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Abstract. It is well-known that solutions to integer programming
problems usually cannot be obtained by simply solving the corre-
sponding linear programming relaxation. There are, however, exam-
ples of integer programming problems whose solutions can be ob-
tained by simply solving the linear program and ignoring the integer
constraints. Proving that these particular models have this trait is
generally beyond the scope of a beginning course in operations re-
search. In this paper an integer programming model, with only two
constraints, is presented whose solution can be directly obtained us-
ing the standard simplex method. A proof is provided that makes a
connection between analysis and operations research.

When teaching operations research, instructors make the distinction be-
tween problems that require an integer solution and those in which frac-
tional values are acceptable. Students quickly learn that simply rounding a
fractional solution to the nearest integer solution does not, in general, yield
an optimal solution and can even lead to an infeasible solution. During
such a course, however, examples of integer programming problems (ILP)
are introduced whose solution can be found by ignoring the integrality con-
straints and solving the corresponding linear programming (LP) relaxation.
For example, the well-known transportation, assignment, and even network
flow problems can all be solved using only linear programming techniques.
(See Chapters 5 and 6 of Taha [3] for more information.) Near the end of
the course students learn that in general, ILPs require many more steps
than the traditional simplex method, which also serves as an introduction
to the concept of NP Completeness and intractability.

Although the models mentioned above do indeed yield integral solutions
by LP methods, students generally do not have the opportunity through
homework or other means of practice to show that LP methods yield in-
tegral solutions to certain integral models. In this paper, we provide an
example of an integer programming problem that can be used to illustrate
that its closed solution can be directly obtained by the simplex method.
We start with some definitions.
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Definition 1. The floor function, denoted by bxc, is defined as the largest

integer that is less than or equal to the real number x.

Definition 2. A function f defined on the convex set S is a convex function
if, for every x1 and x2 ∈ S and every λ such that 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

Consider the following ILP:

minimize z = f(1)x1 + f(2)x2 + · · ·+ f(n)xn

subject to x1 + 2x2 + · · ·+ nxn = p,

x1 + x2 + · · ·+ xn = q,

xi ≥ 0 and integer, for i = 1, . . . , n,

where n ≥ 2, the parameters p and q are positive integers with p ≥ q > 0,
and f is a convex function with domain [0,∞) and range (−∞,∞).

A particular instance of this problem was first presented by Kevin
Broughan and Nan Zhu [1] who showed that the results hold for f(x) = x2.
We shall provide proof that the same results occur in a more general prob-
lem in which the objective function coefficients are generated by a convex
function. Our approach to solving this problem is to use the simplex method
to determine a closed-form solution. The coefficient matrix, representing
this problem, is as follows:

x1 x2 x3 · · · xi xi+1 · · · xn

f(1) f(2) f(3) · · · f(i) f(i+ 1) · · · f(n) 0
1 2 3 · · · i i+1 · · · n p
1 1 1 · · · 1 1 · · · 1 q

Applying elementary row operations to columns i and i + 1, for some
i = 1, . . . , n− 1, of the initial simplex table yields the following table:

x1 x2 x3 · · · xi xi+1 · · · xn

z1 z2 z3 · · · zi zi+1 · · · zn -z
i i− 1 i− 2 · · · 1 0 · · · i− n+ 1 q(i+ 1)− p

1− i 2− i 3− i · · · 0 1 · · · n− i p− qi
,

where zj = −f(i)(i − j + 1) − f(i + 1)(j − i) + f(j), and z = (q(i + 1) −
p)f(i) + (p− qi)f(i+ 1) for all j = 1, . . . , n.

An initial basic feasible solution for our problem is readily available by
choosing the value of i such that xi = q(i+1)−p ≥ 0 and xi+1 = p−qi ≥ 0
and setting all other variables equal to zero. That is, choose i such that
i ≤ p/q and i+1 ≥ p/q. If q does not divide p this is equivalent to choosing
i, which must be an integer, such that i = bp/qc. Otherwise, i = p/q or
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i = p/q − 1. In fact, we will show that this basic feasible solution is also
optimal by noting that zi = 0 and zi+1 = 0 and by showing that the reduced
row coefficients zj ≥ 0 for all j = 1, . . . , n. That is, the current solution
will be optimal only when

f(j)− f(i) ≥ (j − i)(f(i+ 1)− f(i))

holds for all nonnegative integers i and j with i = 1, . . . , n, j = 1, . . . , n,
and j 6= i.

Before proving the main result of this paper, we will first prove the
following lemma.

Lemma 3. If L is an affine function and i ≤ j, then

λL(j) + (1− λ)L(i) = λL(i) + (1− λ)L(i+ 1),

where λ = 1/(1 + j − i).

Proof. Let λ = 1/(1+j−i) and assume that L is the affine function defined
by L(x) = ax+ b. Now, by a simple rearrangement of terms, an equivalent
expression to the above equation is given by:

L(j)− L(i)

L(i+ 1)− L(i)
=

1− λ

λ
.

Now,

L(j)− L(i)

L(i+ 1)− L(i)
=

(aj + b)− (ai + b)

(a(i+ 1) + b)− (ai+ b)
= j − i =

1− λ

λ
.

Thus, the result is established. �

Theorem 4. Let f be a convex function with domain [0,∞) and range

(−∞,∞). The inequality

f(j)− f(i) ≥ (j − i)(f(i+ 1)− f(i)) (1)

holds for all nonnegative integers i and j.

Proof. Case 1. Assume that i < j. The following inequalities are equiva-
lent to (1):

f(j)− f(i) ≥ (j − i)f(i+ 1)− (j − i)f(i),

f(j) + (j − i)f(i) ≥ f(i) + (j − i)f(i+ 1),

λf(j) + (1 − λ)f(i) ≥ λf(i) + (1 − λ)f(i+ 1),

where λ = 1/(1 + j − i). We will prove the latter inequality.
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Let L be the affine function such that L(i) = f(i) and L(j) = f(j).
Then by Lemma 3,

(1− λ)f(i) + λf(j) = (1− λ)L(i) + λL(j)

= λL(i) + (1− λ)L(i + 1)

= λf(i) + (1 − λ)L(i+ 1).

Since f is convex, it follows that L(x) ≥ f(x) for all x in the interval [i, j].
In particular, L(i+ 1) ≥ f(i+ 1). Hence,

(1− λ)f(i) + λf(j) ≥ λf(i) + (1− λ)f(i + 1).

Case 2. Assume that i ≥ j. The following inequalities are equivalent to
(1):

f(j)− f(i) ≥ −(i− j)f(i+ 1) + (i − j)f(i),

f(j) + (i− j)f(i+ 1) ≥ (1 + i− j)f(i),

λf(j) + (1− λ)f(i+ 1) ≥ f(i),

where λ = 1/(1 + i − j). But, this last inequality holds because of the
convexity of f and the fact that i = λj + (1− λ)(i + 1). �

It should be noted that the theorem above could also be proven as an
immediate corollary of Lemma 16, found on page 113 of [2]. However, since
the proof of Lemma 16 was left as an exercise, we have given a direct proof.

The results of Theorem 4 imply that the ILP stated above has an integer
solution that can be obtained by solving the LP relaxation. Further, there
is no need to use linear programming to solve particular instances of the
problem since a closed form of the optimal solution to the problem is x∗

p/q =

q, and x∗
j = 0, otherwise, with z = f(x∗

p/q)x
∗
p/q when q divides p. When q

does not divide p, the optimal solution is

x∗
b p

q
c = q

(⌊

p

q

⌋

+ 1

)

− p, x∗
b p

q
c+1

= p− q

⌊

p

q

⌋

,

and x∗
j = 0, otherwise. In this case the objective function value is

z = f(x∗
b p

q
c)x

∗
b p

q
c + f(x∗

b p

q
c+1

)x∗
b p

q
c+1

.

This model can be used by instructors in an operations research class to
illustrate that some linear programming problems always have an integer
solution. In more advanced optimization classes, the problem may also be
given to students, along with some timely hints, to provide them with ex-
perience in constructing a proof of this nature. The model also provides the
opportunity for the instructor to emphasize the fundamental link between
topics in operations research and topics in analysis.
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