
MEASURING BIAS IN CYCLIC RANDOM WALKS

CLIFFORD BERGMAN AND SUNDER SETHURAMAN

Abstract. We define the notion of the bias of a Bernoulli random
variable and demonstrate its relationship to the property that the
mod-2 sum of independent variables converges to a fair coin-toss.
We then explore generalizations of these ideas to random walks on a
finite cyclic group.

Imagine that you and some friends are playing a version of roulette. The
wheel is divided into 36 sectors, alternately colored red and black. Before
spinning the wheel, the contestant chooses a color and then wins or loses
depending on whether or not his color comes up.

You, the master player, have honed an ability to spin the wheel exactly
360◦ with high probability. Thus, if the wheel is initially on a red sector,
then after your spin, it will again be on a red sector, and similarly for black.
Of course, nobody’s perfect, so let us say that 90% of your spins return the
wheel to the same color on which they begin.

After you’ve cleaned out your friends a couple of times, they begin to
wise up. One of them proposes a small change in the rules. Instead of a
single spin, the contestant must spin the wheel 10 consecutive times (say,
without looking at the colors obtained along the way). It is only if his guess
matches the final outcome that he wins the game.

Is this fellow on to something? Will the new rule blunt your advantage?
Let us assume that you continue to bet on the wheel’s starting color, and
think of each spin as a coin toss in which the probability of ‘heads’ is 0.9
(i.e., the wheel returns to its starting color after one spin). Then you will
win the game if the number of tails after 10 tosses is an even number. The
probability of this is easily computed to be

∑5
k=0

(

10
2k

)

(.1)2k(.9)10−2k ≈ 0.55.
It seems clear from Figure 1 that as the required number of spins increases,
your advantage diminishes. When used with a large number of spins, the
game resembles a fair coin-toss, no matter how biased is a single spin.
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Figure 1. Probability of winning the roulette game as a
function of the number of spins.

This ‘equalizing’ phenomenon has been understood at least since the
1950’s in the context of cyclic random walks, Feller [7, section 16.2(d)];
random number generation, Horton and Smith [13] and Dvoretsky and
Wolfowitz [6]; and card-shuffling, Aldous and Diaconis [1], among other ar-
eas. In recent times, this behavior has also been exploited in cryptanalysis,
Matsui [18]. We had fun revisiting this old topic and the purpose of this
note is to survey some of the interesting results and to give, in some cases,
simpler and more probabilistic proofs than are found in the literature. In
particular, we focus on ways to measure the ‘bias’ in the ‘equalizing’ phe-
nomenon.

In Section 1, we consider the behavior of the ‘bias’ of sums of Bernoulli
variables modulo 2. In Section 2, the discussion is generalized to sums
modulo m, and in Section 3 several different ‘biases’ are compared and
contrasted.

1. The Basic Problem

Let us formalize the above discussion as follows. Assume we have a coin
for which 0 (Heads) occurs with probability p and 1 (Tails) occurs with
chance q = 1− p. Let X1, X2, . . . be a sequence of independent coin-tosses.
Let the operation ⊕ represent the ‘exclusive-or’ operation. In other words,
X1 ⊕X2 is nothing more than X1 +X2 mod2,

X1 ⊕X2 =

{

0, when X1 = X2 = 0 or X1 = X2 = 1;
1, when X1 6= X2.

Our fundamental observation is that, when 0 < p < 1, no matter how biased
the individual tosses, their exclusive-or resembles a fair coin asymptotically.
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Proposition 1. Let X1, X2, . . . be a sequence of independent, identically
distributed coin tosses with P (Xi = 0) = p, for every i > 0. Then
limn→∞ P (X1 ⊕X2 ⊕ · · · ⊕Xn = 0) = 1

2 if and only if 0 < p < 1.

If we use µ to denote the probability distribution of a fair coin, then
the proposition says that, when 0 < p < 1, as n tends to infinity, the
sequence X1 ⊕ X2 ⊕ · · · ⊕ Xn, converges in measure to µ, in symbols,
X1 ⊕X2 ⊕ · · · ⊕Xn ⇒ µ.

We shall present several proofs of the sufficiency part of the proposition:
a combinatorial proof, one using Markov chains, and later an ‘eigenvalue’
argument which provides some additional insight into the phenomenon.

Proof of Proposition 1. To argue necessity, observe that when p = 0, the
variable X1 ⊕X2 ⊕ · · · ⊕Xn alternates between 0 and 1, and hence cannot
converge, while when p = 1, it has constant value 0.

We now prove sufficiency of 0 < p < 1 for the limit to hold. For a
combinatorial proof, note that the variable X1⊕X2⊕· · ·⊕Xn is equal to 0
precisely when an even number of the individual tosses return Tails. From
the binomial theorem,

(p+ q)n + (p− q)n =

n
∑

k=0

(

n

k

)

qkpn−k +

n
∑

k=0

(−1)k
(

n

k

)

qkpn−k

= 2

bn/2c
∑

k=0

(

n

2k

)

q2kpn−2k

= 2P (X1 ⊕ · · · ⊕Xn = 0).

Of course, p + q = 1 and 0 < |p− q| < 1. Thus, for large n, the left-hand
side of the last equation is close to 1. Hence,

P (X1 ⊕X2 ⊕ · · · ⊕Xn = 0) =
1 + (p− q)n

2
≈ 1/2.

Moreover, when 1/2 < p < 1, the probability decreases asymptotically to
1/2 as in Figure 1. The reader is invited to explore the asymptotics for
other values of p.

For a ‘Markov chain’ proof, we begin with the sequence Zn = X1⊕· · ·⊕
Xn, for n = 1, 2, 3, . . . . One computes that P (Z1 = 0) = p = 1−P (Z1 = 1),
and P (Zn+1 = 0 | Zn = 0) = p, P (Zn+1 = 0 | Zn = 1) = q, P (Zn+1 = 1 |
Zn = 0) = q, and P (Zn+1 = 1 | Zn = 1) = p. Thus,

P (Zn = 0) = pP (Zn−1 = 0) + qP (Zn−1 = 1)

= q + (p− q)P (Zn−1 = 0).
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The last equality follows from the fact that P (Zn−1 = 0) + P (Zn−1 =
1) = 1. We now invite the reader to confirm that the answer from the first
suffiency proof indeed satisfies this recurrence system. �

We remark that the sequence {Zn}n≥1, used in the second proof, is a
Markov chain in that the distribution of Zn depends only on the previous
state Zn−1. In fact, Zn = Zn−1⊕Xn is a function of Zn−1 and an indepen-
dent coin-tossXn. The recurrence equation above can be expressed in terms
of the ‘transition matrix’ R whose entries R(i, j) = P (Zn = j | Zn−1 = i)
for 0 ≤ i, j ≤ 1 and n ≥ 2. That is,

〈P (Zn = 0), P (Zn = 1)〉 = 〈P (Zn−1 = 0), P (Zn−1 = 1)〉R

where

R =

(

p q
q p

)

.

In Proposition 1, we assumed that the coin tosses were both independent
and identically distributed. In fact, a far weaker condition than identical
distribution is sufficient for the proposition to hold. To make this precise,
we introduce a quantity which measures the bias of a Bernoulli variable.

Definition 2. Let X be a random variable taking on two values with prob-
abilities p and q = 1−p. Then the bias of X , denoted B(X), is the quantity
|p− q|.

The bias B(X) has several nice properties. First, it is symmetric in
p and q. Second, we always have 0 ≤ B(X) ≤ 1, attaining the lower
bound precisely when X is a fair coin and the upper bound when X is
a constant (i.e., p = 1 or q = 1). Third, B(X) is the magnitude of the
smallest eigenvalue of the matrix R. Indeed, 1 and p − q are eigenvalues
with respective eigenvectors (1, 1) and (1,−1). The utility of the bias is
seen from the following identity.

Proposition 3. Let X1, . . . , Xn be independent coin-flips, and let Zn =
X1 ⊕ · · · ⊕Xn. Then

B(Zn) =

n
∏

i=1

B(Xi).

Before proving this result, we show how it immediately implies our earlier
claim (Proposition 1). Applying the above identity, we obtain

∣

∣P (Zn = 0)− P (Zn = 1)
∣

∣ = |p− q|n

which vanishes (exponentially) as n tends to infinity if and only if 0 < p < 1.

Proof of Proposition 3. It is enough to show B(X1 ⊕X2) = B(X1)B(X2).
This can certainly be checked by direct computation, but for further devel-
opment we use the following argument. Since the particular values taken on
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by X play no role in B(X), let us identify Heads (0) with 1 and Tails (1)
with −1. With this identification, the bias B(X) is nothing but |E[X ]|,
the magnitude of the expected value of X . Furthermore, X1 ⊕ X2 is
simply the product X1X2. Since expected value respects the product of
independent observations, B(X1X2) = |E[X1X2]| = |E[X1]| · |E[X2]| =
B(X1)B(X2). �

In fact, this proof allows for not necessarily identically distributed coin-
flips in Proposition 1.

Corollary 4. Let X1, X2, . . . be a sequence of (non-identically distributed)
independent coin-flips. Let Zn = X1 ⊕ · · · ⊕Xn. Then

Zn ⇒ µ ⇐⇒ lim
n→∞

n
∏

i=1

B(Xi) = 0.

It is interesting to note that the condition at right allows for the coin-
flips to become increasingly biased at some rate. For example, if B(Xi) =
1 − 1

i+1 , then
∏n

i=1 B(Xi) = (n + 1)−1 which converges to 0 as n ↑ ∞.

Hence, in this case, Zn ⇒ µ even though limn↑∞ B(Xn) = 1. On the other
hand, if the bias of Xn converges too fast to 1, then the limit of Zn will
remain biased. For instance, if B(Xn) = 1 − 1

(i+1)2 , then
∏n

i=1 B(Xi) =
n+2
2n+2 → 1/2 in the limit. We also point out, what may be surprising at
first glance, that if even a single Xi is unbiased, then so is Zn for n ≥ i.

2. Iterations Modulo m

As the exclusive-or operation can be identified with mod2 addition, it is
natural to ask about modm generalizations. Let X1, X2, . . . be a sequence
of independent rolls of m-sided dice where the distribution of Xi is given
by

Xi = l with chance pi(l), for l = 0, 1, . . . ,m− 1.

Does Zn = X1 + · · · + Xn modm converge to µ where µ is the uniform
distribution on Zm = {0, 1, 2, . . . ,m−1}, i.e., µ(l) = 1/m for 0 ≤ l ≤ m−1?
In fact, this will be the case when ‘degeneracies’ are avoided.

Although the combinatorics when m > 2 becomes difficult, we can still
interpret the asymptotics of Zn through Markov chain analysis when the
observations {Xi}i≥1 are identically distributed with common distribution
p = 〈p(l) : 0 ≤ l ≤ m − 1〉. As before, {Zn}n≥1 forms a Markov se-
quence since Zn = Zn−1+Xn modm. A moment’s thought reveals that the
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transition matrix R, with entries R(i, j) = P (Zn = j|Zn = i), takes form

R =











p(0) p(1) · · · p(m− 1)
p(m− 1) p(0) · · · p(m− 2)

...
p(1) p(2) · · · p(0)











. (2.1)

It will be useful later to note that R is a m × m circulant matrix corre-
sponding to the vector 〈p(0), p(1), . . . , p(m− 1)〉.

The Markov chain analysis when the distribution of Zn converges to µ,
however, is not as direct as for the m = 2 case, but relies on the ergodic
theorem for finite-state space chains (cf. Levine, Peres, and Wilmer [17,
section 4.4.3] for instance). We invite the reader to pursue this line of
attack, but in the following we discuss methods which are simpler and
more general.

Let us now consider the general case when the Xi’s are not necessar-
ily identically distributed. For this analysis, it is convenient to work with
a multiplicative cyclic group, rather than the additive group of integers
modulo m. Let ωm = e2πi/m denote a primitive mth root of unity. The
group Zm = {0, 1, . . . ,m − 1} under addition mod m is isomorphic to
{1, ωm, ω2

m, . . . , ωm−1
m } under ordinary multiplication of complex numbers.

This isomorphism maps an element j ∈ Zm to ωj
m. As in Proposition 3,

Zn = X1+X2+ · · ·+xn modm is mapped to X1 ·X2 · · · · ·Xn. The sequence
{Zn}n≥1 can be thought of now as a random rotation on the unit circle, or
a random walk on the cyclic group of order m.

For a random variable X on the mth roots of unity with distribution p,
we now express the eigenvalues of the associated m × m circulant matrix
P , equation (2.1) in terms of the moments of X (in analogy to the case
m = 2).

Proposition 5. Let X be a random variable on the mth roots of unity with
distribution p, and associated circulant matrix R.

Then for k = 0, 1, . . . ,m− 1, the eigenvalues λk and eigenvectors vk of
R are given by

λk = E[Xk] [= p(0) + p(1)ωk
m + p(2)ω2k

m + · · ·+ p(m− 1)ω(m−1)k
m ],

vk =
(

1, ωk
m, (ωk

m)2, . . . , (ωk
m)m−1

)

.

Proof. It is easy to check by direct calculation that if λk and vk are defined
as in the proposition then Pvk = λkvk, for k = 0, 1, . . . ,m − 1. Now it is
possible for the sequence λ0, λ1, . . . , λm−1 to contain repeats. However, the
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matrix whose rows are the vectors vk is

V =















1 1 1 · · · 1
1 ωm ω2

m · · · ωm−1
m

1 ω2
m (ω2

m)2 · · · (ω2
m)m−1

...
1 ωm−1

m (ωm−1
m )2 · · · (ωm−1

m )m−1















which we recognize as a Vandermonde matrix. The determinant of V is
∏

j<k(ω
k
m − ωj

m) 6= 0. Consequently, {v0, v1, . . . , vm−1} is a linearly inde-
pendent set, and provides us with a basis of eigenvectors for P . �

Notice that the matrix R depends only on the outcome probabilities for
the variableX and not on the values taken byX (although the equality of λk

and E[Xk] does depend on the values of X). In analogy with Definition 2,
we write λk(X), for k = 1, 2, . . . ,m− 1, for the eigenvalues of P .

Theorem 6. Let X1, X2, . . . be independent variables on the mth roots of
unity, and let Zn = X1 ·X2 · · · · ·Xn, for n ≥ 1. Then

Zn ⇒ µ ⇐⇒ lim
n→∞

n
∏

i=1

|λk(Xi)| = 0, for each 1 ≤ k ≤ m− 1.

Proof. Since E[Zk
n] = E[Xk

1 ] ·E[Xk
2 ] · · · · ·E[Xk

n] =
∏n

i=1 λk(Xi) by Propo-
sition 5, it is enough to show that Zn ⇒ µ if and only if the first m − 1
moments of Zn tend to zero.

One direction is trivial. The condition Zn ⇒ µ is equivalent to the
assertion limn P (Zn = ωl

m) = 1/m for all l = 0, 1, . . . ,m − 1. This gives,
for 1 ≤ k ≤ m− 1, that

lim
n→∞

E[Zk
n] =

1

m
(1 + ωk

m + · · ·+ ω(m−1)k
m )

=
1

m
·
1− ωmk

m

1− ωk
m

which vanishes as ωm
m = 1.

For the other direction, suppose that for every 1 ≤ k < m, we have that
limn→∞ E[Zk

n] = 0. Expanding, we have

lim
n→∞

m−1
∑

`=0

(ωk
m)`P (Zn = ω`

m) = 0, for k = 1, . . . ,m− 1. (2.2)

Consider the sequence

yn = 〈P (Zn = 1), P (Zn = ωm), . . . , P (Zn = ωm−1
m )〉

of points in Rm for n ≥ 1. The assertion that Zn ⇒ µ is equivalent to
the claim that yn → 〈1/m, 1/m, . . . , 1/m〉 as n → ∞. Suppose this is not
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the case. That is, yn has a subsequence {ynj
: j ≥ 1} that is bounded

away from 〈1/m, . . . , 1/m〉. Since the sequence {ynj
: j ≥ 1} is uniformly

bounded, it must itself have a convergent subsequence converging, let us
say, to 〈a0, a1, . . . , am〉 6= 〈1/m, . . . , 1/m〉.

The equations in (2.2) imply that

a0 + ωk
ma1 + (ωk

m)2a2 + · · ·+ (ωk
m)m−1am−1 = 0

for k = 1, . . . ,m− 1. In addition we have the equation

a0 + a1 + · · ·+ am−1 = 1

as the limit probabilities 〈a` : 0 ≤ ` ≤ m− 1〉 satisfy
∑

` a` = 1. Thus we
have a system of m linear equations whose matrix (if the last equation is
moved to the top) is none other than V , which we have already determined
to be nonsingular. Consequently, the system has a unique solution. Since

〈a0, a1, . . . , am−1〉 = 〈1/m, 1/m, . . . , 1/m〉

is a solution, it is the only one contradicting our assumption. �

The convergence in measure holds in particular for ‘non-degenerate’ iden-
tically distributed independent variables. Motivated by the above result,
let us say that the distribution p of a random variable X taking values on
Zm is non-degenerate when |λk(X)| < 1 for all 1 ≤ k ≤ m− 1. [Note that
by the triangle inequality, |λk(X)| ≤ p(0)+ · · ·+p(m−1) = 1.] Or, in other
words, the distribution is non-degenerate exactly when there is a ‘positive
spectral gap,’ that is, a positive gap between the eigenvalue λ0(X) = 1
and max1≤k≤m−1 |λk(X)|. We also call a variable non-degenerate if its
distribution has that property. We now develop concrete conditions for
non-degeneracy of a random variable X .

Let us again think of Zm as the additive group of integers modulo m.
For i, j ∈ Zm, let 〈j〉+ i = {jx+ i : x = 0, 1, . . . ,m− 1} be the coset of the
cyclic subgroup generated by j displaced by i.

Proposition 7. Let X be a random variable on Zm with distribution p.
Define H = {i ∈ Zm : p(i) > 0}. Then for 1 ≤ k ≤ m− 1, we have that

|λk(X)| = 1 ⇐⇒ H ⊂ 〈j〉+ i

where i = min(H) and j = m/gcd(m, k).

Proof. The ‘⇒’ proof follows from two observations.

(1) Let z, w ∈ C − {0}. Then |z + w| = |z| + |w| implies that z = rw
for some real number r > 0. This is the law of cosines.

(2) Let p(1), . . . , p(k) be positive real numbers, and α1, . . . , αk be dis-
tinct complex numbers of magnitude 1. If |p(1)α1+ · · ·+p(k)αk| =
p(1) + · · ·+ p(k), then k = 1. We will show this momentarily.
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Given (1) and (2), we prove the proposition. Assume |λk| = 1 for some
1 ≤ k ≤ m − 1. Then |

∑

i∈H p(i)ωik
m | = 1. By (2) we have i, l ∈ H

implies ωik
m = ωlk

m. Let i = min(H), l ∈ H , d = gcd(m, k), and j =
m/d. Then ωik

m = ωlk
m implies m divides (l − i)k, which further implies

m/d divides (l − i)k/d, and so m/d divides (l − i). This is equivalent to
l ∈ 〈j〉+ i.

To finish the proof, we argue (2). Let k > 1 be the least counterexample
of the statement. Then, by the triangle inequality,

|p(1)α1 + (p(2)α2 + · · ·+ p(k)αk)| = p(1) + p(2) + · · ·+ p(k)

≥ |p(1)α1|+ |p(2)α2 + · · ·+ p(k)αk|.

Using the triangle inequality again, |p(1)α1| + |p(2)α2 + · · · + p(k)αk| ≥
|p(1)α1+· · ·+p(k)αk|. This implies p(2)+· · ·+p(k) = |p(2)α2+· · ·+p(k)αk|.
Therefore, by assumption, k − 1 = 1, that is k = 2. By (1), we must have
p(2)α2 = rp(1)α1 for some r > 0. This gives α2 = r(p(1)/p(2))α1. But,
|α1| = |α2| = 1, and so rp(1)/p(2) = 1 and α2 = α1. This is a contradiction.

For the ‘⇐’ argument, suppose H ⊂ 〈j〉 + i, where j = m/ gcd(m, k)

and i = min(H). Then m divides kj, and so ω
k(jx+i)
m = ωki

m for all x ∈ Zm.
Hence, |λk| = |ωki

m

∑

l∈H p(l)| = 1. �

We now state a few consequences of Proposition 7.

Corollary 8. Let p be a distribution on Zm, and let H be its support.
Define H ′ as the translate H ′ = H − i where i = min(H). Then p is
non-degenerate if H ′ is not contained in a proper subgroup of Zm.

Proof. From Proposition 7, non-degeneracy of p is equivalent to H ′ 6⊂
〈m/gcd(m, k)〉 for k = 1, . . . ,m. However, we observe that 〈m/gcd(m, k)〉
for 1 ≤ k ≤ m − 1 are precisely the proper subgroups of Zm to finish the
argument. �

Corollary 9. Let X1, X2, . . . be a sequence of identically distributed, inde-
pendent non-degenerate random variables taking values in Zm with distri-
bution p. Let Zn = X1 +X2 + · · ·+Xn modm for n ≥ 1. Then

Zn ⇒ µ ⇐⇒ p is non-degenerate.

Proof. For 0 ≤ k ≤ m − 1, denote by λk the common value of λk(Xi) for
i ≥ 1. By Theorem 6, Zn ⇒ µ if and only if |λk|

n converges to 0 for all
1 ≤ k ≤ m−1. This can happen if and only if |λk| < 1 for all 1 ≤ k ≤ m−1
which is equivalent to non-degeneracy of p. �

We note if m is prime then the only proper subgroup of Zm is {0}.
Hence, in this case, Corollary 8 tells us that the only degenerate random
variables are the constant ones.
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On the other hand, consider the following examples when m = 6. Sup-
pose p0 = p2 = p4 = 0 and p1 = p3 = p5 = 1/3; then, by Proposition 7,
p is degenerate, and Zn does not converge to µ. Indeed, Zn takes on only
odd values for n odd, and only even values for n even. However, when
p0 = p1 = p2 = 0 and p3 = p4 = p5 = 1/3, one can verify that p is
non-degenerate, and so Zn ⇒ µ.

3. Some Generalized Bias Functions

Although Theorem 6 gives equivalent conditions for convergence of Zn =
X1+· · ·+Xn modm to the uniform distribution on Zm in terms of the eigen-
values

{

〈λk(Xi) : 1 ≤ k ≤ m〉
}

i≥1
, computing these spectral quantities is

not immediate. Also, the equivalent conditions, except for the case m = 2,
do not give a rate of convergence. Therefore, it is natural to ask if there are
concrete, useful generalizations of the bias of a Bernoulli random variable
to variables when m > 2. In particular, we would like to retain as many of
the properties outlined after Definition 2 as possible. It turns out there are
several reasonable candidates.

Let X be a random variable taking values in Zm with distribution p =
〈p(0), p(1), . . . , p(m − 1)〉 for m ≥ 2. Order the probabilities in terms of
their size as

p̂0 ≤ p̂1 ≤ · · · ≤ p̂m−1. (3.1)

We write bxc and dxe for the floor and ceiling of the real number x. Let
U(p) be the sum of the bm/2c largest probabilities among p, and let L(p)
be the sum of the bm/2c smallest numbers among them. In terms of

〈p̂i : 0 ≤ i ≤ m− 1〉, U(p) =
∑m−1

i=dm/2e+1 p̂i, and L(p) =
∑bm/2c

i=0 p̂i.

Now, we define five types of biases for the distribution of X . Certainly,
others can also be envisioned.

B1(p) =
m

m− 1
max

i
|p(i)− 1/m|,

B2(p) =
m

m− 1

[1

2

∑

i

|p(i)− 1/m|
]

,

B3(p) = p̂m−1 − p̂0,

B4(p) =
1

2
max
r∈Zm

∑

l∈Zm

∣

∣p(l)− p(l − r)
∣

∣,

B5(p) = U(p)− L(p)

where l − r in the definition of B4 is addition modulo m.
It is nice to observe that all of the biases are between 0 and 1. Also, the

biases are not degenerate in that, for each 1 ≤ i ≤ 4, Bi(p) = 0 exactly
when p = µ, the uniform distribution on Zm. In addition, with respect
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to coin-flips, when m = 2, these biases all reduce to |p(0)− p(1)|, the bias
introduced in Section 1. We note also, when m = 3, B3(p) = B4(p) =
B5(p), and, when m = 4, B4(p) = B5(p). Reasonably then, all of these
biases can be thought of as generalizations of the m = 2 case.

However, none of them are without flaws. While it is true that for
i ∈ {1, 2, 3} we have Bi(p) = 1 precisely when X is constant, this desirable
property fails for B4 and B5. We also note that B4 is not invariant under a
permutation of the outcomes of X . More important for our purposes, none
of these bias functions exhibit an equality that generalizes Proposition 3
beyond the case m = 2. We are able to obtain inequalities that lead to
sufficient conditions for convergence of Zn to µ, but not necessary ones. In
fact, in view of the m−1 > 1 (non-trivial in general) relations in Theorem 6,
it would be too much to hope for to find a single bias function under which
necessary and sufficient conditions for convergence of Zn to µ would hold
when m > 2.

There is a useful trick that can be helpful when manipulating sums such
as the one in the definitions of B2 and B4. For a real number x, let (x)+
denote max(x, 0) (the ‘positive part of x’) and (x)− = −min(x, 0). Then
x = (x)+ − (x)− and |x| = (x)+ + (x)−. We can compute as follows.

m−1
∑

i=0

|p(i)− 1/m| =
∑

i

[

(

p(i)− 1/m
)

+
+
(

p(i)− 1/m
)

−

]

= 2
∑

i

(

p(i)− 1/m
)

+
−
∑

i

[

(

p(i)− 1/m
)

+
−
(

p(i)− 1/m
)

−

]

= 2
∑

i

(

p(i)− 1/m
)

+
−
∑

i

(p(i)− 1/m)

= 2
∑

i

(

p(i)− 1/m
)

+

since
∑

i p(i) =
∑

i 1/m = 1. From this computation, as well as its dual,
we obtain

B2(p) =
m

m− 1

∑

i

(

p(i)− 1/m
)

+
=

m

m− 1

∑

i

(

p(i)− 1/m
)

−
. (3.2)

With this same trick, and also noting (a − b)+ = a − min(a, b), B4(p)
can rewritten as

B4(p) = max
r∈Zm

∑

l∈Zm

(

p(l)− p(l − r)
)

+

= 1− min
r∈Zm

∑

l∈Zm

min
(

p(l), p(l − r)
)

.
(3.3)
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Also, at first glance, B5 may seem strange, however, the following propo-
sition gives it another more natural interpretation which appears new.

Proposition 10. Let p be a distribution on Zm. Then, with respect to the
set of permutations Sm on Zm, we have

B5(p) = max
σ∈Sm

1

2

∑

`∈Zm

|p(`)− p(σ`)| = max
σ∈Sm

∑

`∈Zm

(

p(`)− p(σ`)
)

+
.

Proof. It is enough to show, for any permutation σ, that T :=
∑

`∈Zm

(

p(`)−

p(σ`)
)

+
≤ B5(p). Some of the terms in the expression for T are 0 and others

are positive. If we throw away the 0 terms and rearrange, there are elements
{k1, k2, . . . , kt, j1, . . . , jt} ⊆ Zm such that

T =
(

p(k1) + p(k2) + · · ·+ p(kt)
)

−
(

p(j1) + p(j2) + · · ·+ p(jt)
)

; (3.4)

p(k1) ≥ p(k2) ≥ · · · ≥ p(kt) and p(j1) ≤ p(j2) ≤ · · · ≤ p(jt). (3.5)

Now the indices k1, . . . , kt come from distinct values of σ, hence they are
all distinct. Similarly, the ji’s are all distinct. If any ki = j`, then we could
cancel them in equation (3.4). Therefore, we can assume that there are
no repeats in the list k1, k2, . . . , kt, j1, . . . , jt. Thus we can conclude that
t ≤ m/2.

It follows from equation (3.5) that for every 1 ≤ i ≤ t, the value of p(ki)
is at most the ith largest in p, i.e., p(ki) ≤ p̂m−i+1. Similarly, p(ji) ≥ p̂i.
From these two inequalities we obtain

(

p(ki)−p(ji)
)

≤ (p̂m−i+1− p̂i). Once
again rearranging the terms in the sum for T :

T =
(

p(k1)− p(j1)
)

+
(

p(k2)− p(j2)
)

+ · · ·+
(

p(kt)− p(jt)
)

≤ (p̂m − p̂1) + (p̂m−1 − p̂2) + · · ·+ (p̂m−t+1 − p̂t−1) ≤ B5(p)

as desired. �

A natural question now is how do these biases relate to each other.

Theorem 11. Let p be a distribution on Zm. Then

B1(p) ≤ Bj(p) ≤ B4(p) ≤ B5(p)

where j ∈ {2, 3}. However, B2(p) and B3(p) are not comparable for m ≥ 4,
although B2(p) ≤ B3(p) for m ≤ 3.

We remark all inequalities above can be strict for m ≥ 5. For example,
when m ≥ 5 is even, consider p = 2

3m 〈1, . . . , 1, 2, 1, 2, . . . , 2〉 with equal
numbers of 1’s and 2’s. We leave it to the interested reader to verify that
B1(p) < B3(p) < B2(p) < B4(p) < B5(p), and to construct a similar
example for odd m ≥ 5.

206 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



MEASURING BIAS IN CYCLIC RANDOM WALKS

Proof of Theorem 11. With respect to p, let p̂i, i = 0, 1, . . . ,m− 1 be the
ordered probabilities as in (3.1). As m−1

m B1(p) is equal to either (p̂m−1 −
1/m)+ or (p̂0 − 1/m)−, the inequality B1(p) ≤ B2(p) follows from the
equations in (3.2).

We now prove the inequality B1(p) ≤ B3(p). As the minimum and
maximum probabilities must satisfy p̂0 ≤ 1/m ≤ p̂m−1, we can write

B1(p) =
m

m− 1
max

{

1

m
− p̂0, p̂m−1 −

1

m

}

= max

{

1− p̂0
m− 1

− p̂0, p̂m−1 +
p̂m−1 − 1

m− 1

}

.

Now, 1− p̂0 = p̂1+ · · ·+ p̂m−1 ≤ (m−1)p̂m−1, and so (1− p̂0)/(m−1)− p̂0 ≤
p̂m−1− p̂0 = B3(p). Similarly, p̂m−1+(p̂m−1−1)/(m−1) ≤ B3(p) to finish
the argument.

We now prove B2(p) ≤ B4(p). Note that µ = 〈 1
m , . . . , 1

m 〉R where R is
the matrix in (2.1). Write

m− 1

m
B2(p) =

1

2

∑

j

∣

∣

∣

∣

p(j)−
1

m

∣

∣

∣

∣

=
1

2

∑

j

∣

∣

∣

∣

∣

p(j)−
1

m

∑

i

R(i, j)

∣

∣

∣

∣

∣

=
1

2

∑

j

∣

∣

∣

∣

∣

1

m

∑

i

p(j)− p(j − i)

∣

∣

∣

∣

∣

≤
1

2m

∑

i,j

|p(j)− p(j − i))|.

By pulling out a maximum over i 6= 0, we have the further bound

m− 1

m
·
1

2
max
i6=0

∑

j

|p(j)− p(j − i)| =
m− 1

m
B4(p).

We now argue B3(p) ≤ B4(p). Observe that there are indices j, k ∈ Zm

such that p̂m−1 = p(j) and p̂0 = p(k). Taking r = j − k modm, we have
B3(p) = p̂m−1 − p̂0 = p(j)− p(j − r) ≤

∑

l

(

p(l)− p(l − r)
)

+
≤ B4(p).

Also, the inequality B4(p) ≤ B5(p) is a consequence of Proposition 10.
Last, we give an example when m = 4 to show B2(p) and B3(p) are not

comparable. Let p1 = 〈1/8, 1/8, 3/8, 3/8〉 and p2 = 〈1/8, 1/4, 1/4, 3/8〉.
Then B2(p1) = 1/3 and B2(p2) = 1/6, but B3(p1) = B3(p2) = 1/4. We
leave it to the interested reader to generalize the example to m ≥ 4, and
also the verification that always B2(p) ≤ B3(p) when m ≤ 3. �

We now turn to some inequalities which bound the bias of Zn in terms of
a product of biases. The first and second parts of the following proposition
are due to Dvoretzky and Wolfowitz [6], and Horton and Smith [13], re-
spectively. We omit its proof as we develop a sharper bound in Proposition
13.
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Proposition 12. Let X and Y be independent random variables on Zm

with distributions pX , and pY . Also, let Z = X + Y modm and let pZ be
its distribution. Then we have

(i) B1(pZ) ≤ B5(pX)B1(pY ), and
(ii) B3(pZ) ≤ B5(pX)B3(pY ).

By iterating the inequalities in parts (i) and (ii) above, along with not-
ing, from Theorem 11, that B1(p), B3(p) ≤ B5(p), we have B1(pZn

) ≤
∏n

i=1 B5(pi) and B3(pZn
) ≤

∏n
i=1 B5(pi).

However, the next bound is a little better than the inequalities in Propo-
sition 12 in that on both sides of the relation the same type of bias is used.

Proposition 13. Consider independent random variables X and Y on Zm

with respective distributions pX and pY . Let pX+Y be the distribution of
X + Y modm. Then B4(pX+Y ) ≤ B4(pX)B4(pY ).

Proof. Let r(j) = pX+Y (j) =
∑

k pX(k)pY (j − k). Then B4(pX+Y ) =
maxs

∑

l(r(l)− r(l − s))+. Write

∑

l

(r(l)− r(l − s))+ =
∑

l

(

∑

k

pX(k)(pY (l − k)− pY (l − s− k))

)

+

=
∑

l

(

∑

u

pX(l − u)(pY (u)− pY (u − s))

)

+

=
∑

l∈A

(

∑

u

pX(l − u)(pY (u)− pY (u − s))

)

(3.6)

where A consists of those indices l for which

∑

u

pX(l − u) ·
(

pY (u)− pY (u− s)
)

> 0.

The last expression in (3.6), after interchange of summation and rewriting
(pY (u)− pY (u − s)) in terms of positive and negative parts, yields

∑

u

{[

∑

l∈A

pX(l − u)

]

(pY (u)− pY (u− s))+

−

[

∑

l∈A

pX(l − u)

]

(pY (u)− pY (u − s))−

}
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and is less than

max
u

[

∑

l∈A

pX(l − u)

][

∑

u

(pY (u)− pY (u− s))+

]

−min
u

[

∑

l∈A

pX(l − u)

][

∑

u

(pY (u)− pY (l − u))−

]

.

As
∑

u(pY (u)−pY (l−u))+ =
∑

u(pY (u)−pY (l−u))−, the last expression
equals

[

∑

u

(pY (u)− pY (l − u))+

][

max
u,u′

∑

l∈A

(pX(l − u)− pX(l − u′))

]

≤

[

∑

u

(pY (u)− pY (l − u))+

][

max
u,u′

∑

l

(pX(l − u)− pX(l − u′))+

]

≤ B4(pX)B4(pY ).

As s is arbitrary, this finishes the proof. �

We can now write a sufficient condition for convergence of pZn
to µ in

terms of the bias B4.

Theorem 14. Let {Xi}i≥1 be independent random variables on Zm with
respective distributions {pi}i≥1. Let Zn = X1 + · · · +Xn modm and pZn

be its distribution for n ≥ 1. Then B4(pZn
) ≤

∏n
i=1 B4(pi) and

Zn ⇒ µ if lim
n→∞

n
∏

i=1

B4(pi) = 0.

Proof. The product inequality is a consequence of Proposition 13, and the
convergence follows since the bias B4 vanishes exactly at the uniform dis-
tribution µ. �

However, we remark condition ‘
∏

i≥1 B4(pi) → 0’ is only sufficient as

there are distributions p where B4(p) = 1 but p is non-degenerate in the
sense of the last section. In particular, distributions p = 〈p, 1− p, 0, 0〉 for
0 < p < 1 are such examples when m = 4.

Finally, we furnish a simple condition for exponential convergence of Zn

to the uniform distribution. This condition in a different form for identically
distributed random variables {Xi}i≥1 on more general groups was given by
Kloss [15]. See also in this context Aldous and Diaconis [1].

Corollary 15. Under the setting of Theorem 14, suppose in addition there
is a constant 0 < c < 1 such that pi(j) ≥ c/m for all i ≥ 1 and j ∈ Zm.
Let pZn

be the distribution of Zn Then, for n ≥ 1, we have

B4(pZn
) ≤ (1− c)n.
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Proof. By Proposition 13, we have that B4(pZn
) ≤

∏n
i=1 B4(pi). To finish

the proof, we now observe from (3.3) that, for each i ≥ 1,

B4(pi) = 1− min
r∈Zm

∑

l∈Zm

min(pi(l), pi(l − r))

≤ 1−m(c/m) = 1− c.

�

4. Concluding Remarks

Corollary 9 is a case of the well-known Ito-Kawade Theorem which gives
equivalent conditions on a distribution ν in a compact group for the n-
fold convolutions ν∗n to converge to the Haar measure of the group; see
Grenander [9], Heyer [11], and Högnäs and Mukherjea [12].

It seems, however, that the convergence of convolutions of non-identical
distributions in general groups are not as well understood (cf. [12, Section
2.4]). But see there, in particular, [12, Theorem 2.49] which gives a neces-
sary and sufficient condition for convergence of convolutions of non-identical
measures on discrete groups. In this context, Theorem 6 is a particular case
of this result with respect to the finite group Zm first proved by Dvoret-
zky and Wolfowitz [6] with Fourier methods. See also Aldous and Diaconis
[1], and Goel and Gulati [8] for applications to card shuffling and statistics
among other things.

The bias B2(p) is m/(m − 1) times the variational distance between p

and the uniform measure µ = 〈1/m, . . . , 1/m〉. Also, B4(p) is the maximum
variational distance between p and its translates, whereas B5(p) is the
maximum variational distance between permutations of p. Moreover, the
bias B4 is the ‘contraction coefficient’ of the circulant matrix R in (2.1).
The contraction coefficient of a general stochastic matrix is a measure of
its distance from a stochastic matrix with equal rows, and is useful in
the analysis of Markov chains. Proposition 13 is a case of a more general
contraction coefficient inequality. See Levin, Peres and Wilmer [17, chapter
4] for more on variational distances in the context of Markov chains, and
Isaacson and Madsen [14, chapter 5] and Griffeath [10] for more discussion
on the contraction coefficient.

Circulant matrices appear naturally in many applications. A proof of
Corollary 9 purely in terms of circulant properties is found in Krafft and
Schaefer [16]. The book Davis [3] is a comprehensive reference. See also
Diaconis [5] for a discussion of interesting generalizations of these matrices
and their properties.

Finally, returning to the opening example, it seems that, no matter the
number N of extra spins demanded of the friends, the skilled spinner will
still have an advantage, although the bias vanishes exponentially in N .
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However, if N is allowed to be ‘random’, then it seems the friends may
have equal odds of winning. Namely, N should be a ‘strong stationary
time’, which can be constructed in this case along the lines of Aldous and
Diaconis [2, Proposition 3.2]. See also Levin, Peres and Wilmer [17, Section
6.4] for more discussion and extensions to related questions.

References

[1] D. Aldous and P. Diaconis, Shuffling cards and stopping times, Amer. Math.
Monthly, 93 (1986), 333–348.

[2] D. Aldous and P. Diaconis, Strong uniform times and finite random walks, Adv.
Appl. Math., 8 (1987), 69–97.

[3] P. Davis, Circulant Matrices, Wiley, New York, 1979.
[4] P. Diaconis, Group Representations in Probability and Statistics, Institute of Math-

ematical Statistics Lecture Notes-Monograph Series, 11, Hayward, CA, 1988.
[5] P. Diaconis, Patterned matrices, Proceedings of Symposia in Applied Mathematics,

Ed. C. Johnson, 40 (1990), 37–58.
[6] A. Dvoretzky and J. Wolfowitz, Sums of random integers reduced modulo m, Duke

Math. Journal, 18 (1951), 501–507.
[7] W. Feller, An Introduction to Probability Theory and its Applications I, Wiley, New

York, 1968.
[8] P. Goel and C. Gulati, Monotone decreasing distance between distributions of sums

of unfair coins and a fair coin, Math. Sci., 26 (2001), 34–40.

[9] U. Grenander, Probabilities on Algebraic Structures, Wiley, New York, 1963.
[10] D. Griffeath, Uniform coupling of non-homogeneous Markov chains, J. Appl. Prob-

ability, 12 (1975), 753–762.
[11] H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin-

Heidelberg-New York, 1975.
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