
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions,
or new insights on old problems are always welcomed by the problem editor.

157. [2005, 194] Proposed by José Luis Dı́az-Barrero, Universidad
Politècnica de Cataluña, Barcelona, Spain.

Let a, x be real numbers such that 1 < a < x. Prove that

(

n
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k=1

log−1
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n+1
√

x
n) ≥ n2.

Solution by Joe Flowers, St. Mary’s University, San Antonio, Texas.
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since

n + 2

3
≥ 1

with equality only when n = 1.

We note that the condition 1 < a < x may be replaced by the less
restrictive condition that a and x can be any two positive reals provided
neither is equal to one.

Also solved by Joe Howard, Portales, New Mexico; Ovidui Furdui (stu-
dent), Western Michigan University, Kalamazoo, Michigan; Nina Shang
and Huizeng Qin (jointly), Shandong University of Technology, Zibo, Peo-
ple’s Republic of China; Kenneth B. Davenport, Dallas, Pennsylvania; Joe
Dence, St. Louis, Missouri; and the proposer.

158. [2005; 194] Proposed by Ovidui Furdui (student), Western Michi-
gan University, Kalamazoo, Michigan.

Find the sum:

∞
∑

k=1

[

(k + 1)2 ln
(k + 1)2

k(k + 2)
− 1

]

.

Solution by Russell Jay Hendel, Towson University, Towson, Mary-
land. The problem sum equals 1.5 − ln(π) = 0.355 . . . .

To prove this fix an integer n ≥ 2 and define for integer i ≥ 2,

s(i) = i2 ln

(

i2

i2 − 1

)

− 1 = 2i2 ln(i) − i2 ln(i − 1) − i2 ln(i + 1) − 1,

S(n) =

n+1
∑

i=2

s(i) = −n +
∑

c(i) ln(i),

with c(i) polynomial functions in i. Clearly the problem sum equals

lim
n→∞

S(n).
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We claim

c(i) =



























−1, if i = 2,

−2, for 3 ≤ i ≤ n,

(n + 1)2 + (2n + 1), if i = n + 1,

−(n + 1)2, if i = n + 2,

0, for i > n + 2.

(1)

The proof of (1) is straightforward. For example for 3 ≤ i ≤ n the
contribution to c(i) from s(i), s(i + 1), and s(i − 1) respectively, is 2i2,
−(i+ 1)2, and −(i− 1)2 which sums to −2 as required. Proofs of the other
cases of (1) are treated similarly.

It follows from (1) that

S(n) = ln

(

1

en

2

n!2

(

n + 1

n + 2

)(n+1)2

(n + 1)2n+1

)

. (2)

To evaluate (2) as n → ∞ we use the following formulae:















n!2 ∼ (2πn)
(

n

e

)2n
, Stirling’s formula,

limn→∞

(

n+1
n

)2n+1
= e2

(

n+1
n+2

)(n+1)2 ∼ e−n−0.5

(3)

The last two equations follow by taking logarithms and using Taylor’s for-
mula. For example

lim
n→∞

ln

(

en

(

n + 1

n + 2

)(n+1)2)

= lim
n→∞

(

n− (n + 1)2

n + 2
−1

2

(n + 1)2

(n + 2)2
+o(1)

)

= −1

2

proving the last formula in (3).
Substituting the limits of (3) into (2) and performing some straight-

forward cancellations shows

S(n) ∼ ln

(

e1.5

π

)

.

This completes the proof.
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Also solved by Joe Flowers, St. Mary’s University, San Antonio,
Texas; Joe Howard, Portales, New Mexico; Huizeng Qin and Nina Shang
(jointly), Shandong University of Technology, Zibo, People’s Republic of
China; and the proposer. A partial solution was also received.

159. [2005; 195] Proposed by José Luis Dı́az-Barrero, Universidad
Politècnica de Cataluña, Barcelona, Spain.

Let m be a positive integer and let A1, A2, . . . , Am be n× n real sym-
metric matrices. Prove that

det(A2
1 + A2

2 + · · · + A2
m

) ≥ 0.

Solution by Ovidiu Furdui (student), Western Michigan University,
Kalamazoo, Michigan. Let A = A2

1 + A2
2 + · · · + A2

m, and let T be the
operator defined on R

n whose matrix is A, i.e., Tx = Ax. We notice
that T is a positive operator since for all x ∈ R

n, 〈Tx, x〉 ≥ 0, where
〈a, b〉 = a1b1 + a2b2 + · · ·+ anbn is the inner product on R

n. A calculation
shows that

〈Tx, x〉 = 〈Ax, x〉 =

〈 m
∑

i=1

A2
i
x, x

〉

=

m
∑

i=1

〈A2
i
x, x〉 =

m
∑

i=1

〈Aix, A∗

i
x〉,

where A∗

i
is the adjoint of Ai. The matrix Ai is real and symmetric, hence

A∗

i
= Ai. It follows that

〈Tx, x〉 =

m
∑

i=1

〈Aix, Aix〉 =

m
∑

i=1

‖Aix‖2 ≥ 0.

This implies that the operator T is positive. But since T is a positive
operator, there exists a unique positive operator on R

n, denoted by T
1
2

(which is also called the square root of T ) such that (T
1
2 )2 = T . If B is the

matrix of T
1
2 , we see that T

1
2 x = Bx and since (T

1
2 )2 = T we get that

B2 = A = A2
1 + A2

2 + · · · + A2
m

.

Therefore,

det(A2
1 + · · · + A2

m
) = det B2 = (det B)2 ≥ 0.
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Also solved by Joe Flowers and Hernan Rivera (jointly), Texas Lutheran
University, Seguin, Texas; Nina Shang and Huizeng Qin (jointly), Shan-
dong University of Technology, Zibo, People’s Republic of China; and the
proposer.

160. [2005; 195] Proposed by Zdravko F. Starc, 26300 Vrs̆ac, Serbia
and Montenegro.

Let Fn be the Fibonacci numbers defined by F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 3. Prove that for n ≥ 1,

√

F 4
1 + F 4

2 + F 4
3 +

√

F 4
2 + F 4

3 + F 4
4 + · · · +

√

F 4
n

+ F 4
n+1 + F 4

n+2

=

√
2

2
(2F 2

n+1 + F 2
n+2 + 3FnFn+1 − 3).

Solution I by Joe Howard, Portales, New Mexico. Using Candido’s
Identity

(F 2
n

+ F 2
n+1 + F 2

n+2)
2 = 2(F 4

n
+ F 4

n+1 + F 4
n+2)

and the identity

n
∑

i=1

F 2
i

= FnFn+1
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the LHS becomes:
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√
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)

Solution II by José Luis Dı́az-Barrero, Universidad Politècnica de
Cataluña, Barcelona, Spain. We will argue by mathematical induction.
The case when n = 1 trivially holds. Then, it suffices to see that

√
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Squaring the LHS of the preceding identity, we have

F 4
n+1 + F 4

n+2 + F 4
n+3 = F 4

n+1 + (Fn + Fn+1)
4 + (Fn + 2Fn+1)

4

= 2
(

F 4
n

+ 9F 4
n+1 + 15F 2

n
F 2

n+1 + 6FnFn+1(F
2
n

+ 3F 2
n+1)

)

= 2
(

F 2
n + 3F 2

n+1 + 3FnFn+1

)2

and by the principle of mathematical induction the proof is complete.

Also solved by Tom Leong, Brooklyn, NY; Joe Flowers, St. Mary’s
University, San Antonio, Texas; Russell Jay Hendel, Towson University,
Towson, Maryland; Ovidiu Furdui (student), Western Michigan University,
Kalamazoo, Michigan; Jim Bruening, Southeast Missouri State University,
Cape Girardeau, Missouri; Jerry Bergum, Brookings, South Dakota; Ken-
neth B. Davenport, Dallas, Pennsylvania; Huizeng Qin and Nina Shang
(jointly), Shandong University of Technology, Zibo, People’s Republic of
China; and the proposer.
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