ON WILLIAMS NUMBERS WITH
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ABSTRACT. Let a € Z\ {0}. A positive squarefree integer N is said
to be an a-Korselt number (Kq-number, for short) if N # a and
p —a divides N — a for each prime divisor p of N. By an a- Williams
number (Wga-number, for short) we mean a positive integer which is
both an a-Korselt number and (—a)-Korselt number.

This paper proves that for each a there are only finitely many W, -
numbers with exactly three prime factors, as conjectured in 2010 by
Bouallegue-Echi-Pinch.

1. INTRODUCTION
We start by defining Korselt numbers.

Definition 1.1. Let a € Z\ {0}. A positive squarefree integer N is said to
be an a-Korselt number (K, -number, for short) if N # a and p — a divides
N — a for each prime divisor p of N.

For example, 6 is a 4-Korselt number and 231 = 3x7x11 is a (—9)-Korselt
number.

It’s clear from the definition that if N is an a-Korselt number, then a
cannot be equal to any p dividing V.

Korselt numbers were introduced by Echi [3] as a natural generalization
of Carmichael numbers which are exactly Ki-numbers and characterized
by Korselt by the following criterion.

Korselt’s criterion ([6], [2, p. 133]): A composite odd number n is a
Carmichael number if and only if n is squarefree and p — 1 divides n — 1
for every prime p dividing n.

Korselt numbers were then further investigated in [I], [3] and [4]. In [,
Williams investigated Carmichael numbers N such that p+ 1 divides N 4+ 1
for each prime p dividing N. This motivates Echi [3] to introduce the
following type of numbers.
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Definition 1.2. Let a € Z\ {0} and N be a squarefree composite number.
We say that N is an a-Williams number (W,-number, for short) if N is
both an a-Korselt number and (—a)-Korselt number.

For example, 231 = 3 % 7 x 11 is a 9-Williams number.

It is not known whether there are £ > 3 and a such that there are
infinitely many K,-numbers with k prime factors, or such that there are
infinitely many W,-numbers with k& prime factors.

Echi conjectured in [1] and [3] that for each a, there exist infinitely many
K,-numbers with k& > 3 prime factors and proved that for each a, there
exist only finitely many K,-numbers with exactly two prime factors.

Also, Echi conjectured in [1] that there exist only finitely many W,-
numbers with k£ > 3 prime factors. More precisely, Echi claims that N
is a Wy-number with k£ prime factors if and only if £ = 3, a = 3p, and
N = p(3p — 2)(3p + 2) where p, (3p — 2), and (3p + 2) are all primes.

In this paper we prove that for each a there are only finitely many W,-
numbers with three prime factors.

We start by fixing some notations for the following sections. Let a €
Z—{0}and 1 =pg <p1; <--+ < pg, d> 2 such that the p;’s are primes for
each i € {1,2,...,d} and N = p1pa---pq is a K,-number. Set ¢ = pg_1,
r = pg, and

d—2
P = il;ll
1 if d=2.

Our overall strategy is to derive upper bounds for IV in terms of a and
P. In this study several cases are discussed and the cases a < 0 and a > 0
are handled separately.

3

2. SOME PROPERTIES OF K,-NUMBERS

In this section, we prove some relations between the divisors of N and
we establish some inequalities which are useful in Section 3.
We suppose in this section that ged(a, q) = ged(a,r) = 1.

Proposition 2.1. There exist integers « and 8 such that
{ Pg—1 = ar—a)
Pr—1 = p(¢g—a).
Proof. As N is a K ,-number, then for each i, p; — a divides N —a =
N—pi—i—pi—a:pi(g — 1)+ p; —a. If ged(pi,pi —a) =1, then N is a

2

N
K,-number is equivalent to p; — a divides — — 1.
bi
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Since ged(gq,a) = ged(r,a) = 1, ¢ — a divides Pr — 1 and r — a divides
Pqg — 1. Therefore, there exist a nonzero integers « and S such that

Pqg—1
Pr—-1

Let A = a8 — P2. Then we have the following proposition.

I
=2
()

r—a);

—a). (F1)

Proposition 2.2.
(1) A=0ifandonly if P=1,a==-1,and soq+r=a+1.
(2) If A #0, then
(aP - 1)(P+ «)
1= A

+a

and
. (aP —1)(P+ ) s

A

Proof.
(1) If A =0, then P? = a3 and by (F1) we obtain

(Pq—1)(Pr—1)=af(r —a)(q—a) = P*(r —a)(q — a).

Hence, P divides 1 and so P = 1. Therefore, as a8 = P? =1
we obtain either a = =1ora == —1.

We claim that a = = —1; indeed, if « = f =1 and as P = 1,
then by (F1), we obtain g—r = (¢—1)—(r—1) = (r—a)—(¢g—a) =
r — ¢, which implies that ¢ = r, a contradiction.

So by (F1), we obtain a = ¢ + r — 1. The converse is obvious.
(2) By (F1) we obtain

_ Pg—1+aa
@
_ Pr—1+pa
q = T
Substituting r in the expression of ¢, we get
B P‘W — 1+ fa B P2¢— P+ oaP — a+ Baa
- E - aB |
This implies that
q(P? —aB) + aBfa+ a(aP —1) — P =0. (Fy)
Similarly, we prove that
r(P? —aB) + afBa+ B(aP —1)— P = 0. (F3)
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Now, suppose that A # 0. Then by (F») we get

‘= aﬂa—l—a(aP—l)—P: (aP—l)(P—I—a)_i_a'

aff — P? A
Similarly by (F3), we obtain

_ (P - 1)(P+p)
r= A +a

O

We maintain throughout the rest the same definitions for A, «, and g
as in Proposition 211

Theorem 2.3 ([1]). Let a € Z\ {0}. Then the following properties hold.

(1) If a < 1, then each composite squarefree K,-number has at least
three prime factors.

(2) Suppose that a > 1. Let g1 < g2 be two prime numbers and
N = qiqa2. If N is an a-Korselt number, then ¢1 < g2 < 4a — 3.
In particular, there are only finitely many a-Korselt numbers with
exactly two prime factors.

Proposition 2.4. Let N be a K,-number such that a < 0. Then we have

(1) 0<a<pfand o< P.
(2) A<0and ford=3,|A|<2|aP—1].

P2?(py_ 2 — 2P
(3) d23andmax<1, (Paz+2+a) )<o¢ﬁ<P2.
Pi—2+2—a
Proof.
(1) As a < 0 and
Pg—1 = ar—a);
Pr—1 = p(¢g—a).
we get @ > 0 and 8 > 0, since ¢ < r then Pqg—1 < Pr — 1. Therefore,
a(r —a) < B(qg— a). Hence,a<ﬂ(%> <fBandso0<a<pf.

Suppose that P < a. Then Pq — 1 = a(r —a) > P(r — a). This implies
that Pq > P(r—a) and so ¢ > r —a > r, a contradiction with ¢ < r. Thus,
a<P.

(2) By Proposition 2:2] we have A # 0.

Suppose that A > 0. As in addition ¢ = A
and a < 0 we obtain ¢ < 0, which is not possible. Then A < 0.

Now, suppose that d = 3. Then P is prime such that P < ¢ and we have

|aP —1]| (P +«) - |aP —1]|(P+ «)
qg—a pP '

(aP - 1)(P+ «)

+a, a>0

| A=
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As 0 < a < P, then

|aP —1]|2P
P

(3) By Theorem [23] we immediately obtain d > 3.

We claim that g—pg—2 > 2. Indeed if this is not the case, then ¢—py_2 =
1. This is equivalent to (¢ = 2 and py—2 = 1) or (¢ = 3 and pg—2 = 2). But
as d > 3 we have pg_o is prime, then the first case (i.e., pg—2 = 1) is not
possible.

Suppose that (¢ = 3 and pg—2 = 2) then N = 6r (i.e., =3 <r)isa
K -number, so by (Fy) we have r — a divides 6 — 1 = 5. This implies that
r—a <5 butasa<—1andr>5, weget r—a > 6, acontradiction.
(aP - 1)(P+ )

A
(aP—-1)(P+a) |aP—1|(P+a)
| A '

|A < —2|aP-1].

Now, as pg—2+2<gand g —a = , we obtain

0<pi—2+2—a<

This implies that
|aP —1]| (P +«) < 2P(—aP +1)
pa—2+2—a T pia2+2-—a

PN

Hence, as | A |= P? — af3, we obtain

wg s p2y 2P@P=1)  P2(pg_s+2+a)—2P
h pi—2+2—a Pi—2+2—a

So, we conclude that

P%*(pg—2+2+a) — 2P
max ( 1,
Pa2+2—a

)<aﬁ<P2.
]

Now we will give a similar result for a > 0 as given for a < 0 in Propo-

sition 2.4

Proposition 2.5. Let N be a K, -number such that N = Pqr and 0 < a <
q < r. Then we have

(1) A>0and 0 < a < 8.

1
(2)O<a<%P.

(a+1)(a+2)

(3) 4) Ifa>pg_o+2 then P2 <af < P2

2
P2(2py_ 4 1
i) If a < pa—s + 2 then P2 < aff < (2pa—2+4+aa+1))
2(pa—2+2—a)
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Proof. (1) By (F1), we have 0 < e < 3.

It is clear that A = (aP —1)(P+ )
q—a

(2) As Pg—1=ca(r —a) and r > g + 1, then
Pq—1< Pq—1 '
r—a ~ q¢g+1—-a

is a positive integer.

Define for a fixed integer a > 0 the function

Pzr—-1 -1)P-1
f:x—>x7=P+u for z> (a+1).
z+1—a r—a+1
We can easily see that f is a decreasing function that assumes

its maximum at x = a + 1. Hence,

Pg—-1 Pg—-1
= < = —
@ r—a _f(Q) qg+1—a

Pla+1)—1 a+1
2 < 2
(3) Also, we claim that ¢ — pg—2 > 2. Indeed if this is not the case,
then ¢ — pg—2 = 1. This is equivalent to (¢ = 2 and pg—o = 1) or
(¢ =3 and pg—2 = 2). Hence, N = 2r or N = 6r is a K,-number.
e Suppose that N = 2r (i.e., ¢ = 2 < r) is a K,-number, then
0 < a < ¢ =2 < r which implies that a = 1. Hence by (F}),
we get 1 —a =1 — 1 divides 2 — 1 = 1. Therefore, r —1 =1
and so r = 2, a contradiction with ¢ < r.
e Suppose now that N = 6r (i.e., ¢ = 3 < r) is a K,-number.
Asa #pi_2=2and 0 <a < qg=3<r then a =1. Hence by
(F1), we have ¢ — a = 2 divides N — a = 6r — 1 which is odd,
a contradiction.
Now, as pg—2 + 2 < g, we obtain

(aP —1)(P+ «)

< fla+1)= P.

Pa2t2—a<qg—a= A (Fy).
(i) If pg—2 + 2 — a < 0, then we can write
(aP —1)(P + )
1<g—a=
= q a A
which is equivalent to
A =af —P*<(aP —1)(P +a).
Therefore by (2), we have
2 a+3
A=af—-P < (aP-1)(P+a)<(aP-1) 5 P.
Hence,
3 3 1 2
aB < P+ (aP — 1)—‘“2L P< P (1+ a(a; )> Gy )2(a+ )p2.
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Finally, as A = o8 — P? > 0, we conclude that
(a+1)(a+2)

P?<aB < 5 P2,
(ii) Suppose that pj_2 +2 —a > 0. Then, by (Fy) and (2), we get
Alpg—2+2—a) < (aP —-1)(P+a) < a—;?)P(aP —1).
Thus,
Pla+3)(aP -1
A:aﬁ_P2§:%m2&2_@%
and so

P2(2pg_o2 +4+a(a+1))
2(pg—2+2—a) '

Finally, as A = o8 — P? > 0, we obtain

P2(2pg_o + 4+ a(a +1))
2(pg—2+2—a) '

af <

P2 <af <

3. FacTtor Bounps OF A K,-NUMBER

In this section we derive upper bounds for ¢ and r (so for N) in terms of
a and P. As a consequence, for each fixed P and a there are only finitely
many N that are K,-numbers.

Theorem 3.1. Ifa < 0, then
qg < —2aP?%
r < —2aP3.
Proof. We consider two cases.
(1) If | a |< g, then gcd(a,q) = ged(a,r) = 1. By Proposition 2.2 we

have
(P+a)(aP —1)

g—a= A )
As a < 0, and by Proposition @2 A = o — P2 < —1 and
a < P —1, then we can write
(P4 a)(1—aP)
P2 —qap

qg=a+ <a+(P+P-1)(1-aP).
Thus,

q< —2aP*+ (a+2)P+a—1. (F5)
As a < 0, we discuss two cases:
e If @ < —2: It’s obvious from (F5) that ¢ < —2aP2.

140 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON WILLIAMS NUMBERS WITH THREE PRIME FACTORS

o Ifa=-1:
First, we claim that o < P — 2. Indeed, suppose that this is
not the case, then by Proposition 2.2] we obtain o = P — 1.
So, by (F1), we can write

Pg—1=(P-1)(r+1)=rP—-r+P—1.

Therefore, Pq = P(r 4+ 1) — r, this implies that P divides 7, a
contradiction.
Now, with a = —1, Proposition 2.2] gives

(P+a)(P+1)

=1
1 * P2 —qap

<—-14(P+P-2)(P+1).
Thus,
q < 2P? = —2aP>

Then, we conclude that for all a < 0, we have ¢ < —2aP2.
Now, since r — a < a(r — a) = Pq — 1, we obtain

r<Pq—1+a< Pq< —2aP>.

(2) Suppose that ¢ <| a |. Then clearly ¢ <| a |< —2aP?.
e If ged(r,a) = 1, then as Pg—1 = a(r —a) with 1 < «, we
obtainr <r—a<alr—a)=Pqg—1< P|al|<—2aP3.
e Now, if r divides a, we obtain

r<—a< —2aP3.

Finally we conclude that, in all cases, we have ¢ < —2aP? and r <
—2aP3. ]

Theorem 3.2. Ifa > 0, then

. < a(a2—|—3)P2;
r < 7a(a2—|—3)P3'

Proof. We have two cases to be considered.
(1) If a < ¢, then ged(a, q) = ged(a,r) = 1 and by Proposition 22 we have
(a+ P)(aP —1)

—a = .

A

1
Hence, by Proposition 2.4 A > 1 and a < %P.

Then, we obtain

a+3

1
q<a+(%P+P>(aP—1): P(aP —1) +a.
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This gives
3 3
<ot e (X3, ) (Fs)
2 2
But as P > 1, we consider the following three subcases:

a+3

(a) Suppose that P > 3. Then we have P > a+ 3 > a, hence by
(F%), we obtain

< a(a2—|—3)P2_ <a—2|—3p_a) < a(a2—|—3)P2'

On the other hand, we have Pg — 1 = a(r —a) and a > 1.
Therefore, r — a < Pq— 1, so by (Fg), we obtain

3 3
r§Pq—1—|—a<a(a+ )PS—(a;— PQ—aP—a—i—l). (Fr)

2

We claim that the quantity a—;3p2 —aP —a+1in (Fy) is
positive. Indeed, define the function:
r — f(x) = (a4 3)2? — 2ax — 2a + 2.
Let § = 46’ = 4(3a® + 4a — 6) > 0 and {P;, P,} be respectively the
discriminant and the solution set of the equation f(x) = 0. Then

a—\/(7<0<a+\/y

=D,
a+3 — a+3 2

a-+ Ve a+2a
< e
a+3 a+3

P =

As ¢ = 3a? + 4a — 6 < 4a?, we have P, =

3a

< 3.
a+3
By studying the sign of f(P), we can easily see that f(P) > 0

for each P > 3. This implies that
a+3

2
Thus, by (F7), we get

P
Pz—aP—a+1:¥>O for each P > 3.

r < MPS.
2
(b) If P =2, we consider two cases:
(i) fA=1,thenaf —P?>=1. As P=2and a < 3 then a = 1
and 8 =5 and by (F}) we obtain
2q—1 = r—a;
{ 2r—1 = 5(¢g—a).

This implies that ¢ = 7Ta — 3 and r = 15a — 7.
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a(a+ 3)

Let g(a) = P?—qg=2a(a+3)—-Ta+3=2a>—a+3.
As the discriminant of g(a) is § = —23 < 0, then g(a) > 0 for
all @ > 0. Hence, q < MPQ.
Let h(a) = MP3 —r=4a%>—-3a+7.
As the discriminant of h(a) is § = —103 < 0, then h(a) > 0
for all @ > 0. Hence, r < MP3.

(ii) Suppose that A > 2.
By Proposition 2.2] we have ¢ —a = (o + P)XzP i) .

1
As A > 2, P =2 and by Proposition 24, a < %P, we get

a+1
i @t P)P-1) (——FP+P)aP -1)
1= A 2 '
This implies that
2a% +7a — 3
5 .
So, we obtain
2a? —
T3 ety = et e

2 2

Now, as @ > 1 and Pg — 1 = a(r — a), we can write

r<Pqg—14+a=2¢—-1+a

2a% + Ta —
<2(%ﬁ3)+a—1:2a2+8a—4
3
<da(a+3) = @PS.

(¢) Now suppose that P = 1. We consider two cases:
(i) If A =1, then a8 — P2 = 1. Therefore,as P=1and 0 < a <
B, we get « =1 and 8 = 2. Hence by (F}), we obtain

qg—1 = r—a,
r—1 = 2(q—a).
This implies that ¢ = 3a — 2 and r = 4a — 3. But g and r are
prime numbers, then a ¢ {1,2,3,4}. Hence, a > 5.
gla) ala+3) a(a + 3) a’? —3a+4

_ 2— = - =
Let 5 5 Pc—q 5 3a+2 5
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As the discriminant of g(a) is § = =7 < 0, then g(a) > 0 for
3
all @ > 0. Hence, g < MPQ.

h 3 ? 3
LN ES PR e
As the discriminant of h(a) is 6 = 1, then h(a) = 0 if and
only if a = 2 or a = 3. But @ > 5, then h(a) > 0. Hence,

< a(a+3) p3

(ii) Suppose that A > 2.

a’> —5a+6

P)(aP —1
By Proposition 2.2, we have ¢ —a = (a+ )Xl ) '

1
As A > 2, P =1 and by Proposition 24}, a < %P, we get

a+1
P+P)(aP -1
B +(a+P)(aP—1)<a+< p >(“ )
1= A 2
This implies that

< a’?+6a—3
q 1 .
Hence,
2
6a —
a® +6a—3 - ala+ 3) _ a(a+3)P2'
4 2 2
As Pg—1=a(r —a),a > 1 and P = 1, then we can write
24+6a-3
q—1>r—a. Therefore,r < g—1+a < a+++a—1 =
a?+10a — 7
! | 3 3
Finally, we obtain r < a(a2+ ) = a(a2+ )P3.
(2) Suppose that ¢ < a. At first, as P > 1, it’s clear to see that ¢ < a <
a(a+3)P2
— P

(a) Suppose that a < r. Then ged(r,a) = 1, and as
Pq—1=a(r—a) with o > 1, we get

Pqg-1
r= q +a<Pg—14a<Pla—1)+a-1.
a
3
Hence, r < (a —1)(P+1) < @P?
3
(b) Now, suppose that r < a. Then r < a < @P?
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3
@lm and
2

Remark 3.3. If a = 1 which is the case of Carmichael numbers, we can
give an improvement to the bounds in Theorem[T D as given in [B] as follows.
We have Pq—1 = a(r —1). We claim that o > 2. Indeed, if it is not
the case, then, as a« >0, Pq — 1 =1r — 1. Thus Pq = r, which contradicts
Pq_l a(a;3)P2:2P2,

Finally we conclude that, in all cases, we have ¢ <

the primality of r. Hence, r < + 1, but as g <

we get
P(2P2 -1)-1
2

From Theorem 3.1 and Theorem 3.2, we immediately obtain the follow-
ing theorem.

r< +1< P2

Theorem 3.4. Let a € Z — {0} and p1 < p2 < -+ < pg—2 be a given set
of d — 2 primes, d > 3. Then there are only finitely many K,-numbers

d
N = [] pi, where pg—1 and pq are primes such that pg—2 < pag—1 < Pd-
i=1

Proof. By Theorem 3.1 and Theorem 3.2, respectively we have:
-If a <0, then N = Pqr < 4a®PS.

2 2
—Ifa>0,thenN=qu<w

4. W,-NUMBERS

PS. 0

In this section we prove that for each fixed a there are only finitely
many W,-numbers with three prime factors, by handling separately the
cases p1 < a and p; > a.

Proposition 4.1 (Characterization of W,-numbers). Let a be a nonzero

k
positive integer. Let N = [] p; be a composite squarefree integer and d; =
i=1
ged(a, p;) for each i € {1,...,k}.
2 _ 2
b —a

d?

N is a Wy-number if and only if
ie{l,....k}.

Proof. Suppose that N is a W,-number. We note that p; —a divides N —a =
N — p; + p; — a is equivalent to

N
p; —a divides N —p; =p; (— — 1> . (F3)
p

4

2

divides 2 (ﬂ — 1) for each

Since dz = ng(a’api) € {lapz}a
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e If d; = 1 and as ged(p; — a, p;) = 1, then (F3) is equivalent to

i — . N
pi—a= bi—a divides — — 1.
d; Di
e If d; = p;, then (Fy) is equivalent to
i — P — .. i (N N
biza _ P adlv1des£<——1):——1.
pi d; d; \ pi Di
. . . pi—a ... N
Thus, p; — a divides N — a is equivalent to divides — — 1.

i i
In a similar way, we deduce that p; + a divides IV 4 a is equivalent to
; N
Pit % fivides ~ — 1.
i y2

Hence, N is a W,-number is equivalent to both

P — i ... N
b T ¢ and 2 Cz_—a divide o 1. (Fy)
P — i ... N .
This implies that w divides — — 1 with
Didi Di
pi—a pita
D; = ged , .
8 ( di di )
On the other hand, as D; divides both pid_ ? and pi;_ a, then D; divides
22—; = piC; a + pi;;a and D; divides 2% = pi;;a — piC; ¢ Therefore,
. a pi
D; divides 2 ged(—, =) = 2.
ivides 2 gc (di di)
p2 — a2 N
So we conclude that, if N is a W,-number then = 7 divides 2 (— — 1) .
i Y2
2 _ g2 N
Conversely, suppose that bi 7 % divides 2 (— — 1).
i Di
2 2 2 2
o If ged (2,“ d?a ) — 1, then 2 d?a divides - —1.
2 _ 2 L
e Now, suppose that ged (2, %) = 2, then 2 divides bi - ¢ or
pid——:a. But as
pi—a (pita 98
di d; d;’
pi—a pit+a

then 2 divides

if and only if 2 divides .

7 i

146 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON WILLIAMS NUMBERS WITH THREE PRIME FACTORS

So,
p;—a® (pi—a\ (pita\ _(pi—a\ (pita
2d? \ 2d; di ) \ d 2d;
dividesﬁ—l.
bi

This implies that both bi

- i .
a ? and 2 Cz_—a divides o 1.
Finally, by (Fy), we conclude that N is a W,-number.

O

Let N = pipaps be a W,y-number such that a < p; < p2 < p3. As
ged(a,p;) = 1 for each i € {1,2,3}, then by Proposition 1] there exist
positive integers «, 8 and - such that

2paps —2 = opf —a?), (E1)
2pips —2 = B(p3 —ad?), (E2)
2pip2 —2 = ~(p3 —a?). (E3)
Lemma 4.2. 1) o<y<B<a.
Bly+1)

(2) p3 < mpz

(3) vp§ < Bp3 < api.

(4) 8 < afy.

Proof. (1) As a < p1 < p2 < ps we have
0<pi—a®<ps—a®<p;—a®
and
0 < 2(pip2 — 1) < 2(pips — 1) < 2(paps — 1).
Then

p3 — a? p? —a?
(2) The equation 3(F3) — v(Es2) gives
2p1(Bp2 —1p3) = By(p3 — p3) +2(8 —7)

2 -1 2 -1 2 -1
_ (p1p2 ) <fB= (p1ps ) < (p2ps3 )

Thus,
2p1((8 — Y)p2 — ¥(ps — p2)) = BY(P3 — p3) +2(8 — ),
which implies that
2(8 — v)p1p2 = 2vp1(p3 — p2)) + By — P3) +2(B — 7).

S
° (2vp1 + By(p3 + p2))(p3 — p2)

pip2 = 2@_7)
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As ps + p2 > 2pi, then

(27 +267)p1(p3 — p2) (B +1)(ps — p2) .

T T R
Thus,
p2 > %(ps —p2),
and hence,
7(;7_21)1)3 <p2(1+ Fyéﬂle)),
and so
R

(3) The equations 3(E3) — v(E2) and «(F2) — 8(F1) give respectively
2p1(Bp2 = vps) = By (p3 — p3) +2(6 —7)

and
2p3(apy — Bp2) = aB(p3 — p?) + 2(a = B).
As 0 < v < f <aand p; < ps < p3, we obtain
Yps < Bp2 < ap:. (Fio)
On the other hand, the equations (E1), (F2), and (E3) are equivalent to

2paps = o(pf —a®) +2, (E41)
2pips = B(p3 —a®) +2, (Es)
2p1pe = ~(p3—a?) +2. (Es)
. . p2 a(i-d*)+
The division of (F4) by (E5) gives — = , and so
) by (B0 B = 0 =) 42

pr(a(p? — a®) +2) = p2(B(p3 — a®) +2).
It follows that
ap} — Bp3 = a®(ap1 — Bp2) + 2(p2 — p1) > 0.

As p1 < pz and by (Fio) we have Bpy < api, then Bpi < aps.
With the same idea, the division of (E5) by (Es) gives

Bp3 — yps = a®(Bpz — vps) + 2(ps — pa).
As py < p3 and by (Fip) we have yp3 < 8p2, then vp3 < Bp3.
Finally we conclude that

P} < Bp3 < ap?.
(4) As yp3 < Bps < ap}, we obtain
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ol

D3 (%)3 <p1 and p3 (%) < pa. (Fi1)

As by (E3), we have 2(pipe — 1) = v(p3 — a?), then (F11) gives

2

3
2 (Fy—pg - 1) <2(pip2—1) = 7(?% - 02)-

()3
Therefore,
29— 3
T s SEEEC (Fiz)

Two cases are to be considered:

e If ¢ > 2, then 2 — va? < 0 and by (Fi2) we obtain 2 < (af7)3.
Hence, 8 < af7.
e Suppose that a =1 and a8y < 8. Then

(. B,7) €{(3,2,1),(4,2,1)}.

Then by (Es), we get 2(p1ps — 1) = 2(p3 — 1). Therefore, p1ps = p3
which implies that p; = ps = ps, a contradiction.

So we conclude that
8 < afy.
O

Theorem 4.3. Let a be a nonzero positive integer. There exist only finitely
many Wo-numbers with three prime factors.

Proof. Let a be a fixed positive integer and N = pypop3 be a W,-number
such that p; < p2 < ps.

Two cases are to be considered:

— If p1 < a, then there is a finite number of possibilities for p;. For
each possibility for p;, and by Theorem [B.4] there are only finitely many
K_,-numbers and K, ,-numbers N = p1pops. Hence, there are only finitely
many W,-numbers N = p1paps with p; < a.

— Now, suppose that a < p;. By Lemma 3] we have 8 < af~, this
leads us to discuss the two following cases.

Case 1: If (v, 8) = (1, 2).
(a) Suppose that a = 5.
The relation (E1) + (E2) + (E3) gives

5p3 + 2p3 + p3 — 2p1p2 — 2p1p3 — 2paps = 8a® — 6.
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Thus,

2 2
P2 + p3 9 2 0.2
5 (p1 3 > + <p2 3p3) = 8a* — 6.

It follows that

9 2 \* .,
po-Z —6. F
5 <p2 3p3) <8a”—6 (F13)
B(y+1) 4 :
But ———py = — d by (F: bt
u,asp3<76+1)p2 3Pz an y (F13), we obtain
1 p3)2 9 2 \? )
(Y < Z(p-2 8a2.
5 ( 1) Sp\P2Tgh) =%
Therefore,
p3 < 8V 10a.
(b) Now, suppose that o > 6, then by equation (E;) we obtain
6(pt — a®) < 2(paps — 1). (F1a)

Now, the relation (F14) + (E2) + (F3) gives
6(pT —a®) +2(p5 —a®) + (p3 — a*) < 2(p2ps — 1) +2(p1ps — 1) +2(p1p2 — 1).
This implies that

2 2 2
P2+ p3 11 7 P3 2
— - - 8 < —6.
6(]91 5 ) t35 (Pz 7)) 1 <9a” -6 (F1s5)
Bly+1) 4
On the other hand — Py = — h.
n the other han asp3<7(6+1)p2 3p2,we ave
11 7 2> 25
6 \P27 1 105673
Hence,
2 2 2
11 7 P25, pi 9T
6 <p2 11p3) 17 10567 T 11 T 10567
Then by (Fi5), we obtain
97 9
9
105673 <7
and so
p3 < 10a.
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Case 2: Now, suppose that (v, 3) # (1,2) which is equivalent to
(e >4,6>3and vy > 1).
The equations (E1), (F2), and (E3) give respectively

A(p? — a®) < 2(paps — 1), (E7)
3(p3 — a®) < 2(pips — 1), (Es)
p3 —a® < 2(pip2 — 1). (Eo)

Then the relation (E7) 4+ (Es) + (Eg) gives
A(p} — a®) +3(p3 — a®) + (p3 — a®) < 2(paps — 1) +2(p1ps — 1) +2(p1p2 — 1).
This implies that

2 2
+ 11 5 2p3
4(p1_p24p3> +Z<p2—ﬁp3) +%§8a2—6. (F16)
1
On the other hand as ps < Mpg < 2py, we have
Y(B+1)

o5 N1
4 D2 112?3 1761?3-

Therefore,
2 2 2
11 5 22 1 , 23 363 ,
1 <p2 11p3> T T e T T 1036
Then by (Fig), we get
363 ,
— 8
193673 = °4"
and so
p3 < 7a.

Thus, in all cases, ps is bounded. Since p; < p2 < ps, the number of
possibilities for NV = pipaps such that a < p; is finite.

Finally, we conclude that for each fixed a there are only finitely many
W,-numbers with three prime factors. 0
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