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ABSTRACT. In this paper, we study the problem of generalized si-
multaneous approximation in terms of the Minkowski functional. We
develop a theory of generalized best simultaneous approximation in
quotient spaces and introduce equivalent assertions between the sub-
spaces W and W + M and the quotient space W/M. Some other
results regarding generalized simultaneous approximation in Banach
space are presented.

1. INTRODUCTION

Let G be a subspace of the normed space X and x € X. A point gg € G
is said to be a best approximation to x from G, whenever

lz = goll = tnf [l — gl = d (2, G)

The set of all best approximations to « from G is denoted by Pg (z). The
set G is called proximinal if Pg (z) # ¢ for all x € X — G, see [1, 4, 9]. If
a bounded set A is given in X one might want to approximate all elements
of A simultaneously by a single element of G. These type of problems arise
when a function being approximated is not known precisely but it is known
to belong to a set. Several mathematicians have studied this problem of
simultaneous approximation in linear spaces see [5, 8]. A point gg € G is
called a best simultaneous approximation to A from G, whenever

sup ||a — go|| = inf sup [la —g[| = d(A4,G).
acA 9€G geA

The set of all best simultaneous approximations to A from G is denoted by
Pg (A). The set G is called simultaneously proximinal if Pg (A) # ¢ for all
bounded subsets of X — G. By taking the set A to be {«}, the problem of
best simultaneous approximation is considered as a generalization of best
approximation.

For a closed bounded convex subset C' of X with 0 € int(C), recall that
the Minkowski functional p.: X — R with respect to the set C is defined
by

pe(z) =inf{a>0:2z € aC}
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for all x € X. For a closed non-empty subset G of X and x € X, define the
generalized distance function by

d.(z,G) = ;22 pe(x—g).

A point go € G with d.(z,G) = pe (x — go) is called a generalized nearest
point (generalized best approximation) [13]. For a non-empty bounded
subset A of X and a non-empty subset G of X, we define
dc(Aa G) = inf Sup pPc (a - g) .
€G geA

g9

If there exists an element gg € G such that sup p. (a — go) = d.(A, G), then
acA

go is called a best simultaneous p.-approximation to A from G. The set of
all simultaneous p.-approximations to A from G is denoted by

Pa.c(A) = {g € G:d.(A,G)=sup p.(a— g)} .
a€A
We say that G is simultaneously p.—proximinal if for every bounded sub-
set A of X, Pg.c(A) # ¢ and simultaneously p.-Chebyshev if Pg ¢(A) is
singleton.

In this paper we study the problem of best simultaneous p.-~approximation
in terms of the Minkowski functional. Some results on quotient space and
on simultaneous p.-approximation of the sum of two subspaces are obtained
by generalizing some of the results in [5, 12].

Throughout this paper, X is a normed space and C' is a closed bounded
convex subset of X.

2. Po-SIMULTANEOUS APPROXIMATION IN QUOTIENT SPACE
In this section we begin with the following proposition.

Proposition 1 ([13, Proposition 2.1]).

allz]| < pe(x) < Bllz||, where oo = inf  p. (x) and f = sup pc(z).
x€dC acC

Now we show some properties of the p.-distance function and the set of
pe-best simultaneous approximations.
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Proposition 2. Let G be a subspace of X and A C X be a bounded subset
of X. Then:

(1) Pg,c(A) is bounded.

(2) If G is convex then, Pg.c(A) is convez.
(3) If G is closed then, PG c(A) is closed.
(4) de (A+y,G+y) =d.(AG).

(5) Peryc (A+y) = Poo(A) +y.

(6) Prc.c (M) = [A[ Pa.c(A).

Proof.
(1) Let go € Pg,c(A). Then for a € A, the inequality
pe(90) < pe(a = go) + pe(a),

implies that

pe (g0) < SUD e (a— go) + sup p (a)
a€A acA

= dc(A, G) + sup pe (a) -
acA

(2) Let g1,92 € Pa,c(A). Then for 0 < X < 1,

21613 Pe (a — ()\gl + (1 — )\) 92))

< Asup pe(a—g1) + (1 —A)sup pe(a — g2)
a€A acA

= A do(A,G) + (1 — \) do(A, G) = do(A, G).
(3) Let gp, € Pg,c(A) such that g, — go. Then

sup pe (@ — gn) = de(4A, G).
a€EA

By continuity of p., we have sup pe(a—go) = de(A,G). Thus gg €
acA
Pg.c(A).
(4)

de(A+y,G+y)=1inf  sup pc((a+y)—(g9+y))
9€G gyye(Aty)
= Inf, sup pe(a—g) =dc(AG).
Similarly, we can show that
dra(AA) = [A] da(A).
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(5) Let

9o +y € Payyc(A+y)

& d.(A+y,G+y)=sup p((a+y) - (90 +v))

a€A
= sup pe (@ — go)
acA
= inf su a—
jf sup pe(a—g)
& go € Pg,c(A)

S go+y € Pac(A)+y.

(6) Similarly, we can show that Pyg,c (M) = |A| Pg,c(A).

O

Lemma 3. Let X be a normed space and M is a p.-proximinal sub-
space of X. Then for each non-empty bounded set A in X, d. (A, M) =

sup inf a—m).
aeg meM pC( )

Proof. Since M is p.-proximinal, for each a € A, there exists m, € M such

that

nf p.(a—m).

pela=ma) = i,

Now
de (A, M) = inf e (a—
(4,M) = nf sup p (a—m)

S sSup pPe (CL - ma)
acA

= gsup inf a—m
aeg meM pC( )

< inf -
S ke S pelemm)

=d. (A, M).

This implies d. (4, M) = sup inf p.(a —m).
acAmeM

O

Let M be a subspace of a normed space X. The quotient space X/M is

the set of all cosets © + M with the following operations:

1) (z+M)+(y+M)=(x+y)+ M.

(2) A(x+ M) = Az + M for every z,y and an arbitrary .

For the p.-Minkowski functional on X, we define a function p.: X/M —

R such that
pe(z+M)= nf p(z+m).
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Theorem 4. Let M be a p.-proximinal subspace of X, and M C W be
a subspace of X. If A is a bounded set in X and wo € Py c(A), then
Wo + M e PW/M,C(A/M)

Proof. Since A is a bounded set in X, A/M is bounded in X/M. In fact,
la+ M| = inf |la+ m||
meM
< Jla < oo.

Assume that w, € Pw,c(A) and that wo + M & Pywjar,c(A/M). This
means, there exists w’ € W such that
sup pe(a —w' + M) < sup pe(a —wo + M)
acA acA
= sup ing/[ pe(a —wo +m)

acA M€

= i f c —
inf :1618 pe(a —wo +m)

< sup pe(a —wo) = de(A,W). (1)
acA

On the other hand, for each a € A we have
pe(a —w + M) = inf p.(a —w —m).
fela—w + M) = inf pofa—w —m)

It follows that for each € > 0 and a € A there exists m, € M such that
pela—w' —mg) < pe(a —w' + M) + €.

Since w’ + m, € W, we conclude that

de(A, W) < suppe(a — (W' +ma)) < sup pe(a —w' + M) +e.
acA acA

Thus, since € is arbitrary

de(A, W) < sup pe(a —w' + M). (2)
a€A

From (1) and (2) we have
de(A, W) < sup pe(a —w' + M) < de(A, W),
acA
which is impossible. O

Proposition 5. Let M be a p.-proximinal subspace of X, and W D M a
subspace of X. If A is bounded subset of X such that

wo + M € PW/M,C(A/M) and mq € PMyc(A - U}o)
then we +mo € Py,c(A).
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Proof. Since mo € Py c(A — w,), then

sup pe(a — wo —mo) = inf sup p.la —wo, —m)
A

a€A meM q¢
=sup inf p.la —wo —m) (using Lemma 3)
acA meM
= sup pe(a —wo + M)
a€A
< sup pe(a —w+ M) for allw e W
a€A
< sup pe(a —w) for all w e W.
a€A
Hence,
sup pe(a — (wo + mo)) < sup pe(a —w), for all w € W.
acA a€A
Since wo +mo € W, we conclude that we + mo € Pw,c(A). O

Theorem 6. Let M be a p.-proximinal subspace of X, M C W and W is p.-
simultaneously proximinal subspace of X. Then for each bounded subset A
of X, we have 7 (Pw,c(A)) = Pw/n,c(A/M). Note here 7 is the canonical
map defined by: m: X = X/M by n(x) =x+ M.

Proof. First, note that
™ (Pw.c(A)) € Pw/n,c(A/M)
and W/M is p.-simultaneously proximinal. Now let
wo + M € Pyyar,c(A/M),

where wy € W. Since M simultaneously proximinal, there exists mg € M
such that mg € Py c(A — wp). Hence, wog + mo € Pw.c(A). Therefore,
wo+ Mem (PWL'(A)) [l

Theorem 7. Let W and M be two subspaces of X. If M is simultaneously
pe—proximinal, then the following assertions are equivalent.

(1) W/M s simultaneously p.-proziminal in X /M.

(2) W + M is simultaneously p.-proximinal in X .

Proof. (1) = (2) Let A be an arbitrary bounded set in X. Then we have
A/M is bounded set in X/M. Since (W + M)/M = W/M and M are
pe-simultaneously proximinal, it follows that there exists wo, + M € (W +
M)/M and mo € M such that

we + M € P(W-l—M)/M,C(A/M) and m, € PMyc(A - ’LUO).
Hence, wo+mo € Pwa,c(A). This shows that W—+M is p.-simultaneously

proximinal in X.
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(2) = (1) Since W+ M is simultaneously p.-proximinal and M C W+M,
then (W + M)/M = W/M is simultaneously p.-proximinal. O

3. CHEBYSHEV AND QUASI CHEBYSHEV p.-SIMULTANEOUS
APPROXIMATION.

Definition 8. A closed subset W of X 1is called p.-simultaneously quasi-
Chebyshev if the set Py,c(A) is non-empty and compact in X for every
bounded set A in X.

Theorem 9. Let W and M be a subspace of X. If M is p.-simultaneously
Chebyshev, then the following assertions are equivalent.

(1) W/M ‘s pc-simultaneously Chebyshev in X /M.
(2) W+ M s pe-simultaneously Chebyshev in X.

Proof. (1) = (2) By hypothesis (W + M)/M = W/M is p.-simultaneously
Chebyshev. Assume that (2) is not true. Then some bounded subset A
of X has two distinct p.-simultaneous best approximation say ¢, and ¢; in
W + M. Thus, we have ¢, and ¢ € Pwia,c(A). Since M C W + M, it
follows that

go + M and él + M (S P(W-‘,—M)/M,C(A/M) = PW/M,C(A/M)

But W/M is p.-simultaneously Chebyshev, and so ¢, + M = ¢; + M. Then
there exists mo € M\{0} such that ¢; = ¢, + mo. Thus,

sup pe((a — 4o) —mo) = sup pe(a — 1)

acA acA

= inf ((a—05) —
niQMigﬁp((a ) —m)

=d.(A— Ly, M).
So this shows that both m, and 0 are p.-simultaneous best approximation
to A — 4, from M. Hence, M is not p.-simultaneously Chebyshev. This is
a contradiction.

(2) = (1) Assume that (1) does not hold. Then for some bounded
subset A of X, A/M has two distinct p.-simultaneous best approximation,
say w+ M and w' + M € W/M. Thus, w — w' ¢ M. Since M is p-
simultaneously proximinal, there exist p.-simultaneous best approximation
m and m’ to A —w and A — w’ from M, respectively. Therefore, we have

m € Py o(A—w) and m' € Py o(A—w').
Since M C W + M and
w+ M, w' + M € Pyn,c(A/M) = Py m,c(A/M),
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then by Proposition 5, it follows that w + m and w’ + m' € Pyym,c(A).
But, W + M is p.-simultaneously Chebyshev. Thus, w +m = w’ +m’ and
w—w' € M. This is a contradiction. ]

Theorem 10. Let M and W be two subspaces of X. If M 1is finite dimen-
sional, then the following assertions are equivalent.

(1) W/X is pc-simultaneously quasi-Chebyshev in X /M.
(2) W + M s pc-simultaneously quasi-Chebyshev in X .

Proof. (1) = (2) Suppose that (W +M)/M is p.-simultaneously proximinal
in X/M. Since M is also p.-simultaneously proximinal, W + M is p.-
simultaneously proximinal in X. Let A be an arbitrary bounded set in X.
Then Pw 4 ar,c(A) # ¢. Now to show that Py 4 ar,c(A) is compact, we need
to show that every sequence in Py, (A) has a convergent subsequence.
Let {gn},—, be an arbitrary sequence in Py 4 rr,c(A). Then for each n > 1
by Theorem (4), gn+M € P(W+M)/M7C (A/M) Since P(W+M)/M7C (A/M)
is compact, there exists go € W + M with go + M € P4y, (A/M)
and a subsequence {gn, + M},—, of {gn + M} -, converges to go + M.
Now, for all £k > 1, we have

Pe (g0 = g + M) = inf pe(go = gn. —m)
=d. (g0 — gn,, M), for all k > 1.
Since M is p.-proximinal in X, then for each k > 1, there exists m,,, € M
such that m,, € Pu.c (9o — 9gn, ), and hence,
Pe (90 = Gy — Miny,) = de (9o — Gnys M) .
Therefore, lim pc (go — gn, — Mn,) = 0.
k—o0

On the other hand, {g,, },, is a bounded sequence because

gn € Pwim,c(A).

Thus, we have {my,, },-, is a bounded sequence in M. Moreover, M is a
finite dimensional subspace of X. It follows that {my, },—, converges to
an element mg € M. Let ¢ = go — mo. Then ¢’ € W + M and using
Proposition 1 part 8 we have

Pe (mnk - mO) < B ||mnk - m0|| — 0.
This implies
Pe (M, —mg) — 0.
Consequently;

pe (9" = gny) = pe (90 — Mo — gny,)
< Pc (90 —Gn;, — mnk) + pe (Tnn;C - mO)a for all k£ > 1.
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Thus,
klim pe(g" = gn,) = 0.
— 00

Since {gn, }rey € Pwiar,c(4), for all k > 1, and Py ar,c(A) is closed, we
conclude that ¢’ € Pwya,c(A). Hence, Pwya,c(A) is compact.

(2) = (1) Since M and W + M are p.-simultaneously proximinal and
M C W+ M, then (W + M) /M = W/M is pc-simultaneously proximinal
in X/M.

Now, let A be an arbitrary bounded set in X. Then Py ns,c(A/M) is
non-empty. So from the hypothesis we have W + M is p.-simultaneously
quasi Chebyshev in X, and hence Py 4ar,c(A) is compact in X. But we
have

Pw sy r,c(A/M) = (Pwia,c(4)) -

It follows that Py/as,c(A/M) is compact. Therefore, W/M is p.-simul-
taneously quasi Chebyshev in X. O

4. CONCLUSION
The study of minimal time function d. (-, G), d. (z,G) = iné pe (x—g)
ge

is motivated by its own worldwide applications in many areas of variation
analysis, control theory, approximation theory, etc., and has received a lot
of attention, see e.g. [13, 3, 6, 7].

In this paper, our interest is to focus on the following minimization
problem:

min maxp. (a—yg),
where A is a bounded set in X. Any solution to this problem min max(4, G)
is called a best simultaneous approximation or (generalized best simulta-
neous approximation) to A from G.
We proved our results using the same techniques of the author in [5, 9, 12]
but replacing the norm by the Minkowski functional p.. We define the
function p.: X/M — R, by p.(z+ M) = Wirelg/[ pe (. +m). We use this

function in Theorems 4, 6, 7, 9, and 10 replacing the norm of the coset
x+ M in X/M.

Note that in the special case when C' is the closed unit ball, the min-
imal time function d.(x,G) and the corresponding minimization problem
géiélpc (x — g) are reduced to the distance function d(z,G) = ;gg |z = gl

and to the classical best approximation. This means, the existence results
in [5, 9, 12] is a special case of our results in the sense that the set C is
taken to be the closed unit ball.
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