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Abstract. In a prior paper [1] we showed that there is a nonlinear,
continuous, dense bijection from `

2 onto a subset of `2 whose inverse
is everywhere unboundedly discontinuous. We now show that there
is a linear, continuous, dense bijection whose inverse is everywhere
unboundedly discontinuous.

This note is motivated by term-by-term integration of Fourier series. F ,
as defined below, is essentially the term-by-term integral of a Fourier series.
Roughly, the work below may be used to show that a term-by-term Fourier
integral is the limit of the term-by-term Fourier integrals of a divergent set
of functionals. Indeed, the same geometric results which were displayed by
the function studied in [1] also apply to term-by-term Fourier integration.
The details are available directly from the author. The definition of every-
where unboundedly discontinuous, an example of a real valued everywhere
unboundedly discontinuous function, and geometric consequences of every-
where unboundedly discontinuous inverses of continuous, dense bijections
may be found in [1], of which this note is a short extension.

For

a = {an}∞n=1
∈ `2, let F (a)

def
=

(

a1,
a2

2
,
a3

3
, . . . ,

an

n
, . . .

)

. (1)

If
x ∈ F (`2), F−1(x) = (x1, 2x2, . . . , nxn, . . . ) . (2)

As the set of finite sequences is dense in `2 and any finite sequence is in
the range of F, F (`2) is dense in `2. By inspection, each of F and F−1 is
linear. The linear contraction F is continuous at 0 and hence everywhere.
As F−1 is linear, F−1 is everywhere discontinuous if and only if F−1 is dis-
continuous at 0. Likewise, by a similar argument based upon linearity and
translations, a linear operator is everywhere unboundedly discontinuous
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if and only if the linear operator is unboundedly discontinuous anywhere.
Thus,

Lemma 1. F−1 is everywhere unboundedly discontinuous.

Proof. F (0) = F−1(0) = 0. We define qn by q1 = (1, 0, 0, . . .) , q2 =
(

0, 1√
2
, 0, . . .

)

, q3 =
(

0, 0, 1√
3
, 0, . . .

)

, etc.

‖qn − F (0)‖ =
1√
n

and
∥

∥F−1(qn)− F−1(0)
∥

∥ =
√
n.

Thus, as n → ∞,

‖qn‖ → 0, but
∥

∥F−1(qn)
∥

∥ → ∞.

That is, F−1 is unboundedly discontinuous at 0, which, as F−1 is linear,
assures that F−1 is everywhere unboundedly discontinuous. �
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