
FINDING THE PERMUTATIONS CORRESPONDING TO
A GIVEN YOUNG TABLEAU

Erkki Mäkinen and Jyrki Nummenmaa

Abstract. We consider the problem of finding all the permutations
corresponding to a given Young tableau. We introduce a recursive algo-
rithm, deleting the elements from the tableau in reverse order which were
inserted by the Schensted algorithm.

1. Introduction. Studying Young tableaux and their relationship
with permutations provides an excellent topic in undergraduate data struc-
tures and combinatorics courses. This paper concentrates on the problem
of finding the permutations related to a given Young tableau. While the
algorithms have been presented before, at least implicitly, in the literature,
we believe that our presentation gives an easy-to-understand view to an
interesting problem that can be utilized in teaching. Further information
about Young tableaux can be found in [2, 4, 6]. Our interest in Young
tableaux originates from The International Olympiad in Informatics 2001
[5].

2. Young Tableaux. A Young tableau of shape (n1, n2, . . . , nm),
where n1 ≥ n2 ≥ · · · ≥ nm > 0, is an arrangement of n1 + n2 + · · · + nm

distinct integers in an array with m rows such that in row i there are
ni elements, each row is in increasing order from left to right, and each
column is in increasing order from top to bottom. Basic results about
Young tableaux can be found in [4].

There is a close connection between Young tableaux and permutations.
Given a permutation P = (p1, . . . , pn), the corresponding Young tableau is
constructed by inserting the elements p1, . . . , pn one by one in an originally
empty tableau. Inserting pi is performed as follows. First, find in row 1
the least element greater than pi, if any, and place pi in the spot of that
element. If pi is greater than all elements in row 1, insert it to be the last
element of row 1, and halt. Otherwise, continue by inserting the element,
say r, replaced by pi, in row 2. Again, halt if r is the greatest in the
row. Otherwise, continue similarly with the next replaced element and the
next row, until a row is found where all elements are smaller than the new
element to be inserted or a new row is started. This insertion algorithm is
called the Schensted algorithm.

Consider, for example, constructing the Young tableau for the permu-
tation

(

1 2 3 4 5 6 7 8 9
3 5 4 9 8 2 7 6 1

)

.

1



After inserting 3, 5, 4, 9, 8, 2, and 7, the tableau has the form shown in
Figure 1.

2 4 7
3 8
5 9

Figure 1. The tableau after inserting 3, 5, 4, 9, 8, 2, and 7 (in this order).

Inserting 6 causes first the replacement of 7 by 6 in row 1. Then, 8
is replaced by 7 in row 2, and 9 is replaced by 8 in row 3. Finally, a new
row is started with 9 as the only element. The resulting tableau is shown
in Figure 2.

2 4 6
3 7
5 8
9

Figure 2. The tableau of Figure 1 after inserting 6.

Inserting 1 in the tableau obtained causes changes only in the first
column: 2 replaced by 1, 3 replaced by 2, 5 replaced by 3, 9 replaced by 5,
and a new row with 9 as the only element is started.

The resulting tableau is shown in Figure 3.

1 4 6
2 7
3 8
5
9

Figure 3. The complete tableau.

The following well-known theorem establishes a 1-to-1 correspondence
between permutations and Young tableaux.

Theorem 2.1. [6] Given a pair (P, Q) of Young tableaux having the
same shape with elements 1, 2, . . . , n, there is a unique permutation p cor-
responding to (P, Q) such that inserting the elements of p in an originally
empty tableau by using the Schensted algorithm gives P and, moreover, Q

contains the order in which the positions of P are filled.

2



Given a single Young tableau P , there are usually several permutations
that could produce P . The number of Young tableaux of a given shape
containing the integers 1, 2, . . . , n is n! divided by the product of the hook
lengths of its elements [1]. (The hook length of an element x in a Young
tableau is the number of elements counting from the bottom of a column
to a given element and then to the right end of the row.)

Given a Young tableau P , we can always create a permutation that
produces P by reading the rows from right to left starting from the bottom
row and proceeding towards the top row. If P is the tableau in Figure
3, then this permutation corresponds to the pair (P, Q1) where Q1 is the
tableau in Figure 4.

1 2 3
4 5
6 7
8
9

Figure 4. Tableau Q1.

Another permutation is obtained by reading the columns from bot-
tom to top starting from the rightmost column and proceeding to the left
(excluding the two special cases where these methods result in the same
permutation). The corresponding pair of Young tableaux is (P, Q2), where
Q2 is the tableau in Figure 5.

In the original Schensted algorithm, it is easy to work backward from
a given pair (P, Q) of tableaux to get the original permutation, because the
Q tableau tells us which cell was added last and therefore, which cell to
remove first. In this paper we show how all possible permutations can be
found starting from the P tableau alone.

1 6 9
2 7
3 8
4
5

Figure 5. Tableau Q2.

3. Producing the Permutations. A straightforward approach to
solve the problem is to write a recursive algorithm that, in reverse order,
deletes elements from a given tableau until the tableau becomes empty

3



again and the elements are back in the permutation. We start by making
some observations concerning Young tableaux.

First, we notice that the element last inserted is always in the first row.
When finding the element y which was bumped down from the spot of the
last inserted element x, we know that x < y. More precisely, we have the
following little result.

Proposition 3.1. If x is the last inserted item, y is the item replaced
by x, and z is the item following x in the same row (provided that such an
element exists), then we have z > y > x.

When all the elements left in the tableau are in the topmost row, we
know that they were inserted in the reserve order in which they appear in
the row.

The process of bumping down an element can halt when an element
is inserted in the end of a row. Further, since each column of a Young
tableau is always in ascending order from top to bottom, we notice that
when bumped down, an element never moves to the right. It follows that
row i is always at least as long as row i + 1.

Proposition 3.2. Given a Young tableau produced by the Schensted
algorithm, the element last bumped down is in the end of a row that is
longer than the row below it or in the end of the last row.

The cells containing the elements referred to in Proposition 3.2 are
called removable cells. As an example, consider the tableau in Figure 3.
The removable cells in this tableau contain the elements 6, 8, and 9.

By the definition of Young tableaux we have the following proposition.

Proposition 3.3. A cell can be deleted from a Young tableau if and
only if it is removable.

The remarks above suggest that we should delete the cells in bottom-
up style, that is, by starting from the removable cells. This gives us the
following recursive algorithms.

4



BumpUp(P: tableau; x: element; r: row);

begin
if r = 1
then

delete x from P and insert it in the beginning of the resulting
permutation;
MakeEmpty(P)

else
let y be the unique element (by Proposition 3.1) in row r − 1
that could have been replaced by x by the Schensted algorithm;
replace y by x;
if r = 2

then
insert y in the beginning of the resulting permutation;
MakeEmpty(P)

else
BumpUp(P,y,r − 1)

end

MakeEmpty (P: tableau);

begin
if there are elements left in P

then for each removable cell c in P do
let x be the element in c and let c be in row r;
delete c;
BumpUp(P,x,r);
remove the first element from the permutation and insert it back
to P using the Schensted algorithm;

else output the resulting permutation found
end

The desired permutations can now be computed by calling
MakeEmpty(P ) where P is the input tableau.

Consider again the tableau in Figure 3 as an example. The removable
cells contain the elements 6, 8, and 9. Starting with 6 would cause 6 to
be removed from the tableau since it is in the first row. Starting with 8
or 9 would, in turn, cause recursive calls for the BumpUp procedure. If
the removable cell is originally in the ith row of the tableau, deleting an
element from the tableau requires i − 1 BumpUp calls.

Notice further that our algorithm does not fix the order in which the
removable cells are handled. In what follows, we trace the execution of
MakeEmpty(P ), where P is the tableau in Figure 3 starting from the
removable cell containing the element 9. The element 9 is first deleted from

5



the tableau. Then, it is put in the spot of 5, which in turn, is put in the
spot of 3. The element 3 is put in the spot of 2, and now we are in the
second row of P . The unique element in the first row is 1, which means that
2 is put in the spot of 1 and 1 is inserted in the beginning of the resulting
permutation. The tableau is now as shown in Figure 2. Again, there are
three removable cells containing the elements 6, 8, and 9, which means that
the execution is further divided into three branches. We trace the branch
starting by deleting the removable cell containing 9. The element 9 is put
in the spot of 8, which is put in the spot of 7. We are in the second row and
the unique element in the first row is 6. The element 7 is put in the spot
of 6 and 6 is inserted in the beginning of the resulting permutation. The
tableau is in the form shown in Figure 1. Now there are only two removable
cells, namely those containing 7 and 9. In both cases the next element to
be inserted in the resulting permutation is 7, but the tableau obtained has
a different shape depending on the chosen removable cell. If we choose to
delete the removable cell containing 7, we obtain the tableau in Figure 6.

2 4
3 8
5 9

Figure 6. Tableau P after deleting the removable cell containing 7.

On the other hand, if we choose to delete the removable cell containing
9, we obtain the tableau in Figure 7.

2 4 8
3 9
5

Figure 7. Tableau P after deleting the removable cell containing 9.

In the former case, there is only one removable cell (the one containing
9), while in the latter case, there are three removable cells containing the
elements 5, 8, and 9. Hence, the execution is again divided into three
branches in the latter case. This process continues as long as there are
elements left in the tableau. When the tableau is empty, the elements are
in the resulting permutation in the correct order.

We now observe how our algorithm will proceed, given the tableau of
Figure 3 as input and assuming that it treats the removable cells in order
starting from the bottommost row. This means that the algorithm will
first start bumping up 9, which will replace 5 in row 4, which in turn will

6



replace 3 in row 3, which in turn replaces 2 in row 2, and 2 will replace 1
and cause 1 to be the first element to be added to the permutation. After
this, MakeEmpty will be called with the input tableau shown in Figure 8.

2 4 6
3 7
5 8
9

Figure 8. The tableau of Figure 3 after deleting 1.

The algorithm will, again, start up with the cell containing 9. After
bumping up 9, 8, and 7, and adding 6 to the permutation, we get the
tableau in Figure 9.

2 4 7
3 8
5 9

Figure 9. The tableau of Figure 8 after deleting 6.

In the following round, 9 and 8 are bumped up and 7 is added to
the permutation. Then, 5 and 3 are bumped up, and 2 is added to the
permutation, and then 9 is bumped up and 8 is added to the permutation.
The tableau obtained is shown in Figure 10.

3 4 9
5

Figure 10. The tableau of Figure 9 after deleting 7, 2, and 8.

Then, 5 is bumped up and 4 is added to the permutation. Now there
is only one row remaining and it contains the numbers 3, 5 and 9, and we
know that they must have been inserted in this order. Therefore, the first
permutation is (3 5 9 4 8 2 7 6 1).

To find the next permutation, we must reverse to a point where there
were at least two removable cells, which is the tableau of Figure 10. There,
the previously selected removable cell contains 5, but another removable
cell contains 9. By selecting 9 first and continuing as before, we get the
next permutation: (3 5 4 9 8 2 7 6 1), and this branch of computation with
9 selected, also gives us the permutation (5 3 4 9 8 2 7 6 1), before we have

7



to backtrack further. The interested reader is encouraged to download and
try out the Pascal source programs for this implementation [7].

Having demonstrated the way our algorithm works by examples, we
shall now prove the algorithm correct.

Theorem 3.1. Let P be a Young tableau. Calling MakeEmpty(P )
produces correctly all such permutations p that the Schensted algorithm
outputs P , when given p as an input.

Proof. For induction, it is clear that the algorithm works correctly
when the input tableau contains only one element.

Assume, now, that the algorithm works correctly whenever the tableau
contains n−1 elements. Suppose that the input tableau contains n elements.
It suffices to show that the algorithm correctly finds all elements that could
have been inserted last to the tableau and calls MakeEmpty for all tableaux
with one of those elements removed.

By Proposition 3.2, finding the removable cells is straightforward. Let
a be the element in the removable cell chosen.

First of all, from the discussion above it is clear that by starting from a,
calling BumpUp will locate an item b in the top row such that the insertion
of b would have pushed a to the removable cell. By Proposition 3.1, when
working its way upward, BumpUp will always find a unique item in the
row above. We now want to show that for all items in the removable cells,
we find a different item in the top row. If this would not be the case, then
apparently we would be producing redundant permutations.

It is enough to see that whenever we move one row upwards, the unique
elements of Proposition 3.1 are different for items in the current row. Let
us assume, by contradiction, that this would not be the case. Then in
some row we have items y1 and y2 such that x is the unique element of
Proposition 3.1 for both of them. Without loss of generality, we assume
y1 < y2. By Proposition 3.1, x < y1 < y2 < z. Now, y1 and y2 are in
the same row and because y1 < y2, y1 is to the left of y2. Since items do
not move to the right when they are bumped down, we know that x is no
further right than y1. As rows above are always at least as long as rows
below, and columns are in ascending order, we know that there must be an
item x′ to the right of x such that x < x′ < y2. Therefore, x cannot be the
unique item of Proposition 3.1 for y2, and a contradiction follows.

Therefore, we have established a one-to-one relationship between the
removable cells (respectively, their items) and items in the top row, whose
insertion as the last item would have caused the creation of the removable
cell with its item.

Finally, as the last inserted item is just inserted first in the permuta-
tion, removing it from the permutation recovers the permutation, and since
BumpUp does the reverse from the Schensted algorithm, calling the Schen-
sted algorithm with the first item of the permutation recovers the tableaux
to the form where it was before calling BumpUp. As MakeEmpty calls

8



BumpUp for all elements in the removable cells, it finds all permutations
correctly.

It is also possible to produce the permutations corresponding to a given
Young tableau by using the transformations defined by Knuth [3].

Acknowledgements. The authors wish to thank Isto Aho, Tero Karras,
Janne Kujala, and Samuli Laine for their help.

References

1. J. S. Frame, G. de B. Robinson, and R. M. Thrall, “The Hook Graphs
of the Symmetric Group,” Canad. J. Math., 6 (1954), 316–324.

2. W. Fulton, Young Tableaux: With Applications to Representation The-
ory and Geometry, Cambridge University Press, Cambridge, England,
1997.

3. D. E. Knuth, “Permutations, Matrices, and Generalized Young
Tableaux,” Pacific J. Math., 34 (1970), 709–727.

4. D. E. Knuth, The Art of Computer Programming, Sorting and Search-
ing, Vol. 3, Second Edition, Addison-Wesley, Reading, MA, 1998.

5. J. Nummenmaa, E. Mäkinen, and I. Aho (eds.), “IOI’01. Re-
port A-2001-7,” Dept. of Computer and Information Sciences,
University of Tampere, Tampere, Finland. (Available also at
http://www.cs.uta.fi/reports/pdf/A-2001-7.pdf)

6. C. Schensted, “Longest Increasing and Decreasing Subsequences,”
Canad. J. Math., 13 (1961), 179–191.

7. http://www.cs.uta.fi/˜jyrki/young/

Mathematics Subject Classification (2000): 68R05, 05E10

Erkki Mäkinen
Department of Computer Sciences
P. O. Box 607
FIN-33014
University of Tampere
Tampere, Finland
email: em@cs.uta.fi

Jyrki Nummenmaa
Department of Computer Sciences
P. O. Box 607
FIN-33014
University of Tampere
Tampere, Finland
email: jyrki@cs.uta.fi

9


