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Abstract. Let p be a prime number with p 6= 2. We consider second
order linear recurrence relations of the form Sn = aSn−1 + bSn−2

over the finite field Zp (we assume b 6= 0). Results regarding the
period and distribution of elements in the sequence {S0, S1, . . .} are
well-known (see for example [2, 3, 4, 5]). We examine these second
order recurrences using matrices, groups, and G-sets.

1. Introduction

Let p > 2 be a prime number and let Sn = aSn−1 + bSn−2 be a second
order linear recurrence with a, b ∈ Zp and b 6= 0. Since Zp ⊕ Zp has a
finite number of elements, it is clear that any such second order linear
recurrence with initial conditions S0, S1 ∈ Zp will eventually repeat itself.
The sequence is called uniformly distributed if each element of Zp appears
the same number of times within a repeated period of the sequence.

The case where a = b = 1 is the general Fibonacci sequence whose period
was first studied by Wall [4]. The distribution properties of the Fibonacci
sequence were explored by Kuipers and Shiue [2]. Webb and Long [5]
studied both the period and distribution properties of general second order
linear recurrences, providing a complete characterization of such sequences
over Zpk . Niederreiter and Shiue [3] extend the distribution results to finite
fields. We examine these second order recurrences over Zp using matrices,
groups, and G-sets.

The sequences defined by the recurrence relation Sn = aSn−1 + bSn−2

can be generated by the matrix relation
[

Sn−1

Sn

]

=

[

0 1
b a

] [

Sn−2

Sn−1

]

.

Or equivalently,
[

Sn

Sn+1

]

=

[

0 1
b a

]n [

S0

S1

]

.
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Let A =

[

0 1
b a

]

. Since b 6= 0, A is a unit in the ring of 2 × 2 matrices

over Zp (i.e. A ∈ GL2(Zp)). Further, since the group of invertible 2 × 2
matrices is finite, A generates a finite cyclic group of order m, for some
natural number m. We will denote this group by

G =
{

Ai | 0 ≤ i ≤ m− 1
}

.

Left multiplication of matrices on vectors defines a map from G× (Zp ⊕
Zp) to Zp⊕Zp. Since A

j
(

Aiv
)

= (AjAi)v, Zp⊕Zp is a G-set (see page 176
of [1]). If a subset U of Zp⊕Zp is closed under this action of G and has the
property that for all u′, u ∈ U there exists a g ∈ G such that gu = u′, then
we call U a transitive G-set. In other words, the transitive G-sets are just
the orbits of the elements of Zp ⊕ Zp under repeated left multiplication by
A.

2. Transitive G-sets

If we select an arbitrary element v from Zp ⊕ Zp, the orbit of v under
the action of G is the transitive G-set containing v. These transitive G-sets
partition Zp ⊕ Zp.

Example 2.1. Consider the standard Fibonacci sequence defined by Sn =
Sn−1 + Sn−2, taken over Z5. The action of the group generated by A =
[

0 1
1 1

]

partitions the G-set Z5 ⊕ Z5 into the following 3 transitive G-sets

(orbits):

H1 =

{[

0
0

]}

,

H2 =

{[

0
1

]

,

[

1
1

]

,

[

1
2

]

,

[

2
3

]

,

[

3
0

]

,

[

0
3

]

,

[

3
3

]

,

[

3
1

]

,

[

1
4

]

,

[

4
0

]

,

[

0
4

]

,

[

4
4

]

,

[

4
3

]

,

[

3
2

]

,

[

2
0

]

,

[

0
2

]

,

[

2
2

]

,

[

2
4

]

,

[

4
1

]

,

[

1
0

]}

,

H3 =

{[

1
3

]

,

[

3
4

]

,

[

4
2

]

,

[

2
1

]}

.

Example 2.2. Consider the sequence defined by Sn = 3Sn−1 + 4Sn−2,

taken over Z5. Under the action of the group generated by A =

[

0 1
4 3

]

,

the G-set Z5 ⊕ Z5 can be partitioned into the following 5 transitive G-sets
(orbits):
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G1 =

{[

0
0

]}

,

G2 =

{[

0
1

]

,

[

1
3

]

,

[

3
3

]

,

[

3
1

]

,

[

1
0

]

,

[

0
4

]

,

[

4
2

]

,

[

2
2

]

,

[

2
4

]

,

[

4
0

]}

,

G3 =

{[

0
2

]

,

[

2
1

]

,

[

1
1

]

,

[

1
2

]

,

[

2
0

]

,

[

0
3

]

,

[

3
4

]

,

[

4
4

]

,

[

4
3

]

,

[

3
0

]}

,

G4 =

{[

1
4

]

,

[

4
1

]}

,

G5 =

{[

2
3

]

,

[

3
2

]}

.

To further study the structure of the transitive G-sets, we turn to the
eigenvalues and eigenvectors associated with the matrix A. If λ ∈ Zp is
a root of the characteristic polynomial C(x) = x2 − ax − b, then we will
denote the associated eigenspace by Eλ. The dimension of Eλ must be one
or two. We note that by its construction, A 6= λI, so Eλ must be one

dimensional. It can be verified that

[

1
λ

]

is an eigenvector in Eλ. Thus,

Eλ =

{[

0
0

]

,

[

1
λ

]

,

[

2
2λ

]

,

[

3
3λ

]

, · · · ,

[

p− 1
(p− 1)λ

]}

.

It is easy to check that

{[

0
0

]}

will always be a transitive G-set under

the action of G on Zp ⊕ Zp. It is also easy to see that if a transitive G-set
contains an eigenvector, all the other vectors in that transitive G-set must
also be eigenvectors. Therefore, for any transitive G-set, there are three
mutually exclusive possibilities:

(1) it is the transitive G-set

{[

0
0

]}

,

(2) it consists entirely of eigenvectors,
(3) it consists entirely of nonzero noneigenvectors.

In Example 2.2, the characteristic polynomial C(x) has repeated root
λ = 4 with associated eigenspace

E4 =

{[

0
0

]

,

[

1
4

]

,

[

2
3

]

,

[

3
2

]

,

[

4
1

]}

.

In this example, G4 and G5 are comprised only of eigenvectors, G2 and G3

are comprised only of nonzero noneigenvectors, and G1 is of course, just
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{[

0
0

]}

. Additionally, if we let S0 = 0 and S1 = 1, the sequence generated

by Sn = 3Sn−1 + 4Sn−2 is

0, 1, 3, 3, 1, 0, 4, 2, 2, 4, 0, 1, 3, 3, . . .

which repeats after the tenth term and corresponds to the elements of the
transitive G-set G2. If we choose different starting conditions, e.g. S0 = 0
and S1 = 4, we get a similar, shifted sequence that also corresponds to G2.

In Example 2.1, the characteristic polynomial C(x) has a repeated root
λ = 3, with corresponding eigenspace

E3 =

{[

0
0

]

,

[

1
3

]

,

[

2
1

]

,

[

3
4

]

,

[

4
2

]}

.

We note that the transitive G-set H3 contains only eigenvectors and H2

consists entirely of nonzero noneigenvectors. Furthermore, every set of
initial conditions outside the eigenspace E3 lies within the single transitive
G-set H2. Choosing the initial starting values S0 = 0 and S1 = 1, the
Fibonacci sequence over Z5, generated by Sn = Sn−1 + Sn−2, is

0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, . . . .

This sequence repeats after 20 terms and corresponds to the elements of
the transitive G-set H2. If, instead, we take the initial starting values of
S0 = 2 and S1 = 1, we will generate the Lucas numbers over Z5. The
corresponding sequence is

2, 1, 3, 4, 2, 1, 3, 4, . . . .

In this case, the initial conditions correspond to the eigenvector

[

2
1

]

, so

the sequence corresponds to H3. We note that in the Fibonacci sequence
over Z5, each element of Z5 appears the same number of times before the
sequence repeats, while the element 0 does not appear in the sequence of
Lucas numbers over Z5. The distribution properties of these sequences will
be discussed in greater detail in the next section.

3. Distribution of Elements

In Example 2.2, the initial starting conditions S0 = 0 and S1 = 1 produce
the uniformly distributed repeated sequence 0, 1, 3, 3, 1, 0, 4, 2, 2, 4; whereas
the initial conditions S0 = 1 and S1 = 4 result in the nonuniformly dis-
tributed repeated sequence 1, 4.

As we noted above, each element of the eigenspace associated with λ

is a multiple of

[

1
λ

]

, so the vector

[

0
0

]

will be the only vector within an
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eigenspace that contains a zero entry. But, we know that

[

0
0

]

lies within its

own transitive G-set. Thus, the sequences generated by initial conditions
[

S0

S1

]

taken from an eigenspace will not be uniformly distributed. Hence,

we will focus our attention on the transitive G-sets comprised of nonzero
noneigenvectors. We first show that each of these transitive G-sets have
equal size.

Theorem 3.1. If the order of A is m and v ∈ Zp ⊕ Zp −

{[

0
0

]}

is not

an eigenvector of A, then the transitive G-set generated by v has exactly m

elements.

Proof. Let n ∈ {1, . . . ,m} with An(v) = v. Applying A to both sides of
the last equality yields An(A(v)) = A(v). Since v is a noneigenvector, v
and A(v) are linearly independent, forming a basis for Zp ⊕ Zp. But, An

fixes both v and A(v), thus An is the identity, so n = m. This gives the
result. �

The characteristic polynomial C(x) of A, has one repeated root, two
distinct roots, or no roots in Zp. Then the discriminant of C(x) is a2 + 4b.
We noted above that if λ is a root of C(x) then Eλ has exactly p elements.
We make the following observations.

(1) If A has exactly one eigenvalue in Zp, then A has exactly p2 − p

nonzero noneigenvectors. This corresponds to the case where a2 +
4b = 0.

(2) If A has exactly two eigenvalues in Zp, then A has exactly p2−2p+1
nonzero noneigenvectors. This corresponds to the case where a2+4b
is a nonzero square (quadratic residue) in Zp.

(3) If A has no eigenvalues in Zp, then A has exactly p2 − 1 nonzero
noneigenvectors. This corresponds to the case where a2 + 4b is not
a square in Zp.

Now the following corollary is clear.

Corollary 3.2.

(i) If A has exactly one eigenvalue in Zp, then the number of elements
in any transitive G-set of nonzero noneigenvectors divides p2 − p.

(ii) If A has exactly two eigenvalues in Zp, then the number of elements
in any transitive G-set of nonzero noneigenvectors divides p2−2p+
1.

(iii) If A has no eigenvalues in Zp, then the number of elements in any
transitive G-set of nonzero noneigenvectors divides p2 − 1.
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Proof. This follows immediately from the last theorem and the above ob-
servation. �

Corollary 3.3. If A does not have exactly one eigenvalue in Zp and if v is
a nonzero noneigenvector of A, then the sequence generated by the initial

conditions

[

S0

S1

]

= v is not uniformly distributed.

Proof. Zp has p elements, but by parts (ii) and (iii) of the last Corollary, p
cannot divide the number of elements in this sequence. �

4. Uniform Distribution

Now we focus our attention on the case where the characteristic polyno-
mial has a repeated eigenvalue λ. Let r be the order of λ in the multiplica-
tive group Z∗

p .

Theorem 4.1. If the second order recurrence Sn = aSn−1 + bSn−2 has
characteristic polynomial C(x) = x2 − ax − b with a repeated root λ and
the initial conditions are S0 = 0 and S1 = t, then the general term of the
sequence is given by Sn = tnλn−1.

Proof. It is well-known that the general solution to this type of second
order recurrence with a repeated root has the form Sn = (α + βn)(λn).
Using the initial conditions S0 = 0 and S1 = t, we have: 0 = S0 = α and
t = S1 = βλ, which gives us α = 0 and β = tλ−1. Plugging these values in
for α and β gives us the desired result. �

The form, Sn = tnλn−1, gives us some useful information. First, we
recall that the p− 1 nonzero elements of Zp form the multiplicative group
Z∗

p . Since λ 6= 0, by Lagrange’s Theorem, r must divide p−1. In particular,

λp−1 = 1 and λp = λ. Also, since Zp has characteristic p, it follows that
every pth term of Sn = tnλn−1 will be 0. Furthermore, if t 6= 0, we see
that the terms S1, S2, . . . , Sp−1 are not zero. The term Sp = tpλp−1 = 0
and the term Sp+1 = t(p+1)λp = tλ, which gives us our initial conditions,
multiplied by λ. This means that the next p terms of the sequence will
be the same as the first p terms multiplied by λ. Similarly, S2p = 0 and
S2p+1 = t(2p + 1)λ2p = tλ2. So, again, the next p terms are attained by
multiplying the previous p terms by λ. This will continue until we reach the
order of λ. Since λr = 1, Srp = 0 and Srp+1 = t(rp+1)λrp = tλr = t, so we
return to the initial starting conditions. Thus, the period of the sequence
must divide rp. Since t 6= 0, and λ, λ2, . . . , λr−1 are distinct, then the first
time the initial conditions are repeated is when n = rp, thus the period is
equal to rp.
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We also note that each of the rp pairs of consecutive elements Sn−1, Sn,
where n = 1, 2, . . . , rp are distinct since

[

Sn

Sn+1

]

=

[

0 1
b a

]n [

0
t

]

.

If we had repeated elements, then
[

0 1
b a

]n1
[

0
t

]

=

[

0 1
b a

]n2
[

0
t

]

for some integers n1 and n2 with 0 < n1 < n2 < rp. Since the matrix is
invertible, this would give us:

[

0 1
b a

]n2−n1
[

0
t

]

=

[

0
t

]

,

which would mean we would repeat the initial conditions before rp, so
the period would be smaller than rp. Thus, the list of rp vectors in the

corresponding transitive G-set, starting with

[

0
t

]

will all be distinct. Now

we can generate the remaining transitive G-sets by starting with a vector

of the form

[

0
s

]

, where s 6= 0, that does not appear in the first transitive G-

set. This transitive G-set will also have size rp. Continue until all p(p− 1)
of the nonzero noneigenvectors are accounted for.

Now we have the following theorem.

Theorem 4.2. If the second order recurrence Sn = aSn−1 + bSn−2 has
characteristic polynomial C(x) = x2−ax−b with a repeated root λ of order
r, then every transitive G-set associated with a vector outside the eigenspace
has size rp.

Theorem 4.3. Let λ be a repeated root of the characteristic polynomial

C(x) = x2−ax−b associated with A =

[

0 1
b a

]

. If Eλ is the eigenspace gen-

erated by

[

1
λ

]

, then each coset of the form

[

0
t

]

+Eλ, where t = 1, 2, . . . , p−1,

will lie within a single transitive G-set.

Proof. We will show that the subgroup of G generated by Ar acts tran-
sitively on each of these cosets. Hence, each coset will reside in a single
transitive G-set induced by left multiplication by A. We first note that
the characteristic polynomial of A can be written as x2 − ax − b or as
x2 − 2λx+ λ2. As such, a = 2λ and b = −λ2, so the matrix A can also be
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written as

[

0 1
−λ2 2λ

]

. It is easily shown by induction that

An =

[

0 1
−λ2 2λ

]n

=

[

(1− n)λn nλn−1

−nλn+1 (n+ 1)λn

]

.

If v is any vector in Zp⊕Zp, we can show that Arv− v is in Eλ by showing
that it is in the null space of A − λI. By direct calculation it is easily
verified that

[A− λI] [Ar − I]v = 0

since
[

−λ 1
−λ2 λ

] [

(1 − r)λr − 1 rλr−1

−rλr+1 (r + 1)λr − 1

]

v =

[

0 0
0 0

]

v.

Since Arv and v differ by an eigenvector, they are in the same coset. In

particular, if v =

[

0
t

]

, where t 6= 0, v is not an eigenvector, so Akrv are

distinct vectors for 0 ≤ k ≤ p − 1 (see Theorem 4.2). Consequently, we
have

{

Akrv | 0 ≤ k ≤ p− 1
}

= v + Eλ. �

Since Eλ is generated by

[

1
λ

]

, every element of Zp appears in the top

entry exactly once and in the lower entry exactly once in the vectors of Eλ.
In other words, the elements of Zp are distributed uniformly in the rows of

the vectors of Eλ. The cosets formed by adding

[

0
t

]

to the vectors in Eλ

merely shift the lower entries of Eλ by t, so the distribution of elements
of Zp remains uniform in the rows of the vectors in each of these cosets.
Since a particular coset of this form lies entirely within a single transitive
G-set, each such transitive G-set is the union of r of these cosets. Hence,
the transitive G-sets associated with nonzero noneigenvectors are uniformly
distributed. This leads us to the following theorem.

Theorem 4.4. Let A be the matrix associated with second order recurrence
Sn = aSn−1 + bSn−2. If the characteristic polynomial C(x) = x2 − ax − b

has a repeated root λ then the transitive G-set induced by left multiplication

by A will be uniformly distributed if and only if the initial vector v =

[

S0

S1

]

is not an element of the eigenspace Eλ.

In Example 2.2, the characteristic polynomial had one repeated root,
λ = 4, of order 2 in Z5. The associated eigenspace is:

E4 =

{[

0
0

]

,

[

1
4

]

,

[

2
3

]

,

[

3
2

]

,

[

4
1

]}

.
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Adding the vector

[

0
t

]

, where t = 1, 2, 3, 4, to each element of the eigenspace,

we obtain four additional cosets of five vectors:

{[

0
1

]

,

[

1
0

]

,

[

2
4

]

,

[

3
3

]

,

[

4
2

]}

;

{[

0
2

]

,

[

1
1

]

,

[

2
0

]

,

[

3
4

]

,

[

4
3

]}

;

{[

0
3

]

,

[

1
2

]

,

[

2
1

]

,

[

3
0

]

,

[

4
4

]}

;

{[

0
4

]

,

[

1
3

]

,

[

2
2

]

,

[

3
1

]

,

[

4
0

]}

.

The twenty vectors in these four cosets, along with the original eigenspace,
cover all of Z5 ⊕ Z5.

Note that G2 and G3 are the two transitive G-sets of nonzero noneigen-
vectors. Each has size 10 = 2(5) = rp. In this example, each transitive
G-set formed with vectors outside the eigenspace consists of two complete
cosets and every other element of each such transitive G-set comes from the
same coset. Since each coset is uniformly distributed, so is each correspond-
ing transitive G-set. Thus we see that any pair of starting conditions, other
than those in the eigenspace, results in a uniformly distributed sequence
with period rp.

In Example 2.1, the cosets of the form

[

0
t

]

+ E3, where t = 1, 2, 3, 4,

all lie within the transitive G-set H2. In this case, the repeated eigenvalue
λ = 3 has order r = 4. This single set of nonzero noneigenvectors has
20 = 4(5) = rp elements. Any pair of initial conditions taken from H2

will yield a uniformly distributed sequence which repeats after 20 terms,
whereas sequences with initial contitions taken from H1 or H3 will produce
nonuniformly distributed sequences.
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