INVARIANTS OF STATIONARY AF-ALGEBRAS AND TORSION SUBGROUPS OF ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

IGOR NIKOLAEV

Abstract

Let G_{A} be an $A F$-algebra given by a periodic Bratteli diagram with the incidence matrix $A \in G L(n, \mathbb{Z})$. For a given polynomial $p(x) \in \mathbb{Z}[x]$ we assign to G_{A} a finite abelian group $A b_{p(x)}\left(G_{A}\right)=\mathbb{Z}^{n} / p(A) \mathbb{Z}^{n}$. It is shown that if $p(0)= \pm 1$ and $\mathbb{Z}[x] /\langle p(x)\rangle$ is a principal ideal domain, then $A b_{p(x)}\left(G_{A}\right)$ is an invariant of the strong stable isomorphism class of G_{A}. For $n=2$ and $p(x)=x-1$ we conjecture a formula linking values of the invariant and torsion subgroup of elliptic curves with complex multiplication.

1. Introduction

Let $A \in G L(n, \mathbb{Z})$ be a strictly positive integer matrix and consider the following two objects, naturally attached to A. The first one, which we denote by $\left(G_{A}, \sigma_{A}\right)$, is a pair consisting of an $A F$-algebra, G_{A}, given by an infinite periodic Bratteli diagram with the incidence matrix A and a shift automorphism, σ_{A}, canonically attached to G_{A}. (The definitions of an $A F$-algebra, a Bratteli diagram, and a shift automorphism are given in Section 2.) The second object is an abelian group, which can be introduced as follows. Let $p(x) \in \mathbb{Z}[x]$ be a polynomial over \mathbb{Z}, such that $p(0)= \pm 1$ and $\mathbb{Z}[x] /\langle p(x)\rangle$ is a principal ideal domain; here $\langle p(x)\rangle$ means the ideal generated by $p(x)$. Notice that $\mathbb{Z}[x] /\langle p(x)\rangle$ is a principal ideal domain whenever $p(x)$ is an irreducible polynomial and roots of $p(x)$ generate an algebraic number field whose ring of integers is a principal ideal domain. Consider the following abelian group:

$$
\begin{equation*}
\mathbb{Z}^{n} / p(A) \mathbb{Z}^{n}:=A b_{p(x)}\left(G_{A}\right) \tag{1}
\end{equation*}
$$

which we shall call an abelianized G_{A} at the polynomial $p(x)$. Recall that the $A F$-algebras G_{A} and $G_{A^{\prime}}$ are said to be stably isomorphic, whenever $G_{A} \otimes \mathcal{K} \cong G_{A^{\prime}} \otimes \mathcal{K}$, where \mathcal{K} is the C^{*}-algebra of compact operators on a Hilbert space \mathcal{H}.

[^0]
I. NIKOLAEV

Definition 1. The $A F$-algebras G_{A} and $G_{A^{\prime}}$ are said to be strongly stably isomorphic if they are stably isomorphic and $\sigma_{A}, \sigma_{A^{\prime}}$ are the conjugate shift automorphisms.

Roughly speaking, the stable isomorphism is a property of $A F$-algebra G_{A}, while the strong stable isomorphism is a property of the $A F$-algebra G_{A} along with its incidence matrix A. The main result of the present note is the following theorem.

Theorem 1. For each polynomial $p(x) \in \mathbb{Z}[x]$, such that $p(0)= \pm 1$ and $\mathbb{Z}[x] /\langle p(x)\rangle$ is a principal ideal domain, the abelian group $A b_{p(x)}\left(G_{A}\right)$ is an invariant of the strong stable isomorphism class of the AF-algebra G_{A}.

Remark 1. The reader can find many more numerical invariants of stationary $A F$-algebras in the remarkable monograph by Bratteli, Jorgensen \& Ostrovsky [2]; notice that the authors consider the case when A is not necessarily a unimodular matrix.

Let $E_{C M}$ be an elliptic curve with complex multiplication by an order of conductor $f \geq 1$ in the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$, where $d \neq 1$ [12, p. 96]. Consider a periodic continued fraction $f \omega=\left[a_{0}, \overline{a_{1}, \ldots, a_{n}}\right]$, where $\omega=\frac{1+\sqrt{d}}{2}$ if $d \equiv 1(\bmod 4)$ and $\omega=\sqrt{d}$ if $d \equiv 2,3(\bmod 4)$. We shall introduce an integer matrix $A=\prod_{i=1}^{n}\left(\begin{array}{cc}a_{i} & 1 \\ 1 & 0\end{array}\right)$, see Section 4.1 for a motivation.

Conjecture 1. ("Weil's Conjecture for torsion points") For each $E_{C M}$ there exists a number field K such that $E_{C M} \cong E(K)$ and a twist of $E(K)$ such that $E_{\text {tors }}(K) \cong A b_{x-1}\left(G_{A}\right)$, where $E_{\text {tors }}(K)$ is the torsion subgroup of $E(K)$.

Remark 2. Conjecture 1 is an analog of (one of) classical Weil's Conjectures for projective varieties over finite fields [4, pp. 449-451]; indeed, it identifies $E_{\text {tors }}(K)$ with the fixed points of an automorphism A of the cohomology group $H^{1}(E(K) ; \mathbb{Z})$, see also the last paragraph of Section 3.

The note is organized as follows. The preliminary facts are brought together in Section 2. Theorem 1 is proved in Section 3. In Section 4 conjecture 1 is explained and some examples are given.

2. Preliminaries

An AF-algebra (approximately finite-dimensional C^{*}-algebra) is defined to be the norm closure of an ascending sequence of the finite-dimensional C^{*}-algebras M_{n} 's, where M_{n} is the C^{*}-algebra of the $n \times n$ matrices with the entries in \mathbb{C}. Here the index $n=\left(n_{1}, \ldots, n_{k}\right)$ represents a semi-simple
matrix algebra $M_{n}=M_{n_{1}} \oplus \cdots \oplus M_{n_{k}}$. The ascending sequence mentioned above can be written as $M_{1} \xrightarrow{\varphi_{1}} M_{2} \xrightarrow{\varphi_{2}} \cdots$, where M_{i} are the finite dimensional C^{*}-algebras and φ_{i} the homomorphisms between such algebras. The set-theoretic $\operatorname{limit} \mathcal{A}=\lim M_{i}$ has a natural algebraic structure given by the formula $a_{m}+b_{k} \rightarrow a+b$; here $a_{m} \rightarrow a, b_{k} \rightarrow b$ for the sequences $a_{m} \in M_{m}, b_{k} \in M_{k}$. The homomorphisms φ_{i} can be arranged into a graph as follows. Let $M_{i}=M_{i_{1}} \oplus \cdots \oplus M_{i_{k}}$ and $M_{i^{\prime}}=M_{i_{1}^{\prime}} \oplus \cdots \oplus M_{i_{k}^{\prime}}$ be the semi-simple C^{*}-algebras and $\varphi_{i}: M_{i} \rightarrow M_{i^{\prime}}$ the homomorphism. One has the two sets of vertices $V_{i_{1}}, \ldots, V_{i_{k}}$ and $V_{i_{1}^{\prime}}, \ldots, V_{i_{k}^{\prime}}$ joined by the $a_{r s}$ edges, whenever the summand $M_{i_{r}}$ contains $a_{r s}$ copies of the summand $M_{i_{s}^{\prime}}$ under the embedding φ_{i}. As i varies, one obtains an infinite graph called a Bratteli diagram of the $A F$-algebra [1]. The Bratteli diagram defines a unique $A F$-algebra.

If the homomorphisms $\varphi_{1}=\varphi_{2}=\cdots=$ Const in the definition of the $A F$-algebra \mathcal{A}, the Bratteli diagram of $A F$-algebra \mathcal{A} is called stationary; by an abuse of notation, we shall refer to the corresponding $A F$-algebra as stationary as well. The stationary Bratteli diagram looks like a periodic graph with the incidence matrix $A=\left(a_{r s}\right)$ repeated over and over again. Since matrix A is a non-negative integer matrix, one can take a power of A to obtain a strictly positive integer matrix - which we always assume to be the case. We shall denote the above $A F$-algebra by G_{A}. Recall that in the case of $A F$-algebras, the abelian monoid $V_{\mathbb{C}}(\mathcal{A})$ of finitely-generated projective modules over \mathcal{A} (and a scale) defines the $A F$-algebra up to an isomorphism and is known as a dimension group of \mathcal{A}. We shall use a standard dictionary existing between the $A F$-algebras and their dimension groups [10, Section 7.3]. Instead of dealing with the $A F$-algebra G_{A}, we shall work with its dimension group $\left(K_{0}\left(G_{A}\right), K_{0}^{+}\left(G_{A}\right)\right)$, where $K_{0}\left(G_{A}\right)$ is the lattice and $K_{0}^{+}\left(G_{A}\right)$ is a positive cone inside the lattice given by a sequence of the simplicial dimension groups:

$$
\begin{equation*}
\mathbb{Z}^{n} \xrightarrow{\mathrm{~A}} \mathbb{Z}^{n} \xrightarrow{\mathrm{~A}} \mathbb{Z}^{n} \xrightarrow{\mathrm{~A}} \cdots \tag{2}
\end{equation*}
$$

(The above notation comes from the K_{0}-group of $G_{A}[10$, p. 122].) There exists a natural automorphism, σ_{A}, of the dimension group $\left(K_{0}\left(G_{A}\right), K_{0}^{+}\left(G_{A}\right)\right)$ [3, p. 37]. It can be defined as follows. Let $\lambda_{A}>1$ be the Perron-Frobenius eigenvalue and $v_{A}=\left(v_{A}^{(1)}, \ldots, v_{A}^{(n)}\right) \in \mathbb{R}_{+}^{n}$ the corresponding eigenvector of the matrix A. It is known that $K_{0}^{+}\left(G_{A}\right)$ is defined by the inequality $\mathbb{Z} v_{A}^{(1)}+\cdots+\mathbb{Z} v_{A}^{(n)} \geq 0$ and one can multiply \mathbb{Z}-module $\mathbb{Z} v_{A}^{(1)}+\cdots+\mathbb{Z} v_{A}^{(n)}$ by λ_{A}. It is easy to see that such a multiplication defines an automorphism of the dimension group $\left(K_{0}\left(G_{A}\right), K_{0}^{+}\left(G_{A}\right)\right)$. The automorphism is called a shift automorphism and denoted by σ_{A}. The shift automorphisms $\sigma_{A}, \sigma_{A^{\prime}}$

I. NIKOLAEV

are said to be conjugate, if $\sigma_{A} \circ \theta=\theta \circ \sigma_{A^{\prime}}$ for some order-isomorphism θ between the dimension groups $\left(K_{0}\left(G_{A}\right), K_{0}^{+}\left(G_{A}\right)\right)$ and $\left(K_{0}\left(G_{A^{\prime}}\right), K_{0}^{+}\left(G_{A^{\prime}}\right)\right)$. We shall write this fact as $\left(G_{A}, \sigma_{A}\right) \cong\left(G_{A^{\prime}}, \sigma_{A^{\prime}}\right)$ (an isomorphism).

Lemma 1. The pairs $\left(G_{A}, \sigma_{A}\right)$ and $\left(G_{A^{\prime}}, \sigma_{A^{\prime}}\right)$ are isomorphic if and only if the matrices A and A^{\prime} are similar.

Proof. By Theorem 6.4 of $[3],\left(G_{A}, \sigma_{A}\right) \cong\left(G_{A^{\prime}}, \sigma_{A^{\prime}}\right)$ if and only if the matrices A and A^{\prime} are shift equivalent, see [14] for a definition of the shift equivalence. On the other hand, since the matrices A and A^{\prime} are unimodular, the shift equivalence between A and A^{\prime} coincides with a similarity of the matrices in the group $G L(n, \mathbb{Z})$ [14, Corollary 2.13].

Corollary 1. The $A F$-algebras G_{A} and $G_{A^{\prime}}$ are strongly stably isomorphic if and only if the matrices A and A^{\prime} are similar.

Proof. By a dictionary between the dimension groups and $A F$-algebras, the order-isomorphic dimension groups correspond to the stably isomorphic $A F$-algebra [3, Theorem 2.3]. Since σ_{A} and $\sigma_{A^{\prime}}$ are conjugate, one gets a strong stable isomorphism.

Example 1. Let us show that Theorem 1 is non-trivial and the condition strong stable isomorphism cannot be relaxed to just stable isomorphism. Consider the unimodular matrices

$$
A=\left(\begin{array}{cc}
a & a-1 \tag{3}\\
1 & 1
\end{array}\right) \text { and } A_{h}=\left(\begin{array}{cc}
a-h & (a-h)(h+1)-1 \\
1 & h+1
\end{array}\right)
$$

where $a, h \in \mathbb{Z}$ and $a>h \geq 1$. Because eigenvalues of A and A_{h} coincide, one concludes that $\left(K_{0}\left(G_{A}\right), K_{0}^{+}\left(G_{A}\right)\right) \cong\left(K_{0}\left(G_{A_{h}}\right), K_{0}^{+}\left(G_{A_{h}}\right)\right)$, i.e. G_{A} and $G_{A_{h}}$ are stably isomorphic $A F$-algebras (see Section 2 for notation). It is verified directly, that $\theta \circ \sigma_{A_{h}}=\sigma_{A} \circ \theta$ for $\theta=\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)$; therefore G_{A} and $G_{A_{h}}$ are also strongly stably isomorphic. Notice that the strong stable class of G_{A} contains more than one representative. Using the Smith normal form of a matrix (see below), one can find that e.g. $A b_{x-1}\left(G_{A}\right) \cong A b_{x-1}\left(G_{A_{h}}\right) \cong \mathbb{Z}_{a-1}$, which is in accord with Theorem 1 for $p(x)=x-1$. However, because the eigenvalues λ_{A} and $\lambda_{A^{2}}=\lambda_{A}^{2}$ generate the same number field, we have an isomorphism of dimension groups $\left(K_{0}\left(G_{A}\right), K_{0}^{+}\left(G_{A}\right)\right) \cong\left(K_{0}\left(G_{A^{2}}\right), K_{0}^{+}\left(G_{A^{2}}\right)\right)$; on the other hand, because $\operatorname{tr}(A) \neq \operatorname{tr}\left(A^{2}\right)$ matrices A and A^{2} (and, therefore, the shift automorphisms σ_{A} and $\sigma_{A^{2}}$) cannot be conjugate. In this case, the proof of Theorem 1 breaks, see Lemma 1 and Section 3; therefore the condition strong stable isomorphism cannot be replaced by the stable isomorphism alone.

3. Proof of Theorem 1

Our proof is based on the following criterion [3, Theorem 6.4]: the dimension groups

$$
\begin{equation*}
\mathbb{Z}^{n} \xrightarrow{\mathrm{~A}} \mathbb{Z}^{n} \xrightarrow{\mathrm{~A}} \mathbb{Z}^{n} \xrightarrow{\mathrm{~A}} \cdots \quad \text { and } \quad \mathbb{Z}^{n} \xrightarrow{\mathrm{~A}^{\prime}} \mathbb{Z}^{n} \xrightarrow{\mathrm{~A}^{\prime}} \mathbb{Z}^{n} \xrightarrow{\mathrm{~A}^{\prime}} \cdots \tag{4}
\end{equation*}
$$

are order-isomorphic and $\sigma_{A}, \sigma_{A^{\prime}}$ are conjugate if and only if the matrices A and A^{\prime} are similar in the group $G L(n, \mathbb{Z})$, i.e. $A^{\prime}=B A B^{-1}$ for a $B \in$ $G L(n, \mathbb{Z})$. The rest of the proof follows from the structure theorem for the finitely generated modules given by the matrix A over a principal ideal domain [11, p. 43]. The result says the normal form of the module (in our case - over the principal ideal domain $\mathbb{Z}[x] /\langle p(x)\rangle$) is independent of the particular choice of a matrix in the similarity class of A.

Before proceeding to a formal proof, let us give an intuitive idea why $A b_{p(x)}\left(G_{A}\right)$ is invariant of the similarity class of matrix A. Recall that $\mathbb{Z}[x] /\langle p(x)\rangle$ is isomorphic to the ring of integers O_{K} of an algebraic number field $K=\mathbb{Q}(\alpha)$, where α is a root of polynomial $p(x)$. Since $p(0)= \pm 1$ one can exclude all rational integer entries of matrix $A \in G L(n, \mathbb{Z})$ using equation $p(\alpha)=0$; thus one gets $A \in G L\left(n, O_{K}\right)$. But O_{K} is a principal ideal domain (by hypothesis) and, therefore, one can use the Euclidean algorithm to bring A to a diagonal form (the Smith normal form); the factor of O_{K}-module $G L\left(n, O_{K}\right)$ by a submodule defined by matrix A is a cyclic abelian group - denoted by $A b_{p(x)}\left(G_{A}\right)$ - which is independent of the similarity class of matrix A. Let us pass to a step by step argument based on the theory of modules.

Proof. By hypothesis, $\mathbb{Z}[x] /\langle p(x)\rangle$ is a principal ideal domain; we shall consider the following $\mathbb{Z}[x] /\langle p(x)\rangle$-module. If $A \in M_{n}(\mathbb{Z})$ is an $n \times n$ integer matrix, one endows the abelian group \mathbb{Z}^{n} with a $\mathbb{Z}[x] /\langle p(x)\rangle$-module structure by defining:

$$
\begin{equation*}
p_{n}(x) v=\left(p_{n}(A)\right) v, \quad p_{n}(x) \in \mathbb{Z}[x] /\langle p(x)\rangle, v \in \mathbb{Z}^{n} \tag{5}
\end{equation*}
$$

Notice that the obtained module depends on matrix A; we shall write $\left(\mathbb{Z}^{n}\right)^{A}$ for this module.

Fix a set of generators $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ of $\left(\mathbb{Z}^{n}\right)^{A}$. We shall talk about quotient modules in terms of generators and relations, see e.g. lecture notes by Morandi [6]. The relation submodule can be identified with the kernel of a module homomorphism $\phi_{p(x)}:\left(\mathbb{Z}^{n}\right)^{A} \rightarrow \mathbb{Z}^{n}$ defined by the formula $\left\{p(x) \varepsilon_{1}, \ldots, p(x) \varepsilon_{n}\right\} \mapsto \sum_{i=1}^{n} p(x) \varepsilon_{i}$. The relation matrix is a mapping from the module generators to the relation submodule generators; in our case the relation matrix is $p(A)$. Since the relation submodule depends on

I. NIKOLAEV

the polynomial $p(x)$, the factor-module of $\mathbb{Z}[x] /\langle p(x)\rangle$ modulo ker $\phi_{p(x)}$ will be denoted by $\left(\mathbb{Z}^{n}\right)_{p(x)}^{A}$.

Let $G=\left(g_{i j}\right)$ be a matrix over the principal ideal domain [11, p. 43]. It is well- known that by the elementary transformations (the Euclidean algorithm) consisting of (i) an interchange of two rows, (ii) a multiplication of a row by -1 , (iii) an addition of a multiple of one row to another and similar operations on columns, brings the matrix $\left(g_{i j}\right)$ to a diagonal form:

$$
D=\left(\begin{array}{llllll}
g_{1} & & & & & \tag{6}\\
& \ddots & & & & \\
& & g_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$

where g_{i} are positive integers, such that $g_{i} \mid g_{i+1}$; the latter is known as the Smith normal form of a matrix over the principal ideal domain [11, p. 44]. The elementary transformations are equivalent to a matrix equation $D=P G Q$, where $P, Q \in G L(n, \mathbb{Z})$.

We claim that matrices $p(A)$ and $p\left(A^{\prime}\right)$ have the same Smith normal form. First, notice that $p(A)$ and $p\left(A^{\prime}\right)$ are similar matrices. Indeed, we know that A^{\prime} is a matrix similar to A, i.e. $A^{\prime}=B A B^{-1}$ for a matrix $B \in G L(n, \mathbb{Z})$; then it is verified directly that $p\left(A^{\prime}\right)=B p(A) B^{-1}$, i.e. $p(A)$ and $p\left(A^{\prime}\right)$ are similar matrices. Now let D be the Smith normal form of $p(A)$, then $D=P p(A) Q$ for some $P, Q \in G L(n, \mathbb{Z})$. If $B \in G L(n, \mathbb{Z})$ is such that $p\left(A^{\prime}\right)=B p(A) B^{-1}$, then $P B^{-1}$ and $B Q$ are also in $G L(n, \mathbb{Z})$. One gets the following identities:

$$
\begin{equation*}
P B^{-1}\left(p\left(A^{\prime}\right)\right) B Q=P B^{-1}\left(B p(A) B^{-1}\right) B Q=P p(A) Q=D \tag{7}
\end{equation*}
$$

In other words, $p\left(A^{\prime}\right)$ has the same Smith normal form as $p(A)$. Recall that the module $\left(\mathbb{Z}^{n}\right)_{p(x)}^{A}$ can be written as:

$$
\begin{equation*}
\left(\mathbb{Z}^{n}\right)_{p(x)}^{A} \cong \mathbb{Z}_{g_{1}} \oplus \cdots \oplus \mathbb{Z}_{g_{r}} \oplus \mathbb{Z}^{n-r} \tag{8}
\end{equation*}
$$

where $\mathbb{Z}_{g_{i}}=\mathbb{Z} / g_{i} \mathbb{Z}$. Since the same set of integers g_{i} will appear in the diagonal form of the matrix $p\left(A^{\prime}\right)$, one gets $A b_{p(x)}\left(G_{A}\right) \cong A b_{p(x)}\left(G_{A^{\prime}}\right)$ for every choice of the polynomial $p(x)$, such that $p(0)= \pm 1$ and $\mathbb{Z}[x] /\langle p(x)\rangle$ is a principal ideal domain. (In the practical considerations, we often have $r=n$ so that our invariant is a finite abelian group.) Theorem 1 follows now from Corollary 1.

The most important special case of the above invariant is when $p(x)=$ $x-1$ (the Bowen-Franks invariant). The invariant takes the form:

$$
\begin{equation*}
A b_{x-1}\left(G_{A}\right)=\mathbb{Z}^{n} /(A-I) \mathbb{Z}^{n} \tag{9}
\end{equation*}
$$

The Bowen-Franks invariant is covered extensively in the literature [14]; such an invariant has a geometric meaning of tracking an algebraic structure of the periodic points of an automorphism of the lattice \mathbb{Z}^{n} defined by the matrix A. In particular, the cardinality of the group $A b_{x-1}\left(G_{A}\right)$ is equal to the total number of the isolated fixed points of the automorphism A. It is easy to see that such a number coincides with $|\operatorname{det}(A-I)|$.

4. Torsion Conjecture

The basic facts on elliptic curves, complex multiplication, etc., can be found in [12]; an excellent introduction to the subject is [13]. The torsion of rational elliptic curves with complex multiplication was studied in [8]. A link between complex multiplication and G_{A} was the subject of [7].
4.1. Teichmüller functor. Let $\theta \in[0,1)$ be an irrational number. The universal C^{*}-algebra \mathcal{A}_{θ} generated by the unitaries u and v satisfying the commutation relation $v u=e^{2 \pi i \theta} u v$ is called a noncommutative torus [9], [3, Chapter 5 (p. 34)], and [10, Exercise 5.8, pp. 86-88]. The torus \mathcal{A}_{θ} is not an $A F$-algebra, but can be embedded into an $A F$-algebra given by the following Bratteli diagram:

Figure 1. The $A F$-algebra corresponding to \mathcal{A}_{θ}.
where $\theta=\left[a_{0}, a_{1}, \ldots\right]$ is the continued fraction of θ [3, p. 65]. A pair of noncommutative tori is said to be stably isomorphic (Morita equivalent) whenever $\mathcal{A}_{\theta} \otimes \mathcal{K} \cong \mathcal{A}_{\theta^{\prime}} \otimes \mathcal{K}$, where \mathcal{K} is the C^{*}-algebra of compact operators. The \mathcal{A}_{θ} is stably isomorphic to $\mathcal{A}_{\theta^{\prime}}$ if and only if $\theta^{\prime}=(a \theta+b) /(c \theta+d)$, where $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$. The K-theory of \mathcal{A}_{θ} is Bott periodic with $K_{0}\left(\mathcal{A}_{\theta}\right)=K_{1}\left(\mathcal{A}_{\theta}\right) \cong \mathbb{Z}^{2}$. The range of trace on projections of $\mathcal{A}_{\theta} \otimes \mathcal{K}$ is a subset $\Lambda=\mathbb{Z}+\mathbb{Z} \theta$ of the real line; the set $\Lambda \cong K_{0}\left(\mathcal{A}_{\theta}\right)$ is known as a pseudo-lattice [5]. The noncommutative torus \mathcal{A}_{θ} is said to have real multiplication, if θ is a quadratic irrationality; we denote such an algebra by $\mathcal{A}_{R M}$. Real multiplication implies non-trivial endomorphisms of the

I. NIKOLAEV

pseudo-lattice $\Lambda_{R M}$ given as a multiplication by real numbers - hence the name. Such endomorphisms make a ring under addition and composition of the endomorphisms; the latter is isomorphic to an order of conductor $f \geq 1$ in the ring of integers of quadratic field $\mathbb{Q}(\theta)$. Recall that each order of $\mathbb{Q}(\sqrt{d})$ has the form $\mathbb{Z}+(f \omega) \mathbb{Z}$, where $\omega=\frac{1+\sqrt{d}}{2}$ if $d \equiv 1(\bmod 4)$ and $\omega=\sqrt{d}$ if $d \equiv 2,3(\bmod 4)$. It is known that continued fraction of $\theta=f \omega$ is periodic and has the form $\left[a_{0}, \overline{a_{1}, \ldots, a_{n}}\right]$; we shall consider a matrix $A=\prod_{i=1}^{n}\left(\begin{array}{cc}a_{i} & 1 \\ 1 & 0\end{array}\right)$.
Lemma 2. $K_{0}\left(G_{A}\right) \cong K_{0}\left(\mathcal{A}_{R M}\right)$.
Proof. It follows easily from the definition of A, that $K_{0}\left(G_{A}\right) \cong \mathbb{Z}+\mathbb{Z} \theta^{\prime}$, where $\theta^{\prime}=\theta-a_{0}$. In other words, $K_{0}\left(G_{A}\right) \cong K_{0}\left(\mathcal{A}_{R M}\right)$.

Let $\mathbb{H}=\{x+i y \in \mathbb{C} \mid y>0\}$ be the upper half-plane and for $\tau \in \mathbb{H}$ let $\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ be a complex torus; we routinely identify the latter with a nonsingular elliptic curve via the Weierstrass \wp function [12, pp. 6-7]. Recall that two complex tori are isomorphic, whenever $\tau^{\prime}=(a \tau+b) /(c \tau+d)$, where $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$. If τ is an imaginary quadratic number, elliptic curve is said to have complex multiplication; we shall denote such curves by $E_{C M}$. Complex multiplication means that lattice $L=\mathbb{Z}+\mathbb{Z} \tau$ admits non-trivial endomorphisms given as multiplication of L by certain complex (quadratic) numbers. Again, such endomorphisms make a ring under addition and composition of the endomorphisms; the latter is isomorphic to an order of conductor $f \geq 1$ in the ring of integers of imaginary quadratic field $\mathbb{Q}(\tau)$.

Our calculations of torsion are based on a covariant functor between elliptic curves and noncommutative tori. Roughly speaking, the functor maps isomorphic curves to the stably isomorphic tori; we refer the reader to [7] for the details and terminology. To give an idea, let ϕ be a closed 1form on a topological torus; the trajectories of ϕ define a measured foliation on the torus. By the Hubbard-Masur Theorem, such a foliation corresponds to a point $\tau \in \mathbb{H}$. The map $F: \mathbb{H} \rightarrow \partial \mathbb{H}$ is defined by the formula $\tau \mapsto$ $\theta=\int_{\gamma_{2}} \phi / \int_{\gamma_{1}} \phi$, where γ_{1} and γ_{2} are generators of the first homology of the torus. The following is true: (i) $\mathbb{H}=\partial \mathbb{H} \times(0, \infty)$ is a trivial fiber bundle, whose projection map coincides with F; (ii) F is a functor, which maps isomorphic complex tori to the stably isomorphic noncommutative tori. We shall refer to F as the Teichmüller functor. Remarkably, functor F maps $E_{C M}$ to $\mathcal{A}_{R M}$; more specifically, complex multiplication by order of conductor f in imaginary field $\mathbb{Q}(\sqrt{-d})$ goes to real multiplication by an order of conductor f in the real field $\mathbb{Q}(\sqrt{d})$, see an explicit formula for F [7, p. 524].

${ }^{-d}$	f	$\begin{gathered} E_{\text {tors }}(\mathbb{Q}) \\ \text { see }[\text { Olson 1974] } \\ \text { p. 196 } \end{gathered}$	$\begin{aligned} & \hline \text { continued } \\ & \text { fraction of } \\ & \sqrt{f^{2} d} \end{aligned}$	A	${ }^{A} b_{x-1}\left(G_{A}\right)$
-2	1	\mathbb{Z}_{2}	$[1,2]$	$\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)$	\mathbb{Z}_{2}
-3	1	\mathbb{Z}_{1} or \mathbb{Z}_{2}	[1, $\overline{1,2]}$	$\left(\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right)$	\mathbb{Z}_{2}
-7	1	\mathbb{Z}_{2}	[2, 1, 1, 1, 4]	$\left(\begin{array}{cc}14 & 3 \\ 9 & 2\end{array}\right)$	\mathbb{Z}_{14}
-11	1	\mathbb{Z}_{1}	[3, $\overline{3,6}$]	$\left(\begin{array}{cc}19 & 3 \\ 6 & 1\end{array}\right)$	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$
-19	1	\mathbb{Z}_{1}	$[4, \overline{2,1,3,1,2,8]}$	$\left(\begin{array}{ll}326 & 39 \\ 117 & 14\end{array}\right)$	$\mathbb{Z}_{13} \oplus \mathbb{Z}_{26}$
-43	1	\mathbb{Z}_{1}	$[6, \overline{1,1,3,1,5,1,3,1,1,12]}$	$\left(\begin{array}{ll}6668 & 531 \\ 3717 & 296\end{array}\right)$	$\mathbb{Z}_{59} \oplus \mathbb{Z}_{118}$
-67	1	\mathbb{Z}_{1}	$[8, \overline{5,2,1,1,7,1,1,2,5,16]}$	$\left(\begin{array}{ll}96578 & 5967 \\ 17901 & 1106\end{array}\right)$	$\mathbb{Z}_{221} \oplus \mathbb{Z}_{442}$
-3	2	\mathbb{Z}_{2} or \mathbb{Z}_{6}	[3, $\overline{2,6]}$	$\left(\begin{array}{cc}13 & 2 \\ 6 & 1\end{array}\right)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$
-7	2	\mathbb{Z}_{2}	[5, 3, 2, 3, 10]	$\left(\begin{array}{cc}247 & 24 \\ 72 & 7\end{array}\right)$	$\mathbb{Z}_{6} \oplus \mathbb{Z}_{42}$
-3	3	\mathbb{Z}_{1}	[5, 5, 10]	$\left(\begin{array}{ll}51 & 5 \\ 10 & 1\end{array}\right)$	$\mathbb{Z}_{5} \oplus \mathbb{Z}_{10}$

4.2. Numerical examples. We conclude by examples supporting Conjecture 1 ; they cover all rational $E_{C M}[8]$, except $d=-1$ and $d=-163$.

Remark 3. Note that $E_{\text {tors }}(\mathbb{Q}) \subseteq E_{\text {tors }}(K)$ since K is a non-trivial extension of \mathbb{Q}. The reader can see, that $K=\mathbb{Q}$ only for the first two rows; we do not have specific results for K in other cases, but the table admits existence of such a field. The third column lists all twists of $E(\mathbb{Q})$ satisfying conjecture 1.

5. Acknowledgments

I thank G. A. Elliott for the helpful discussions. I am grateful to the referee for extended comments which brought the article to its current shape.

References

[1] O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc., 171 (1972), 195-234.
[2] O. Bratteli, P. E. T. Jorgensen, and V. Ostrovsky, Representation Theory and Numerical AF-Invariants, Memoirs Amer. Math. Soc., Vol. 168 (2004).
[3] E. G. Effros, Dimensions and C^{*}-Algebras, Conf. Board of the Math. Sciences, Regional conference series in Math., Vol. 46, AMS, 1981.
[4] R. Hartshorne, Algebraic Geometry, GTM 52, Springer, New York, 1977.

I. NIKOLAEV

[5] Yu. I. Manin, Real multiplication and noncommutative geometry, in "Legacy of Niels Hendrik Abel", 685-727, Springer, New York, 2004.
[6] P. J. Morandi, The Smith normal form of a matrix, 2005, available at http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
[7] I. V. Nikolaev, Remark on the rank of elliptic curves, Osaka J. Math., 46 (2009), 515-527.
[8] L. D. Olson, Points of finite order on elliptic curves with complex multiplication, Manuscripta Math., 14 (1974), 195-205.
[9] M. A. Rieffel, Non-commutative tori - a case study of non-commutative differentiable manifolds, Contemp. Math., 105 (1990), 191-211. http://math.berkeley.edu/~rieffel/
[10] M. Rørdam, F. Larsen, and N. Laustsen, An introduction to K-theory for C^{*} algebras, London Mathematical Society Student Texts, 49, Cambridge University Press, Cambridge, 2000.
[11] I. R. Shafarevich, Basic Notions of Algebra, in Algebra I, E.M.S, Vol. 11, Springer, New York, 1990.
[12] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer, New York, 1994.
[13] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, New York, 1992.
[14] J. B. Wagoner, Strong shift equivalence theory and the shift equivalence problem, Bull. Amer. Math. Soc., 36 (1999), 271-296.

MSC2010: 11G15, 46L85
Key words and phrases: AF-algebras, elliptic curves
1505-657 Worcester St., Southbridge, MA 01550
E-mail address: igor.v.nikolaev@gmail.com

[^0]: Partially supported by NSERC.

