ON THE DENSITIES OF SOME SUBSETS OF INTEGERS
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In this note, we prove two conjectures concerning densities of subsets of positive
integers suggested in [1] and [2], respectively. Throughout this paper, we use p and
q for prime numbers and x for a large positive real number. If A C N is a subset of
the positive integers, we write A(z) = AN [1,z]. We use the Vinogradov symbols
< and >, and the Landau symbols O and o with their usual meanings. Namely, we
say that f(z) < g(z), or that f(x) = O(g(z)), if the inequality | f(x)| < cg(x) holds
with some positive constant ¢ for all sufficiently large . The notation g(z) > f(x)
is equivalent to f(z) < g(x), while f(z) = o(g(x)) means that f(z)/g(z) tends to
zero when z tends to infinity. We use log x for the natural logarithm of z.

1. Sigma-Primes. Following [1], a positive integer n is called a sigma-prime
if n and o(n) are coprimes, where o(n) is the sum of the divisors of n. Let SP
be the set of all sigma-primes. It was conjectured in [1] that SP is of asymptotic
density zero. Here, we prove this conjecture.

Theorem 1. The inequality
#SP(r) <« —————
* logloglog x
holds for all z > e®.

Proof. Let x be a large positive real number. Lemma 4 in [5] asserts that there
exists an absolute constant ¢; such that o(n) is divisible by all primes
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for all n < z except for a subset of such n of cardinality O(z/logloglogx). Thus,
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On the other hand, by the regular Erathostenes-Legendre sieve (see Theorem 1.1
in [4]), and Mertens’s estimate,
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which together with inequality (1) completes the proof of Theorem 1.

Remark 1. The author of [1] also makes the comment that “the set of prime
powers has density zero and that the set of sigma-primes is not much larger”. We
point out that if we define phi-primes in the same way as the sigma-primes but
with the function o(n) replaced by the Euler function ¢(n), and if we write PP for
the set of all phi-primes, then Erdds [3] showed that the estimate

HPP() = (1+o(1)) —2C
N logloglog '

holds as * — oo, where -y is the Euler constant. Given that the arithmetic properties
of the function o(n) resemble the arithmetic properties of the function ¢(n), it is
likely that the estimate
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#SP(x) = (1+0(1)) (2)
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holds with some constant c; when x tends to infinity. We leave it to the reader to
determine whether estimate (2) holds with some constant ¢, and in the affirmative
case to compute co. If correct, estimate (2) shows that there are “a lot more”
sigma-primes than prime powers given that the number of prime powers p® < x is
only (1+ o(1))z/logx as x tends to infinity.

2. Ans Numbers. Following [2], a positive integer n is called an ans number
if it admits a representation of the form p? — ¢?, where p and ¢ are primes. Let
AN'S denote the set of all ans numbers. It was conjectured in [2] that ANS is of
asymptotic density zero. Here, we prove this conjecture.



Theorem 2. The inequality

SANS(z) < ——

log x

holds for all > 1.

Proof. Let = be a large positive real number. Let n < z be such that n =
PP —¢*> = (p—q)p+q). Write d = p—q. Note that d < p + ¢, therefore
d?> < (p+q)(p—q) =n < 2. Hence, d < /2. Fix d. Then 2¢ < p+q =n/d < z/d;
thus, ¢ < xz/(2d). Hence, in order to get an upper bound on the number of ans
numbers n < x for which d is fixed, it suffices to get an upper bound on the number
of primes ¢ < x/(2d) such that p = ¢ + d is also prime. Let Q4 denote the set
of such primes. The combinatorial sieve (see, for example, Corollary 2.4.1 in [4]),
shows that the number of such primes is

#Qa < H( ) d(log(z/d))? ¢(d)(10g($/d))2.
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Since d < /2, we have that 1/(log(z/d)) < 2/logz, therefore, the above estimate
implies

#Qu < P (3)

¢(d)(log

Summing up inequality (3) over all possible d < 2'/2, we get

#ANS Z #Qu < e logx Z ¢ logac

d<r1/2

where in the last estimate above we used the well-known fact, due to Landau, that
the estimate
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holds with some constants c¢3 and ¢4 for all z > 1.
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