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Abstract. An approximate solution of the heat equation on p-forms
on an n-dimensional manifold is constructed. This is used to create a
fundamental solution of the heat operator. It is shown there is a link
between this solution and the generalized Gauss-Bonnet Theorem on
manifolds.

1. Introduction

Let M be an n-dimensional compact oriented Riemannian manifold of
class C∞ without boundary. Denote by Λ(M) the space of smooth exte-
rior p-forms and d : Λp → Λp+1 the exterior differentiation operator and
δ : Λp+1 → Λp the adjoint of d with respect to the metric of M . The
Laplace operator ∆ = −(dδ + δd) acts on p-forms for 0 ≤ p ≤ n. The
operator ∆: Λp → Λp has an infinite sequence of eigenvalues 0 ≥ λ1 ≥
λ2 ≥ · · · ≥ λn → −∞. Each is repeated as many times as its multiplicity
indicates. The corresponding sequence {ωn} of eigenforms gives a complete
orthonormal set in Λp with Riemannian inner product.

One of the objectives here is to construct a paramatrix for the heat
equation for a p-form ω,

(

∂

∂t
−∆

)

ω = 0. (1.1)

This problem was discussed for functions by Minakshisundaram and Pleijel
[4] and for forms it was studied by McKean and Singer [3] and also Patodi
[5]. Let V be an open subset of M and ω(x, y) a C∞(p, p) form on V × V .
For all x ∈ M , the Riemannian metric induces a natural isomorphism of
ΛpT ∗

x (M) onto the dual of this space. Thus there is a natural identification
of ΛpT ∗

x (M)⊗ΛpT ∗
x (M) with Hom(ΛpT ∗(M),ΛpT ∗(M)) and so for x ∈ V

and v ∈ ΛpT ∗
x (M), ω(x, y)(v) is a smooth p-form on U [1,2].

For p-forms, an approximate solution which will be called Hp
N (t, x, y) is

constructed in a sufficiently small neighborhood of the diagonal in V × V ,
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t > 0 by beginning with

Hp
N (t, x, y) =

1

(4πt)n/2
e−r2/4t

(

N
∑

i=0

tiui,p(x, y)

)

. (1.2)

In (1.1), the variable r is the geodesic distance between x and y and
ui,p(x, y) are smooth p-forms which are to be determined and u0,p(x, x)
is the identity of ΛpT ∗

x (M).

Theorem 1. In order that (1.2) satisfies the heat equation (1.1), the

ui,p(x, y) must satisfy the following system of recursion relations

(

i+
r

4g

dg

dr

)

ui,p(x, y) +∇r∂r
ui,p(x, y)−∆yu

i−1,p(x, y) = 0, (1.3)

for i = 0, 1, . . . , N − 1 and moreover,

(

∂

∂t
−∆y

)

Hp
N (t, x, y) = −

e−r2/4t

(4πt)n/2
tN uN,p(x, y). (1.4)

The integer N is chosen to be larger than n/2. These conditions determine

the double (p, p) forms ui,p(x, y) uniquely in a sufficiently small neighbor-

hood of the diagonal.

Proof. Fix an arbitrary point x ∈ M and introduce normal coordinates in
an open neighborhoodU of x such that gij(x) = δij and x has the coordinate
representation (0, . . . , 0). Let F (r(x, y)) be a function of r depending only
on the geodesic distance of y from x and ω is any C∞ p-form defined on U .
Then the Laplacian with respect to y has the following structure in terms
of r:

∆y(F (r)ω) =

(

d2F

dr2
(r) +

n− 1

r

dF

dr
(r) +

1

2g

dg

dr

dF

dr
(r)

)

ω

+
2

r

dF

dr
(r)∇r∂r

ω + F (r)∆ω, (1.5)

where g(y) = det(gij(y)). For the case in which F (r) = exp
(

− r2

4t

)

, substi-

tution in (1.5) implies that

∆y

(

exp

(

−
r2

4t

)

ω

)

= e−
r2

4t

[((

r2

4t2
−

1

2t

)

−
n− 1

2t
−

r

4gt

)

ω −
1

t
∇r∂r

ω +∆ω

]

.
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It is also found that

∂

∂t
Hp

N (t, x, y) =
r−r2/4t

(4πt)n/2

×

N
∑

i=0

[(

r2

4t2
+

1

t

(

i−
n

2

)

−
r2

4t2
+

1

2t
+

n− 1

2t
+

r

4gt

dg

dr

)

tiui,p(x, y)

+ ti−1∇r∂r
ui,p(x, y)− ti∆yu

i,p(x, y)
]

=
e−r2/4t

(4πt)n/2

×
N
∑

i=0

[(

i+
r

4g

dg

dr

)

ti−1ui,p(x, y) + ti−1∇r∂r
ui,p(x, y)− ti∆yu

i,p(x, y)

]

.

When the coefficients of ti−1 are equated to zero, (1.3) results and the
remaining equation is exactly (1.4). �

It is clear that (1.3) can be put in the equivalent form

∇r∂r
ui,p(x, y) +

(

i+
r

4g

dg

dr

)

ui,p(x, y) = ∆y u
i−1,p(x, y). (1.6)

Lemma 1. For an arbitrary vector field v ∈ ΛpT ∗
x (M) , then in the open set

U , equations (1.6) have unique solutions under the condition u0,p(v, x) = v,
u−1,p(x, y) = 0.

Proof. System (1.6) can be written in the form

∇r∂r
(rig1/4ui,p(v, y)) = rig1/4∆y u

i−1,p(v, y). (1.7)

Suppose y is an arbitrary point of U and wy(t), 0 ≤ t ≤ r(x, y) the geodesic
joining points x and y. The curve wy(t) defines, with respect to the Rie-
mannian connection, an isomorphism Ty,t0 of ΛpT ∗

wy(t0)
(X) onto ΛpT ∗

y (X),

0 ≤ t0 ≤ r(x, y). Let u0,p(v, y) = g−1/4(y)Ty,0(v). Then u0,p(v, x) = v, and
(1.7) is satisfied for i = 0. Suppose there is some m so that when i < m
the forms ui,p(v, y) have been determined such that they satisfy (1.7). By
induction, define um,p(v, y) to be

um,p(v, y) =
1

(r(x, y)mg1/4(y))

×

∫ r

0

(r(x, uy(t)))
m−1g1/4(uy(t))Ty,t(∆yu

m−1,p(v, uy(t))) dt.

This is a C∞-form and it satisfies (1.7) for i = m.
Now (1.4) implies that i ui,p(v, x) = (∆yu

i−1,p(v, y))(v, x). Thus unique-
ness would follow if it is shown that any C∞ solution ω of ∇r∂r

(ω) = 0
satisfying the initial condition vanishes identically. However, this is clear
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since ∇r∂r
(ω) = 0 implies that for all y ∈ U , ω is invariant under parallel

displacements along the geodesic joining points x and y. �

Thus, Hp
N (t, x, y) is constructed in a sufficiently small neighborhood of

the diagonal in M ×M . Let U ′ be an open neighborhood of the diagonal
such that the closure of U ′ is contained in U . A type of partition of unity
can be introduced by taking η(x, y) to be a C∞-function on M ×M such
that η is zero outside U ′ and is one in the neighborhood of the diagonal.
Using η(x, y), define

Gp
N (t, x, y) = η(x, y)Hp

N (t, x, y),

Kp
N(t, x, y) =

(

∂

∂t
−∆y

)

Gp
N (t, x, y).

(1.8)

For any smooth p-form ϕ(t, x), it is the case that

lim
t→0+

∫

M

Gp
N (t, x, y) ∧ ∗ϕ(t, x) = ϕ(0, y).

For fixed p andN , it is more concise to writeKp
N (t, x, y) as simplyK(t, x, y).

It is also worth noting the following notation. In the process of constructing
the fundamental solution of the operator in (1.2), if M , N1, N2 are vector
spaces, and there is given an inner product in M , then there is a natural
map τ : (M×N1)⊗(M×N2) → N1⊗N2 such that τ((m⊗n1), (m

′⊗n2)) =
〈m,m′〉n1⊗n2 for m,m′ ∈ M , n1 ∈ N1 and n2 ∈ N2, 〈, 〉 the inner product
on M . The map τ(x, y) can be denoted simply as (x, y), or even without
brackets. Inductively, the following sequence can now be defined

K0(t, x, y) = K(t, x, y),

Km(t, x, y) =
∫ t

0 ds
∫

M (Km−1(s, x, z),K(t− s, z, y)) dvz

(1.9)

and dvz is the volume element on M with respect to z.
Since the manifold M is compact, there exist finitely many open sets

V1, . . . , Vq and U1, . . . , Uq such that Vr ⊂ Ur where Ur is diffeomorphic to
R

n and M = ∪Vr. A partition of unity can be found relative to the open
covering {Vr}

q
1. Suppose ηr are C∞ functions which take the value one on

Vr and have compact supports contained in Ur. If L(x, y) is any double
form, define

Lij(x, y) = ηi(x)ηj(y)L(x, y).

Define P as the set of indices P = {i1 < · · · < ip; j1 < · · · < jp} so for a
form,

L(x, y) =
∑

P

Li1,...,ip,j1,...,jp dxi1 ∧ · · · ∧ dxip ⊗ dyj1 ∧ · · · ∧ dyjp . (1.10)
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The L(x, y) will have support contained in Ui × Uj . Now define,

||L||ij =
∑

P

sup
x∈Ui,y∈Uj

|Li1,...,ip,j1,...,jp |.

Theorem 2. With respect to (1.9), the following bounds obtain,

||K0
i,j ||ij ≤ C0t

N−n
2 ,

||Km−1
i,j ||ij ≤ (CC0)

mtm(N−n
2
)+m−1

(Γ(N − n
2 + 1))m

Γ(m(N − n
2 ) +m)

,
(1.11)

where C0, C are constants.

Proof. Using (1.4), we have

||K0
i,j ||ij = ||K(t, x, y)ηi(x)ηj(y)|| ≤ ||K(t, x, y)||i,j

=
∑

P

sup |Ki1,...,ip,j1,...,jp | ≤ C0t
N−n

2 .

Taking the second result of (1.11) as an induction hypothesis, it is the case
that

Km
i,j(t, x, y) =

∫ t

0

ds

∫

M

ηi(x)

×

q
∑

r=1

ϕr(x)K
m−1(s, x, z)ηj(y)K(t− s, z, y)dvz

=

q
∑

r=1

∫ t

0

ds

∫

M

(ηi(x)ϕr(z)K
m−1(s, x, z)ηj(y)K(t− s, z, y) dvz.

Employing (1.11), it follows that

||Km
i,j(t, x, y)|| ≤ C1(CC0)

m

×
(Γ(N − n

2 + 1))m

Γ(m(N − n
2 ) +m)

· C0

∫ t

0

sm(N−n
2
)+m−1(t− s)N−n

2 ds.

Here, C1 is a constant which is independent of m. By choosing C > C1 and
realizing that the integral is of beta function type, the following estimate
is obtained,

||Km
i,j(t, x, y)|| ≤ (CC0)

m+1t(m+1)(N−n
2
)+m Γ(N − n

2 + 1)m+1

Γ((m+ 1)(N − n
2 ) +m+ 1)

.

This finishes the proof by induction. �
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2. Fundamental Solution of the Heat Operator

At this point we continue in the direction of obtaining a fundamental
solution of the heat operator.

ep(t, x, y)

= Gp
N (t, x, y) +

∑

m≥0

(−1)m+1

∫ t

0

ds

∫

M

(Km(s, x, z), Gp
N (t− s, z, y))dvz.

(2.1)

On account of Theorem 2, the series on the right-hand side of (2.1) con-
verges to a double form and can be considered a C∞-(p, p) form.

Theorem 3. The form ep(t, x, y) is the fundamental solution of the heat

operator acting on p-forms.

Proof. Continuing to write Kp
N (t, x, y) as K(t, x, y), using (1.8) it is found

that
(

∂

∂t
−∆y

)

ep(t, x, y) = K(t, x, y) +

(

∂

∂t
−∆y

)

×
∑

m≥0

(−1)m+1

∫ t

0

ds

∫

M

(Km(s, x, z), Gp
N (t− s, z, y))dvz

= K(t, x, y) +
∑

m≥0

(−1)m+1(Km(t, x, y) +Km+1(t, x, y))

= K(t, x, y)−K(t, x, y) = 0.

�

Theorem 4. As t → 0+,

∞
∑

m=0

(−1)m+1

∫ t

0

ds

∫

M

(Km(s, x, z), Gp
N (t− s, z, x)) dvz = O(tN−n

2 ).

(2.2)

Proof. Beginning with Theorem 2, it is the case that

I =

∞
∑

m=0

(−1)m+1

∫ t

0

ds

∫

M

(Km(s, x, z), Gp
N (t− s, z, x)) dvz

= O

[
∫ t

0

ds

∫ ∞

0

exp

(

−
r2

4(t− s)

)

(t− s)−
n
2 sN−n

2 rn−1 dr

]

.
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To simplify this, substitute r = 2κ(t− s)1/2,

I = O

[
∫ t

0

ds

∫ ∞

0

dκ e−κ2

(t− s)−
n
2 sN−n

2 2nκn−1(t− s)
n
2

]

= O

[
∫ t

0

sN−n
2 ds

∫ ∞

0

κn−1e−κ2

dκ

]

= O

[
∫ t

0

sN−n
2 ds

]

= O(tN− n
2
+1).

�

From the definition of ep(t, x, y) in (2.1), it is now possible to calculate

(Trep)(t, x, x) = (TrGp
N )(t, x, x) +O(tN−n

2
+1)

= (TrHp
N )(t, x, x) +O(tN−n

2
+1)

= (4πt)−
n
2

N
∑

i=0

tiTrui,p(x, x) +O(tN−n
2
+1),

since r = 0 when x coincides with y. The double forms Hp
N satisfy (1.2)

as do the ui,p. Since u0,p(x, x) is the identity endomorphism of ΛpT ∗
x , the

following theorem has been proved.

Theorem 5.

(Trep)(t, x, x) = (4πt)−
n
2

{

(

n

p

)

+

N
∑

i=1

tiTr ui,p(x, x)

}

+O(tN−n
2
+1).

(2.3)

Suppose ωn(x) is a set of eigenforms for the Laplace operator. Define
the expression

fm(t, x) =

∫

M

ep(t, x, y)ωm(y)dvy . (2.4)

Then it can be observed that

∂

∂t
fm(t, x) =

∫

M

∂

∂t
ep(t, x, y)ωm(y)dvy =

∫

M

∆xe
p(t, x, y)ωm(y)dvy

=

∫

M

∆ye
p(t, x, y)ωm(y)dvy =

∫

M

ep(t, x, y)∆yωm(y)dvy

= λmfm(t, x).

This result implies that

fm(t, x) = ωm(x) eλmt.

To summarize, the following has been shown.
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Theorem 6. The fundamental solution ep(t, x, y) has a representation of

the form

ep(t, x, y) =
∑

m

ωm(x)ωm(y)eλmt. (2.5)

Since the right-hand side converges absolutely, the result follows from com-
pleteness of the eigenforms.

3. The Gauss-Bonnet Theorem

The quantities ui,p which appear in the expansion (1.1) contain valuable
information with regard to the structure of the underlying manifold. Of
interest here is the fact that they can be related to the Euler characteristic
χ(M) of the manifold M . Suppose M is a compact, oriented, connected
manifold of dimension n. A superscript on the Laplace operator indicates
the degree of the form space acted on. To establish this link, some further
results are required.

Lemma 2. For λ ∈ R
−, let Ep

λ be the λ-eigenspace, possibly trivial, for

∆p. Then the sequence 0→E0
λ

d
→ · · ·

d
→ En

λ → 0 is exact.

Proof. If ω ∈ Ep
λ then ∆p+1 dω = d∆pω = λdω, so dω is an eigenform

of ∆p and so dω ∈ Ep+1
λ . The sequence is well defined and has d2 = 0.

Suppose ω ∈ Ep
λ has dω = 0, then λω = ∆pω = −(δd + dδ)ω = −dδω.

Therefore, we can write

ω = d

(

−
1

λ
δω

)

since λ 6= 0. �

Lemma 3. The operator D = d+ δ : ⊕k E2k
λ → E2k+1

λ is an isomorphism,

therefore
∑

p

(−1)p dimEp
λ = 0.

Corollary 1. Let {λp
i } be the spectrum of ∆p, then

∑

p

(−1)p
∑

i

eλ
p

i
t =

∑

p

(−1)p
∑

i

′

eλ
p

i
t.

The second sum runs over those i for which λp
i = 0. Consequently,

∑

i

′

eλ
p

i
t = dimker∆p.

As a result of this, it must be that
∑

p

(−1)pTr et∆
p

=
∑

p

(−1)p
∑

i

etλ
p

i ,
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and is independent of t. This means that the large t behavior of the operator
is the same as the small t behavior. The large t behavior of Tr e−t∆ is
related to the de Rham cohomology while the small t permits us to make
the identification

χ(M) =
∑

p

(−1)p dim Hp
dR(M)

=
∑

p

(−1)p dimker∆p =
∑

p

(−1)pTr et∆
p

=
∑

p

(−1)p
∫

M

Tr ep(t, x, x) dvx. (3.1)

Consequently, using the result for the expansion of ep(t, x, , x) given in
Theorem 5, the following expression is obtained for the Euler characteristic
of M ,

χ(M) =
1

(4πt)n/2

∞
∑

k=0

(

∫

M

n
∑

i=0

(−1)iTrui,k(x, x) dvx

)

tk. (3.2)

Since χ(M) is independent of t, only the constant term on the right can be
nonzero. Therefore, we have established the following form of the general-
ized Gauss-Bonnet Theorem.

Theorem 7.

(4π)−
n
2

∫

M

n
∑

i=0

(−1)i ui,k(x, x) dvx =

{

0, k 6= n
2 ,

χ(M), k = n
2 , n even.

(3.3)
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