, si])}
m
i=1

be some tagged division that is δ-fine. Note
that each [si−1, si] has positive length.

For each j ∈ {1, 2, . . . , p}, say that

• the integer j is taggish if at least one tag σi lies in the interval Jj ,
or

• j is untaggish if no tag lies in Jj .

If j is a taggish integer, then all the i’s satisfying σi ∈ Jj must be
consecutive i’s (since the σi’s form a nondecreasing sequence). Hence the
union of their [si−1, si]’s is an interval, which we shall denote by [uj, vj ]; it
has positive length.

For each untaggish integer j, it will be convenient to define an interval
[uj, vj ] of length 0, i.e., a single point. That point is chosen so that all
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the intervals [uj , vj ] (taggish or not) are arranged from left to right with
increasing j. That is,

0 = u0 ≤ v0 = u1 ≤ v1 = · · · ≤ vp−1 = up ≤ vp = 1.

Hence, uj = vj−1 for all j = 1, 2, . . . , p. Observe that

f(T ) =

m∑

i=1

(si − si−1)f(σi) =

p∑

j=1

∑

{i : σi∈Jj}

(si − si−1)xj

=

p∑

j=1

(vj − uj)xj =

p∑

j=1

(vj − vj−1)xj = xp +

p−1∑

j=1

(xj − xj+1)vj .

Subtracting that from our earlier expression for
∫
f yields

∫
f − f(T ) =

p−1∑

j=1

(xj − xj+1)(rj − vj).

Since
∑

j |xj−xj+1| = Var(f), it suffices to show that |rj−vj | < δ for all j.
We prove that in two parts. First, we shall show vj < rj + δ by considering
two cases:

• First, suppose that j is lower than every taggish integer. Any in-
tervals [u, v] to the left of vj have length zero, so vj = 0. Hence
vj < δ ≤ rj + δ.

• In the remaining case, there exists at least one taggish ̂ satisfying
̂ ≤ j. Take the highest such ̂. (Thus ̂ = j if j itself is taggish.)
Now, vj = v̂ since any untaggish integer has its [u, v] with length
zero. We have σı̂ ∈ Ĵ for some ı̂, and any such ı̂ satisfies σı̂ ≤ r̂.
More specifically, let ı̂ be the highest integer for which σı̂ lies in Ĵ;
then sı̂ = v̂. Hence,

vj − δ = sı̂ − δ < sı̂−1 ≤ σı̂ ≤ r̂ ≤ rj .

Finally, we shall show rj < vj + δ by considering two cases:

• First, suppose that there are no taggish integers higher than j.
Then any intervals [u, v] to the right of vj have length 0, so vj = 1.
Therefore, rj ≤ vj < vj + δ.

• On the other hand, suppose that there does exist a taggish integer
̂ with j < ̂. Choose the smallest such ̂. Then any intervals
[u, v] between vj and û correspond to untaggish integers, and
have length 0, so vj = û. Let ı̂ be the smallest integer for which
σı̂ ∈ Ĵ. Thus, σı̂ is the lowest tag that lies to the right of Rj . The
interval [sı̂−1, sı̂] is the leftmost of the intervals whose union makes
up [û, v̂], so sı̂−1 = û. Finally,

rj ≤ σı̂ ≤ sı̂ < sı̂−1 + δ = vj + δ
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as required.

�

3. Lower Bound for Worst-Case Errors

Theorem 3.1. Let any function f : [0, 1] → R and any real number ρ <
Var(f) be given. Then for every number δ > 0 sufficiently small,

sup
T,T ′�δ

|f(T )− f(T ′)| > δρ.

Remark. We do not require that f has bounded variation; the following
argument is valid even in the case where Var(f) = +∞.

Proof. Choose some number θ slightly greater than ρ, and some large inte-
ger k, so that

ρ <
k − 1

k
θ < θ < Var(f).

Since Var(f) > θ, we may choose a partition of [0, 1],

0 = r0 < r1 < r2 < · · · < rp = 1,

such that
∑p

i=1
|f(ri)− f(ri−1)| ≥ θ. Fix any positive number δ less than

mini(ri − ri−1)/k. It suffices to exhibit tagged divisions T, T ′, both δ-fine
for this choice of δ, satisfying

|f(T )− f(T ′)| ≥
k − 1

k
δθ.

Our tagged divisions T = {(σj , [sj−1, sj ])}
m
j=1

and T ′ =
{(
σ′
j , [sj−1, sj ]

)}m

j=1

will both have the same division points

0 = s0 < s1 < s2 < · · · < sm = 1

and will differ only in their tags σj and σ′
j . Choose the division points sj

as follows.
For 1 ≤ i ≤ p, let ni be the integer part of 1 + δ−1(ri − ri−1). Then

arithmetic yields

k − 1

k
δ <

ni − 1

ni
δ ≤

ri − ri−1

ni
< δ.

Divide each interval [ri−1, ri] into ni subintervals of equal length; the subin-
tervals obtained in this fashion will be the intervals [sj−1, sj ] of our tagged
divisions T and T ′. Each of those intervals has length sj − sj−1 between
(k − 1)δ/k and δ. Hence, T and T ′ are δ-fine. Since the partition (sj) is a
refinement of the partition (ri), we have

∑m
j=1

|f(sj)− f(sj−1)| ≥ θ.

For each j, we now define the tags σj and σ′
j by this rule:

σj = sj−1, σ′
j = sj if f(sj−1) ≥ f(sj);

or σ′
j = sj−1, σj = sj if f(sj−1) < f(sj).
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It follows that f(σj)− f(σ′
j) = |f(sj)− f(sj−1)|. Hence,

f(T )− f(T ′) =
m∑

j=1

[f(σj)− f(σ′
j)](sj − sj−1)

=
m∑

j=1

|f(sj)− f(sj−1)|(sj − sj−1) ≥
k − 1

k
δθ

as required. �

4. Example With Unbounded Variation

Example 4.1. Let rn = 1− e−n. Define f : [0, 1] → R by

f(t) =

{
0 if t = rn (n = 0, 1, 2, 3, . . .),
(−1)n if rn−1 < t < rn (n = 1, 2, 3, . . .).

Then f is Riemann integrable but does not have bounded variation. More-
over, if δ ∈ (0, 1/e) and T � δ, then

∣∣f(T )−
∫
f
∣∣ < 8δ ln(1/δ).

Proof. Note that 0 = r0 < r1 < r2 < · · · with limn→∞ rn = 1. The varia-
tion of f on [0, rn] is equal to 2n; the variation of f on [0, 1] is infinite. The
function f is Riemann integrable, since it is bounded and has discontinuities
in a set of measure 0.

Now suppose that δ ∈ (0, 1), and T = {(σi, [si−1, si])}
m
i=1

is a δ-fine
tagged division of [0, 1]. We shall estimate |f(T )−

∫
f |.

Let n be the integer part of 1 + ln(1/δ). Then n is a positive integer,
so 0 < rn < 1. Arithmetic yields n > ln(1/δ), hence, e−n < δ. Also, since
δ < 1/e, we have 1 < ln(1/δ).

Choose the largest value of k that satisfies sk < rn; then sk+1 ≥ rn.
Since T is δ-fine, we have rn − sk < δ. Now compute

|f(T )−
∫
f | =

∣∣∣∣∣

m∑

i=1

f(σi)(si − si−1)−

∫ 1

0

f(s)ds

∣∣∣∣∣

≤

∣∣∣∣∣

k∑

i=1

f(σi)(si − si−1)−

∫ sk

0

f(s)ds

∣∣∣∣∣

+

∣∣∣∣∣

m∑

i=k+1

f(σi)(si − si−1)−

∫ 1

sk

f(s)ds

∣∣∣∣∣ .
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For
∑k

i=1
we shall apply Theorem 2.2. For

∑m
i=k+1

we shall use the fact
that |f(t)| ≤ 1 for all t. Thus we obtain

|f(T )−
∫
f | ≤ δVar (f ; [0, sk]) + 2(1− sk)

≤ δVar (f ; [0, rn]) + 2(δ + 1 +−rn)

= 2δn+ 2(δ + e−n)

≤ 2δ
(
1 + ln(1/δ)

)
+ 2(δ + δ)

< 8δ ln(1/δ).

�
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