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Abstract. Let GA be an AF -algebra given by a periodic Bratteli
diagram with the incidence matrix A ∈ GL(n,Z). For a given
polynomial p(x) ∈ Z[x] we assign to GA a finite abelian group
Abp(x)(GA) = Zn/p(A)Zn. It is shown that if p(0) = ±1 and

Z[x]/〈p(x)〉 is a principal ideal domain, then Abp(x)(GA) is an in-

variant of the strong stable isomorphism class of GA. For n = 2 and
p(x) = x− 1 we conjecture a formula linking values of the invariant
and torsion subgroup of elliptic curves with complex multiplication.

1. Introduction

Let A ∈ GL(n,Z) be a strictly positive integer matrix and consider the
following two objects, naturally attached to A. The first one, which we
denote by (GA, σA), is a pair consisting of an AF -algebra, GA, given by
an infinite periodic Bratteli diagram with the incidence matrix A and a
shift automorphism, σA, canonically attached to GA. (The definitions of
an AF -algebra, a Bratteli diagram, and a shift automorphism are given in
Section 2.) The second object is an abelian group, which can be introduced
as follows. Let p(x) ∈ Z[x] be a polynomial over Z, such that p(0) = ±1
and Z[x]/〈p(x)〉 is a principal ideal domain; here 〈p(x)〉 means the ideal
generated by p(x). Notice that Z[x]/〈p(x)〉 is a principal ideal domain
whenever p(x) is an irreducible polynomial and roots of p(x) generate an
algebraic number field whose ring of integers is a principal ideal domain.
Consider the following abelian group:

Zn/p(A)Zn := Abp(x)(GA), (1)

which we shall call an abelianized GA at the polynomial p(x). Recall that
the AF -algebras GA and GA′ are said to be stably isomorphic, whenever
GA ⊗ K ∼= GA′ ⊗ K, where K is the C∗-algebra of compact operators on a
Hilbert space H.
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Definition 1. The AF -algebras GA and GA′ are said to be strongly stably

isomorphic if they are stably isomorphic and σA, σA′ are the conjugate shift

automorphisms.

Roughly speaking, the stable isomorphism is a property of AF -algebra
GA, while the strong stable isomorphism is a property of the AF -algebra
GA along with its incidence matrix A. The main result of the present note
is the following theorem.

Theorem 1. For each polynomial p(x) ∈ Z[x], such that p(0) = ±1 and

Z[x]/〈p(x)〉 is a principal ideal domain, the abelian group Abp(x)(GA) is an
invariant of the strong stable isomorphism class of the AF -algebra GA.

Remark 1. The reader can find many more numerical invariants of sta-
tionary AF -algebras in the remarkable monograph by Bratteli, Jorgensen
& Ostrovsky [2]; notice that the authors consider the case when A is not
necessarily a unimodular matrix.

Let ECM be an elliptic curve with complex multiplication by an order
of conductor f ≥ 1 in the imaginary quadratic field Q(

√
−d), where d 6= 1

[12, p. 96]. Consider a periodic continued fraction fω = [a0, a1, . . . , an],

where ω = 1+
√
d

2 if d ≡ 1 (mod 4) and ω =
√
d if d ≡ 2, 3 (mod 4). We

shall introduce an integer matrix A =
∏n

i=1

(

ai 1

1 0

)

, see Section 4.1 for a

motivation.

Conjecture 1. (“Weil’s Conjecture for torsion points”) For each

ECM there exists a number field K such that ECM
∼= E(K) and a twist

of E(K) such that Etors(K) ∼= Abx−1(GA), where Etors(K) is the torsion

subgroup of E(K).

Remark 2. Conjecture 1 is an analog of (one of) classical Weil’s Con-
jectures for projective varieties over finite fields [4, pp. 449–451]; indeed,
it identifies Etors(K) with the fixed points of an automorphism A of the
cohomology group H1(E(K);Z), see also the last paragraph of Section 3.

The note is organized as follows. The preliminary facts are brought
together in Section 2. Theorem 1 is proved in Section 3. In Section 4
conjecture 1 is explained and some examples are given.

2. Preliminaries

An AF -algebra (approximately finite-dimensional C∗-algebra) is defined
to be the norm closure of an ascending sequence of the finite-dimensional
C∗-algebras Mn’s, where Mn is the C∗-algebra of the n× n matrices with
the entries in C. Here the index n = (n1, . . . , nk) represents a semi-simple
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matrix algebra Mn = Mn1
⊕· · ·⊕Mnk

. The ascending sequence mentioned

above can be written as M1
ϕ1−→ M2

ϕ2−→ · · · , where Mi are the finite
dimensional C∗-algebras and ϕi the homomorphisms between such algebras.
The set-theoretic limit A = limMi has a natural algebraic structure given
by the formula am + bk → a + b; here am → a, bk → b for the sequences
am ∈ Mm, bk ∈ Mk. The homomorphisms ϕi can be arranged into a graph
as follows. Let Mi = Mi1 ⊕ · · · ⊕ Mik and Mi′ = Mi′

1
⊕ · · · ⊕ Mi′

k
be

the semi-simple C∗-algebras and ϕi : Mi → Mi′ the homomorphism. One
has the two sets of vertices Vi1 , . . . , Vik and Vi′

1
, . . . , Vi′

k
joined by the ars

edges, whenever the summand Mir contains ars copies of the summand Mi′
s

under the embedding ϕi. As i varies, one obtains an infinite graph called
a Bratteli diagram of the AF -algebra [1]. The Bratteli diagram defines a
unique AF -algebra.

If the homomorphisms ϕ1 = ϕ2 = · · · = Const in the definition of the
AF -algebra A, the Bratteli diagram of AF -algebra A is called stationary;
by an abuse of notation, we shall refer to the corresponding AF -algebra as
stationary as well. The stationary Bratteli diagram looks like a periodic
graph with the incidence matrix A = (ars) repeated over and over again.
Since matrix A is a non-negative integer matrix, one can take a power of
A to obtain a strictly positive integer matrix – which we always assume to
be the case. We shall denote the above AF -algebra by GA. Recall that
in the case of AF -algebras, the abelian monoid VC(A) of finitely-generated
projective modules over A (and a scale) defines the AF -algebra up to an
isomorphism and is known as a dimension group of A. We shall use a
standard dictionary existing between the AF -algebras and their dimension
groups [10, Section 7.3]. Instead of dealing with the AF -algebra GA, we
shall work with its dimension group (K0(GA),K

+
0 (GA)), where K0(GA)

is the lattice and K+
0 (GA) is a positive cone inside the lattice given by a

sequence of the simplicial dimension groups:

Zn A−→ Zn A−→ Zn A−→ · · · . (2)

(The above notation comes from theK0-group ofGA [10, p. 122].) There ex-
ists a natural automorphism, σA, of the dimension group (K0(GA),K

+
0 (GA))

[3, p. 37]. It can be defined as follows. Let λA > 1 be the Perron-Frobenius

eigenvalue and vA = (v
(1)
A , . . . , v

(n)
A ) ∈ Rn

+ the corresponding eigenvector

of the matrix A. It is known that K+
0 (GA) is defined by the inequality

Zv
(1)
A + · · ·+Zv

(n)
A ≥ 0 and one can multiply Z-module Zv

(1)
A + · · ·+Zv

(n)
A

by λA. It is easy to see that such a multiplication defines an automorphism
of the dimension group (K0(GA),K

+
0 (GA)). The automorphism is called a

shift automorphism and denoted by σA. The shift automorphisms σA, σA′
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are said to be conjugate, if σA◦θ = θ◦σA′ for some order-isomorphism θ be-
tween the dimension groups (K0(GA),K

+
0 (GA)) and (K0(GA′),K+

0 (GA′)).
We shall write this fact as (GA, σA) ∼= (GA′ , σA′) (an isomorphism).

Lemma 1. The pairs (GA, σA) and (GA′ , σA′) are isomorphic if and only

if the matrices A and A′ are similar.

Proof. By Theorem 6.4 of [3], (GA, σA) ∼= (GA′ , σA′) if and only if the ma-
trices A and A′ are shift equivalent, see [14] for a definition of the shift
equivalence. On the other hand, since the matrices A and A′ are unimod-
ular, the shift equivalence between A and A′ coincides with a similarity of
the matrices in the group GL(n,Z) [14, Corollary 2.13]. �

Corollary 1. The AF -algebras GA and GA′ are strongly stably isomorphic

if and only if the matrices A and A′ are similar.

Proof. By a dictionary between the dimension groups and AF -algebras,
the order-isomorphic dimension groups correspond to the stably isomorphic
AF -algebra [3, Theorem 2.3]. Since σA and σA′ are conjugate, one gets a
strong stable isomorphism. �

Example 1. Let us show that Theorem 1 is non-trivial and the condition
strong stable isomorphism cannot be relaxed to just stable isomorphism.
Consider the unimodular matrices

A =

(

a a− 1
1 1

)

and Ah =

(

a− h (a− h)(h+ 1)− 1
1 h+ 1

)

, (3)

where a, h ∈ Z and a > h ≥ 1. Because eigenvalues of A and Ah co-
incide, one concludes that (K0(GA),K

+
0 (GA)) ∼= (K0(GAh

),K+
0 (GAh

)),
i.e. GA and GAh

are stably isomorphic AF -algebras (see Section 2 for

notation). It is verified directly, that θ ◦ σAh
= σA ◦ θ for θ =

(

1 h

0 1

)

;

therefore GA and GAh
are also strongly stably isomorphic. Notice that

the strong stable class of GA contains more than one representative. Us-
ing the Smith normal form of a matrix (see below), one can find that e.g.
Abx−1(GA) ∼= Abx−1(GAh

) ∼= Za−1, which is in accord with Theorem 1 for
p(x) = x − 1. However, because the eigenvalues λA and λA2 = λ2

A gener-
ate the same number field, we have an isomorphism of dimension groups
(K0(GA),K

+
0 (GA)) ∼= (K0(GA2),K+

0 (GA2)); on the other hand, because
tr (A) 6= tr (A2) matrices A and A2 (and, therefore, the shift automor-
phisms σA and σA2) cannot be conjugate. In this case, the proof of The-
orem 1 breaks, see Lemma 1 and Section 3; therefore the condition strong
stable isomorphism cannot be replaced by the stable isomorphism alone.
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3. Proof of Theorem 1

Our proof is based on the following criterion [3, Theorem 6.4]: the di-
mension groups

Zn A−→ Zn A−→ Zn A−→ · · · and Zn A′

−→ Zn A′

−→ Zn A′

−→ · · · (4)

are order-isomorphic and σA, σA′ are conjugate if and only if the matrices
A and A′ are similar in the group GL(n,Z), i.e. A′ = BAB−1 for a B ∈
GL(n,Z). The rest of the proof follows from the structure theorem for
the finitely generated modules given by the matrix A over a principal ideal
domain [11, p. 43]. The result says the normal form of the module (in our
case – over the principal ideal domain Z[x]/〈p(x)〉) is independent of the
particular choice of a matrix in the similarity class of A.

Before proceeding to a formal proof, let us give an intuitive idea why
Abp(x)(GA) is invariant of the similarity class of matrix A. Recall that
Z[x]/〈p(x)〉 is isomorphic to the ring of integers OK of an algebraic number
field K = Q(α), where α is a root of polynomial p(x). Since p(0) = ±1
one can exclude all rational integer entries of matrix A ∈ GL(n,Z) using
equation p(α) = 0; thus one gets A ∈ GL(n,OK). But OK is a principal
ideal domain (by hypothesis) and, therefore, one can use the Euclidean
algorithm to bring A to a diagonal form (the Smith normal form); the
factor of OK-module GL(n,OK) by a submodule defined by matrix A is
a cyclic abelian group – denoted by Abp(x)(GA) – which is independent of
the similarity class of matrix A. Let us pass to a step by step argument
based on the theory of modules.

Proof. By hypothesis, Z[x]/〈p(x)〉 is a principal ideal domain; we shall con-
sider the following Z[x]/〈p(x)〉-module. If A ∈ Mn(Z) is an n × n integer
matrix, one endows the abelian group Zn with a Z[x]/〈p(x)〉-module struc-
ture by defining:

pn(x)v = (pn(A))v, pn(x) ∈ Z[x]/〈p(x)〉, v ∈ Zn. (5)

Notice that the obtained module depends on matrix A; we shall write (Zn)A

for this module.
Fix a set of generators {ε1, . . . , εn} of (Zn)A. We shall talk about quo-

tient modules in terms of generators and relations, see e.g. lecture notes
by Morandi [6]. The relation submodule can be identified with the kernel
of a module homomorphism φp(x) : (Z

n)A → Zn defined by the formula

{p(x)ε1, . . . , p(x)εn} 7→ ∑n
i=1 p(x)εi. The relation matrix is a mapping

from the module generators to the relation submodule generators; in our
case the relation matrix is p(A). Since the relation submodule depends on
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the polynomial p(x), the factor-module of Z[x]/〈p(x)〉 modulo ker φp(x)

will be denoted by (Zn)A
p(x).

Let G = (gij) be a matrix over the principal ideal domain [11, p. 43].
It is well- known that by the elementary transformations (the Euclidean
algorithm) consisting of (i) an interchange of two rows, (ii) a multiplication
of a row by −1, (iii) an addition of a multiple of one row to another and
similar operations on columns, brings the matrix (gij) to a diagonal form:

D =





















g1
. . .

gr
0

. . .

0





















, (6)

where gi are positive integers, such that gi | gi+1; the latter is known
as the Smith normal form of a matrix over the principal ideal domain [11,
p. 44]. The elementary transformations are equivalent to a matrix equation
D = PGQ, where P,Q ∈ GL(n,Z).

We claim that matrices p(A) and p(A′) have the same Smith normal
form. First, notice that p(A) and p(A′) are similar matrices. Indeed, we
know that A′ is a matrix similar to A, i.e. A′ = BAB−1 for a matrix
B ∈ GL(n,Z); then it is verified directly that p(A′) = Bp(A)B−1, i.e. p(A)
and p(A′) are similar matrices. Now let D be the Smith normal form of
p(A), then D = Pp(A)Q for some P,Q ∈ GL(n,Z). If B ∈ GL(n,Z) is
such that p(A′) = Bp(A)B−1, then PB−1 and BQ are also in GL(n,Z).
One gets the following identities:

PB−1(p(A′))BQ = PB−1(Bp(A)B−1)BQ = Pp(A)Q = D. (7)

In other words, p(A′) has the same Smith normal form as p(A). Recall that
the module (Zn)A

p(x) can be written as:

(Zn)Ap(x)
∼= Zg1 ⊕ · · · ⊕ Zgr ⊕ Zn−r, (8)

where Zgi = Z/giZ. Since the same set of integers gi will appear in the
diagonal form of the matrix p(A′), one gets Abp(x)(GA) ∼= Abp(x)(GA′) for
every choice of the polynomial p(x), such that p(0) = ±1 and Z[x]/〈p(x)〉
is a principal ideal domain. (In the practical considerations, we often have
r = n so that our invariant is a finite abelian group.) Theorem 1 follows
now from Corollary 1.
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The most important special case of the above invariant is when p(x) =
x− 1 (the Bowen-Franks invariant). The invariant takes the form:

Abx−1(GA) = Zn/(A− I)Zn. (9)

The Bowen-Franks invariant is covered extensively in the literature [14];
such an invariant has a geometric meaning of tracking an algebraic structure
of the periodic points of an automorphism of the lattice Zn defined by the
matrix A. In particular, the cardinality of the group Abx−1(GA) is equal
to the total number of the isolated fixed points of the automorphism A. It
is easy to see that such a number coincides with | det(A− I)|. �

4. Torsion Conjecture

The basic facts on elliptic curves, complex multiplication, etc., can be
found in [12]; an excellent introduction to the subject is [13]. The torsion
of rational elliptic curves with complex multiplication was studied in [8]. A
link between complex multiplication and GA was the subject of [7].

4.1. Teichmüller functor. Let θ ∈ [0, 1) be an irrational number. The
universal C∗-algebra Aθ generated by the unitaries u and v satisfying the
commutation relation vu = e2πiθuv is called a noncommutative torus [9],
[3, Chapter 5 (p. 34)], and [10, Exercise 5.8, pp. 86–88]. The torus Aθ is
not an AF -algebra, but can be embedded into an AF -algebra given by the
following Bratteli diagram:

b

b b b

b b b

�
@
@
@�
�@

@�
�

. . .

. . .
a0 a1

Figure 1. The AF -algebra corresponding to Aθ.

where θ = [a0, a1, . . . ] is the continued fraction of θ [3, p. 65]. A pair of
noncommutative tori is said to be stably isomorphic (Morita equivalent)
whenever Aθ ⊗K ∼= Aθ′ ⊗K, where K is the C∗-algebra of compact opera-
tors. The Aθ is stably isomorphic to Aθ′ if and only if θ′ = (aθ+b)/(cθ+d),
where a, b, c, d ∈ Z and ad − bc = 1. The K-theory of Aθ is Bott periodic
with K0(Aθ) = K1(Aθ) ∼= Z2. The range of trace on projections of Aθ ⊗K
is a subset Λ = Z + Zθ of the real line; the set Λ ∼= K0(Aθ) is known
as a pseudo-lattice [5]. The noncommutative torus Aθ is said to have real

multiplication, if θ is a quadratic irrationality; we denote such an algebra
by ARM . Real multiplication implies non-trivial endomorphisms of the

MISSOURI J. OF MATH. SCI., SPRING 2014 29



I. NIKOLAEV

pseudo-lattice ΛRM given as a multiplication by real numbers – hence the
name. Such endomorphisms make a ring under addition and composition
of the endomorphisms; the latter is isomorphic to an order of conductor
f ≥ 1 in the ring of integers of quadratic field Q(θ). Recall that each or-

der of Q(
√
d) has the form Z + (fω)Z, where ω = 1+

√
d

2 if d ≡ 1 (mod 4)

and ω =
√
d if d ≡ 2, 3 (mod 4). It is known that continued fraction of

θ = fω is periodic and has the form [a0, a1, . . . , an]; we shall consider a

matrix A =
∏n

i=1

(

ai 1

1 0

)

.

Lemma 2. K0(GA) ∼= K0(ARM ).

Proof. It follows easily from the definition of A, that K0(GA) ∼= Z + Zθ′,
where θ′ = θ − a0. In other words, K0(GA) ∼= K0(ARM ). �

Let H = {x + iy ∈ C | y > 0} be the upper half-plane and for τ ∈ H let
C/(Z+Zτ) be a complex torus; we routinely identify the latter with a non-
singular elliptic curve via the Weierstrass ℘ function [12, pp. 6–7]. Recall
that two complex tori are isomorphic, whenever τ ′ = (aτ + b)/(cτ + d),
where a, b, c, d ∈ Z and ad− bc = 1. If τ is an imaginary quadratic number,
elliptic curve is said to have complex multiplication; we shall denote such
curves by ECM . Complex multiplication means that lattice L = Z + Zτ
admits non-trivial endomorphisms given as multiplication of L by certain
complex (quadratic) numbers. Again, such endomorphisms make a ring
under addition and composition of the endomorphisms; the latter is iso-
morphic to an order of conductor f ≥ 1 in the ring of integers of imaginary
quadratic field Q(τ).

Our calculations of torsion are based on a covariant functor between
elliptic curves and noncommutative tori. Roughly speaking, the functor
maps isomorphic curves to the stably isomorphic tori; we refer the reader
to [7] for the details and terminology. To give an idea, let φ be a closed 1-
form on a topological torus; the trajectories of φ define a measured foliation
on the torus. By the Hubbard-Masur Theorem, such a foliation corresponds
to a point τ ∈ H. The map F : H → ∂H is defined by the formula τ 7→
θ =

∫

γ2

φ/
∫

γ1

φ, where γ1 and γ2 are generators of the first homology of

the torus. The following is true: (i) H = ∂H × (0,∞) is a trivial fiber
bundle, whose projection map coincides with F ; (ii) F is a functor, which
maps isomorphic complex tori to the stably isomorphic noncommutative
tori. We shall refer to F as the Teichmüller functor. Remarkably, functor
F maps ECM to ARM ; more specifically, complex multiplication by order
of conductor f in imaginary field Q(

√
−d) goes to real multiplication by an

order of conductor f in the real field Q(
√
d), see an explicit formula for F

[7, p. 524].
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Etors(Q), continued
−d f see [Olson 1974] [8] fraction of A Abx−1(GA)

p.196
√

f2d

−2 1 Z2 [1, 2]





2 1

1 0



 Z2

−3 1 Z1 or Z2 [1, 1, 2]





3 1

2 1



 Z2

−7 1 Z2 [2, 1, 1, 1, 4]





14 3

9 2



 Z14

−11 1 Z1 [3, 3, 6]





19 3

6 1



 Z3 ⊕Z6

−19 1 Z1 [4, 2, 1, 3, 1, 2, 8]





326 39

117 14



 Z13 ⊕Z26

−43 1 Z1 [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12]





6668 531

3717 296



 Z59 ⊕Z118

−67 1 Z1 [8, 5, 2, 1, 1, 7, 1, 1, 2, 5, 16]





96578 5967

17901 1106



 Z221 ⊕Z442

−3 2 Z2 or Z6 [3, 2, 6]





13 2

6 1



 Z2 ⊕Z6

−7 2 Z2 [5, 3, 2, 3, 10]





247 24

72 7



 Z6 ⊕Z42

−3 3 Z1 [5, 5, 10]





51 5

10 1



 Z5 ⊕Z10

4.2. Numerical examples. We conclude by examples supporting Conjec-
ture 1; they cover all rational ECM [8], except d = −1 and d = −163.

Remark 3. Note that Etors(Q) ⊆ Etors(K) since K is a non-trivial ex-
tension of Q. The reader can see, that K = Q only for the first two rows;
we do not have specific results for K in other cases, but the table admits
existence of such a field. The third column lists all twists of E(Q) satisfying
conjecture 1.
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