COMPARISON RESULTS FOR GENERALIZED
 KOLMOGOROV SYSTEMS WITH RESPECT TO MULTIPLICATIVE SEMIGROUPS

Gerd Herzog and Roland Lemmert

Abstract

The group $G(\mathcal{A})$ of the invertible elements of a Banach algebra \mathcal{A} can be pre-ordered by a closed semigroup S. We prove a comparison theorem for ODEs of the form $u^{\prime}=f_{1}(t, u) u+u f_{2}(t, u)$ in Banach algebras under the assumption that S is permutation stable. Applications to monotonicity properties of initial value problems and dynamical systems are given.

1. Introduction. Let $(\mathcal{A},\|\cdot\|)$ be a real Banach algebra with unit $\mathbf{1}$, and let $G(\mathcal{A})$ denote the open group of all invertible elements in \mathcal{A}.
Let $S \subseteq \mathcal{A}$ be a closed semigroup, that is $\bar{S}=S, \mathbf{1} \in S$, and $x, y \in S \Rightarrow$ $x y \in S$.
A closed semigroup S will be called permutation stable if it has the following property for each $n \in \mathbb{N}$: If $x_{1}, \ldots, x_{n} \in G(\mathcal{A})$ then

$$
x_{\pi(1)} \cdots \cdots x_{\pi(n)} \in S
$$

either for each permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ or for none. Note that this property holds for each $n \in \mathbb{N}$ if it holds for $n=3$, and that each closed semigroup is permutation stable in case \mathcal{A} is commutative.
Each closed semigroup $S \subseteq \mathcal{A}$ defines a pre-ordering on $G(\mathcal{A})$: For $x, y \in$ $G(\mathcal{A})$ let

$$
\begin{equation*}
x \preceq y \text { if and only if } x^{-1} y \in S . \tag{1}
\end{equation*}
$$

For general closed semigroups it is possible to obtain invariance results for equations of the type $u^{\prime}(t)=f(t, u(t)) u(t)$ or $u^{\prime}(t)=u(t) f(t, u(t))$, see for example L. Markus [3] for invariance of matrix Lie groups.
The aim of this paper is to prove comparison results for ODEs of the form

$$
u^{\prime}(t)=f_{1}(t, u(t)) u(t)+u(t) f_{2}(t, u(t))
$$

in $G(\mathcal{A})$, with respect to pre-orderings induced by permutation stable closed semigroups. Equations of this type can be considered as generalized Kolmogorov systems, since the classical Kolmogorov systems [5] are obtained by concentration on the case $\mathcal{A}=\mathbb{R}^{n}$ (endowed with the coordinatewise multiplication).

As an introductory example which will illustrate our concepts, consider $\mathcal{A}=M^{n \times n}$, the Banach algebra of all real $n \times n$ matrices. Here

$$
S=\{X: 0 \leq \operatorname{det}(X) \leq 1\}
$$

is a permutation stable closed semigroup. Thus, if $X, Y \in M^{n \times n}$ are invertible then $X \preceq Y$ means $0 \leq \operatorname{det}\left(X^{-1} Y\right) \leq 1$.
2. Preliminaries and Notations. In the sequel always let $S \subseteq \mathcal{A}$ be a permutation stable closed semigroup.
Obviously \preceq defined by (1) is a reflexive and transitive relation on $G(\mathcal{A})$, and

$$
S \cap G(\mathcal{A})=\{x \in \mathcal{A}: \mathbf{1} \preceq x\}
$$

Since S is permutation stable $x \preceq y$ if and only if $y x^{-1} \in S$. In particular, if $x \preceq y$ then $y^{-1} \preceq x^{-1}$, since $\left(y^{-1}\right)^{-1} x^{-1}=y x^{-1} \in S$.
We define

$$
W(S)=\{a \in \mathcal{A}: \exp (t a) \in S(t \geq 0)\}
$$

The set $W(S)$ is a closed wedge, that is $W(S) \neq \emptyset$ (since $\mathbf{1} \in S \Rightarrow 0 \in$ $W(S)$), $\overline{W(S)}=W(S)$ (since S is closed), $\lambda W(S) \subseteq W(S)$ for each $\lambda \geq 0$, and $W(S)+W(S) \subseteq W(S)$ (according to Trotter's product formula). We consider a second pre-ordering on \mathcal{A}. We define

$$
a \unlhd b \text { if and only if } b-a \in W(S)
$$

Since $W(S)$ is a wedge, \unlhd is a reflexive and transitive relation on \mathcal{A}. In our introductory example $\mathcal{A}=M^{n \times n}, S=\{X: 0 \leq \operatorname{det}(X) \leq 1\}$, and

$$
W(S)=\{A: \operatorname{trace}(A) \leq 0\}
$$

According to Wronski's Theorem:

$$
\operatorname{det}(\exp (t A))=\exp (t \cdot \operatorname{trace}(A)) \quad(t \geq 0)
$$

Thus, $A \unlhd B$ means $\operatorname{trace}(B-A) \leq 0$ in this case.

$$
\mathbf{1} \preceq \exp (t a) x \exp (t b) \quad(t \geq 0)
$$

Proof. Fix $t \geq 0$. We set

$$
y_{n}=\left(\exp \left(\frac{t a}{n}\right) \exp \left(\frac{t b}{n}\right)\right)^{n} \quad(n \in \mathbb{N})
$$

Each y_{n} is invertible, and $y_{n} \rightarrow \exp (t(a+b))(n \rightarrow \infty)$ according to Trotter's product formula. Hence, $y_{n}^{-1} \rightarrow \exp (-t(a+b))(n \rightarrow \infty)$. We have

$$
\begin{aligned}
\mathbf{1} & \preceq x \exp (t(a+b)) \\
& =x\left(\exp \left(\frac{t a}{n}\right) \exp \left(\frac{t b}{n}\right)\right)^{n} y_{n}^{-1} \exp (t(a+b)) .
\end{aligned}
$$

Since S is permutation stable

$$
\mathbf{1} \preceq \exp (t a) x \exp (t b) y_{n}^{-1} \exp (t(a+b)) .
$$

For $n \rightarrow \infty$ we obtain

$$
\begin{aligned}
\mathbf{1} & \preceq \exp (t a) x \exp (t b) \exp (-t(a+b)) \exp (t(a+b)) \\
& =\exp (t a) x \exp (t b),
\end{aligned}
$$

since S is closed.
Next, we prove that $W(S)$ is similarity stable.
$\underline{\text { Proposition 2. If } a, b \in \mathcal{A}, 0 \unlhd a+b \text { and } x \in G(\mathcal{A}) \text {, then } 0 \unlhd x^{-1} a x+b . ~}$
Proof. Let $t \geq 0$. We have

$$
\mathbf{1} \preceq \exp (t(a+b)) x^{-1} x
$$

hence,

$$
\mathbf{1} \preceq x^{-1} \exp (t(a+b)) x
$$

Applying Trotter's product formula twice, as in the proof of Proposition 1, leads to

$$
\mathbf{1} \preceq x^{-1} \exp (t a) x \exp (t b)=\exp \left(t x^{-1} a x\right) \exp (t b)
$$

and then to

$$
\mathbf{1} \preceq \exp \left(t\left(x^{-1} a x+b\right)\right) .
$$

Hence, $0 \unlhd x^{-1} a x+b$.
3. Linear Equations. Let $a, b, x \in \mathcal{A}$, and consider the initial value problem

$$
\begin{equation*}
u^{\prime}(t)=a u(t)+u(t) b, \quad u(0)=x \tag{2}
\end{equation*}
$$

The solution of (2) is

$$
u(t)=\exp (t a) x \exp (t b)
$$

Proposition 1 says that $u(t) \in S \cap G(\mathcal{A})(t \geq 0)$ if $x \in S \cap G(\mathcal{A})$ and $a+b \in W(S)$. This leads to the invariance condition which will be used later.

$$
\lim _{h \rightarrow 0+} \frac{1}{h} \operatorname{dist}(x+h(a x+x b), S)=0
$$

Proof. We have

$$
\lim _{h \rightarrow 0} \frac{x+h(a x+x b)-u(h)}{h}=0
$$

By Proposition $1, u(h) \in S(h \geq 0)$. Therefore,

$$
\frac{1}{h} \operatorname{dist}(x+h(a x+x b), S) \leq \frac{\|x+h(a x+x b)-u(h)\|}{h} \rightarrow 0
$$

as $h \rightarrow 0+$.
4. An Invariance Theorem. In the sequel always let $T \in(0, \infty]$. Let E be a Banach space, and let $K(x, \rho)$ denote the open ball in E with center $x \in E$ and radius $\rho>0$. Let $D \subseteq E$. A function $g:[0, T) \times D \rightarrow E$ is called locally Lipschitz continuous if to each $\left(t_{0}, x_{0}\right) \in[0, T) \times D$ there exist numbers $L \geq 0, \rho>0, \delta>0$ such that

$$
\|g(t, y)-g(t, x)\| \leq L\|y-x\|
$$

for

$$
t \in\left[t_{0}, t_{0}+\delta\right) \cap[0, T), x, y \in K\left(x_{0}, \rho\right) \cap D
$$

The following invariance theorem is a special case of an invariance theorem of Volkmann [7], see also the closely related invariance and existence results of Martin [3], Chapter 6.

Theorem 1. Let $D \subseteq E$ be open, $C \subseteq E$ be closed, and let $g:[0, T) \times$ $D \rightarrow E$ be locally Lipschitz continuous such that

$$
\lim _{h \rightarrow 0+} \frac{1}{h} \operatorname{dist}(x+h g(t, x), C)=0 \quad(t \in[0, T), x \in D \cap \partial C) .
$$

If $w:\left[0, T_{1}\right) \rightarrow D, T_{1} \leq T$ satisfies

$$
w^{\prime}(t)=g(t, w(t))\left(t \in\left[0, T_{1}\right)\right), \quad w(0) \in C
$$

then $w(t) \in C\left(t \in\left[0, T_{1}\right)\right)$.
Remark. Theorem 1 is a pure invariance theorem, since g is not assumed to be continuous.
5. Comparison Results. By means of Theorem 1 we prove the following comparison theorem.

Theorem 2. Let $f_{1}, f_{2}, f_{3}, f_{4}:[0, T) \times G(\mathcal{A}) \rightarrow \mathcal{A}$ be locally Lipschitz continuous. Let $u_{0}, v_{0} \in G(\mathcal{A})$ with $u_{0} \preceq v_{0}$ and let

$$
u:\left[0, T_{u}\right) \rightarrow G(\mathcal{A}), v:\left[0, T_{v}\right) \rightarrow G(\mathcal{A})
$$

be solutions of the initial value problems

$$
\begin{align*}
& u^{\prime}(t)=f_{1}(t, u(t)) u(t)+u(t) f_{2}(t, u(t)), \quad u(0)=u_{0} \tag{3}\\
& v^{\prime}(t)=f_{3}(t, v(t)) v(t)+v(t) f_{4}(t, v(t)), \quad v(0)=v_{0}
\end{align*}
$$

respectively. Assume for each $t \in\left[0, \min \left\{T_{u}, T_{v}\right\}\right)$ that

$$
\begin{equation*}
f_{1}(t, u(t))+f_{2}(t, u(t)) \unlhd f_{3}(t, y)+f_{4}(t, y) \quad(u(t) \preceq y) \tag{4}
\end{equation*}
$$

or that

$$
\begin{equation*}
f_{1}(t, x)+f_{2}(t, x) \unlhd f_{3}(t, v(t))+f_{4}(t, v(t))(x \preceq v(t)) . \tag{5}
\end{equation*}
$$

Then

$$
u(t) \preceq v(t) \quad\left(t \in\left[0, \min \left\{T_{u}, T_{v}\right\}\right)\right) .
$$

Proof. We assume (4). Set $J=\left[0, \min \left\{T_{u}, T_{v}\right\}\right)$ and consider $w: J \rightarrow$ $G(\mathcal{A})$ defined by $w(t)=u^{-1}(t) v(t)$. We have $w(0) \in S$, and an easy calculation shows that w is a solution of the differential equation

$$
w^{\prime}(t)=g(t, w(t))=g_{1}(t, w(t)) w(t)+w(t) g_{2}(t, w(t))
$$

with

$$
g, g_{1}, g_{2}: J \times G(\mathcal{A}) \rightarrow \mathcal{A}
$$

defined by

$$
\begin{aligned}
& g_{1}(t, x)=(u(t))^{-1}\left(f_{3}(t, u(t) x)-f_{1}(t, u(t))\right) u(t)-f_{2}(t, u(t)) \\
& g_{2}(t, x)=f_{4}(t, u(t) x), \quad g(t, x)=g_{1}(t, x) x+x g_{2}(t, x)
\end{aligned}
$$

Obviously g_{1}, g_{2} and therefore g are locally Lipschitz continuous. Let $t \in J$ and $x \in S \cap G(\mathcal{A})$. Then $u(t) \preceq u(t) x$, hence, by (4)

$$
f_{1}(t, u(t))+f_{2}(t, u(t)) \unlhd f_{3}(t, u(t) x)+f_{4}(t, u(t) x)
$$

that is

$$
0 \unlhd\left(f_{3}(t, u(t) x)-f_{1}(t, u(t))\right)-\left(f_{2}(t, u(t))-f_{4}(t, u(t) x)\right) .
$$

By Proposition 2

$$
0 \unlhd(u(t))^{-1}\left(f_{3}(t, u(t) x)-f_{1}(t, u(t))\right) u(t)-\left(f_{2}(t, u(t))-f_{4}(t, u(t) x)\right)
$$

that is $0 \unlhd g_{1}(t, x)+g_{2}(t, x)$, and by Proposition 3

$$
\lim _{h \rightarrow 0+} \frac{1}{h} \operatorname{dist}(x+h g(t, x), S)=0
$$

According to Theorem $1 w(t) \in S(t \in J)$, that is $u(t) \preceq v(t)(t \in J)$.
If (5) holds we consider

$$
g, g_{1}, g_{2}: J \times G(\mathcal{A}) \rightarrow \mathcal{A}
$$

defined by

$$
\begin{aligned}
& g_{1}(t, x)=(u(t))^{-1}\left(f_{3}(t, v(t))-f_{1}\left(t, v(t) x^{-1}\right)\right) u(t)-f_{2}\left(t, v(t) x^{-1}\right) \\
& g_{2}(t, x)=f_{4}(t, v(t)), \quad g(t, x)=g_{1}(t, x) x+x g_{2}(t, x)
\end{aligned}
$$

Again $w^{\prime}(t)=g(t, w(t))(t \in J)$, and g_{1}, g_{2}, g are locally Lipschitz continuous since $x \mapsto x^{-1}$ is locally Lipschitz continuous on $G(\mathcal{A})$.
Let $t \in J$ and $x \in S \cap G(\mathcal{A})$. Now, $v(t) x^{-1} \preceq v(t)$, hence by (5)

$$
f_{1}\left(t, v(t) x^{-1}\right)+f_{2}\left(t, v(t) x^{-1}\right) \unlhd f_{3}(t, v(t))+f_{4}(t, v(t))
$$

that is

$$
0 \unlhd\left(f_{3}(t, v(t))-f_{1}\left(t, v(t) x^{-1}\right)\right)-\left(f_{2}\left(t, v(t) x^{-1}\right)-f_{4}(t, v(t))\right)
$$

and with the same conclusion as above

$$
\lim _{h \rightarrow 0+} \frac{1}{h} \operatorname{dist}(x+h g(t, x), S)=0
$$

Again Theorem 1 proves $u(t) \preceq v(t)(t \in J)$.
6. Monotone Dependence on the Initial Value. We call a function $f: G(\mathcal{A}) \rightarrow \mathcal{A}$ monotone increasing if

$$
x \preceq y \text { implies } f(x) \unlhd f(y),
$$

and $f:[0, T) \times G(\mathcal{A}) \rightarrow \mathcal{A}$ is called monotone increasing if $x \mapsto f(t, x)$ is monotone increasing for each $t \in[0, T)$.

Theorem 3. Let $f_{1}, f_{2}:[0, T) \times G(\mathcal{A}) \rightarrow \mathcal{A}$ be continuous, locally Lipschitz continuous, and let $f_{1}+f_{2}$ be monotone increasing. For each $u_{0} \in G(\mathcal{A})$ let

$$
u\left(\cdot, u_{0}\right):\left[0, \omega_{+}\left(u_{0}\right)\right) \rightarrow G(\mathcal{A})
$$

denote the nonextendable solution of the initial value problem (3). If $u_{0} \preceq$ v_{0}, then

$$
u\left(t, u_{0}\right) \preceq u\left(t, v_{0}\right) \quad\left(t \in\left[0, \min \left\{\omega_{+}\left(u_{0}\right), \omega_{+}\left(v_{0}\right)\right\}\right)\right) .
$$

 $v(t):=u\left(t, v_{0}\right)$.
7. Monotone Solutions of Dynamical Systems. In analogy to the known results on monotone solutions of dynamical systems with quasimonotone increasing right hand side $[2,6]$ we have the following theorem.

Theorem 4. Let $g_{1}, g_{2}: G(\mathcal{A}) \rightarrow \mathcal{A}$ be locally Lipschitz continuous (hence, continuous), and let $g_{1}+g_{2}$ be monotone increasing. Let $u_{0} \in G(\mathcal{A})$,
and let $u:\left[0, \omega_{+}\right) \rightarrow G(\mathcal{A})$ be the nonextendable solution of the dynamical system

$$
u^{\prime}(t)=g_{1}(u(t)) u(t)+u(t) g_{2}(u(t)), \quad u(0)=u_{0}
$$

If $0 \unlhd$ [\unrhd] $g_{1}\left(u_{0}\right)+g_{2}\left(u_{0}\right)$, then u is monotone increasing [decreasing] with respect to \preceq on $\left[0, \omega_{+}\right)$.

Proof. First, let $0 \unlhd g_{1}\left(u_{0}\right)+g_{2}\left(u_{0}\right)$. Let $f_{1}, f_{2}, f_{3}, f_{4}:\left[0, \omega_{+}\right) \times G(\mathcal{A}) \rightarrow$ \mathcal{A} be defined by $f_{1}(t, x)=0, f_{2}(t, x)=0, f_{3}(t, x)=g_{1}(x), f_{4}(t, x)=g_{2}(x)$. The solution of $z^{\prime}=f_{1}(t, z) z+z f_{2}(t, z)=0, z(0)=u_{0}$ is $z(t)=u_{0}$, and

$$
0=f_{1}\left(t, u_{0}\right)+f_{2}\left(t, u_{0}\right) \unlhd f_{3}(t, y)+f_{4}(t, y)=g_{1}(y)+g_{2}(y)
$$

for $t \in\left[0, \omega_{+}\right), u_{0} \preceq y$, since $g_{1}+g_{2}$ is increasing. According to Theorem 2 we obtain $u_{0} \preceq u(t)$ on $\left[0, \omega_{+}\right)$.
Fix $t_{0} \in\left[0, \omega_{+}\left(u_{0}\right)\right)$. Now, $v(t):=u\left(t+t_{0}\right), t \in\left[0, \omega_{+}-t_{0}\right)$ solves

$$
v^{\prime}(t)=g_{1}(v(t)) v(t)+v(t) g_{2}(v(t)), \quad v(0)=u\left(t_{0}\right)
$$

and $0 \unlhd g_{1}\left(u_{0}\right)+g_{2}\left(u_{0}\right) \unlhd g_{1}\left(u\left(t_{0}\right)\right)+g_{2}\left(u\left(t_{0}\right)\right)$. Thus, the same argument as above proves $u\left(t_{0}\right) \preceq u(t)\left(t \in\left[t_{0}, \omega_{+}\right)\right)$.
In case $0 \unrhd g_{1}\left(u_{0}\right)+g_{2}\left(u_{0}\right)$ we consider $g_{3}, g_{4}: G(\mathcal{A}) \rightarrow \mathcal{A}$ defined by $g_{3}(x)=$ $-g_{1}\left(x^{-1}\right), g_{4}(x)=-g_{2}\left(x^{-1}\right)$. Note that $g_{3}+g_{4}$ is monotone increasing too. Now, $w:\left[0, \omega_{+}\right) \rightarrow G(\mathcal{A})$ defined by $w(t)=(u(t))^{-1}$ solves

$$
w^{\prime}(t)=w(t) g_{3}(w(t))+g_{4}(w(t)) w(t), \quad w(0)=\left(u_{0}\right)^{-1}
$$

and $0 \unlhd g_{3}\left(\left(u_{0}\right)^{-1}\right)+g_{4}\left(\left(u_{0}\right)^{-1}\right)$. According to the first case w is monotone increasing, hence, u is monotone decreasing on $\left[0, \omega_{+}\right)$.
8. Remark on Equations Defined on $[\mathbf{0}, \mathbf{T}) \times \mathcal{A}$. Let $a, b:[0, T) \rightarrow$ \mathcal{A} be continuous functions, and let $x \in \mathcal{A}$. The initial value problem

$$
u^{\prime}(t)=a(t) u(t)+u(t) b(t), \quad u(0)=x
$$

is uniquely solvable on $[0, T)$. By standard reasoning $u(t)$ is invertible for each $t \in[0, T)$ if x is invertible, and in this case $v:[0, T) \rightarrow G(\mathcal{A})$, $v(t)=(u(t))^{-1}$ is the solution of

$$
v^{\prime}(t)=-b(t) v(t)-v(t) a(t), \quad u(0)=x^{-1}
$$

Therefore, if $f_{1}, f_{2}:[0, T) \times \mathcal{A} \rightarrow \mathcal{A}$ are continuous and locally Lipschitz continuous, and if

$$
u\left(\cdot, u_{0}\right):\left[0, \omega_{+}\left(u_{0}\right)\right) \rightarrow \mathcal{A}
$$

denotes the nonextendable solution of the initial value problem

$$
u^{\prime}(t)=f_{1}(t, u(t)) u(t)+u(t) f_{2}(t, u(t)), \quad u(0)=u_{0}
$$

then $u_{0} \in G(\mathcal{A})$ implies $u(t) \in G(\mathcal{A})\left(t \in\left[0, \omega_{+}\left(u_{0}\right)\right)\right)$. In particular, if $u_{0} \in G(\mathcal{A})$, then the maximal interval of existence of the solution does not change if the domain of definition of f_{1}, f_{2} is restricted to $[0, T) \times G(\mathcal{A})$.

9. Examples.

1. First, we return to our introductory example $\mathcal{A}=M^{n \times n}, S=\{X: 0 \leq$ $\operatorname{det}(X) \leq 1\}$. We have seen that $W(S)=\{A: \operatorname{trace}(A) \leq 0\}$. In particular $X \preceq Y$ implies $|\operatorname{det}(Y)| \leq|\operatorname{det}(X)|$.
Let $A_{k}, B_{k}, C_{k} \in M^{n \times n}, k=1,2$ with $\operatorname{trace}\left(B_{1}+B_{2}\right) \geq 0$ and let $f_{k}: G\left(M^{n \times n}\right) \rightarrow M^{n \times n}$ be defined by

$$
f_{k}(X)=A_{k} X-X A_{k}+|\operatorname{det}(X)| B_{k}+C_{k} \quad(k=1,2)
$$

It is easy to check that $f_{1}+f_{2}$ is monotone increasing. According to Theorem 3 and Theorem 4 the solution of the matrix initial value problem

$$
U^{\prime}(t)=f_{1}(U(t)) U(t)+U(t) f_{2}(U(t)), U(0)=U_{0}
$$

depends increasingly on $U_{0} \in G\left(M^{n \times n}\right)$, and if $U_{0} \in G\left(M^{n \times n}\right)$ and $f_{1}\left(U_{0}\right)+f_{2}\left(U_{0}\right) \unrhd[\unlhd] 0$, which means

$$
\operatorname{trace}\left(\left|\operatorname{det}\left(U_{0}\right)\right|\left(B_{1}+B_{2}\right)+C_{1}+C_{2}\right) \leq[\geq] 0
$$

then $t \mapsto U(t)$ is monotone increasing [decreasing], thus, $t \mapsto|\operatorname{det}(U(t))|$ is monotone decreasing [increasing].
2. Let $\mathcal{A}=\mathbb{R}^{4}$ endowed with coordinatewise multiplication. We consider the permutation stable closed semigroup

$$
S=\left\{x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{k} \geq 0(k=1,2,3,4), x_{1} x_{2} \geq 1, x_{3} x_{4} \geq 1\right\}
$$

Now, $x \preceq y$ implies $\left|x_{1} x_{2}\right| \leq\left|y_{1} y_{2}\right|$ and $\left|x_{3} x_{4}\right| \leq\left|y_{3} y_{4}\right|$. We have

$$
W(S)=\left\{a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right): a_{1}+a_{2} \geq 0, a_{3}+a_{4} \geq 0\right\}
$$

Let $f: G\left(\mathbb{R}^{4}\right) \rightarrow \mathbb{R}^{4}$ be defined by

$$
f(x)=\left(-\frac{1}{\left|x_{3} x_{4}\right|}-x_{3}^{2}-1,-\frac{1}{\left|x_{1} x_{2}\right|}+x_{3}^{2}+1,\left|x_{1} x_{2} x_{3} x_{4}\right|-x_{1}^{3}-2, x_{1}^{3}\right)
$$

Again, f is monotone increasing, and $f((1,1,-1,1))=(-3,1,-2,1) \unlhd 0$. According to Theorem 4 the solution of

$$
u^{\prime}(t)=u(t) f(u(t)), \quad u(0)=(1,1,-1,1)
$$

is monotone decreasing. Thus, $t \mapsto\left|u_{1}(t) u_{2}(t)\right|$ and $t \mapsto\left|u_{3}(t) u_{4}(t)\right|$ are monotone decreasing.
3. Let \mathcal{B} be any unital normed Banach algebra and let $S_{0}=\{x \in \mathcal{B}$: $\|x\| \leq 1\}$. Then S_{0} is a closed semigroup but, in general, not permutation stable. Let $m_{+}[x, y]$ denote the right hand side derivative of the norm at x in direction y. It is known [1], Chapter 1 , that $\|\exp (t a)\| \leq 1(t \geq 0)$ if and only if $m_{+}[\mathbf{1}, a] \leq 0$.
Let \mathcal{A} be any commutative closed subalgebra of \mathcal{B} containing 1 , fix $n \in \mathbb{N}$, and let $S=\left\{x \in \mathcal{A}:\left\|x^{n}\right\| \leq 1\right\}$. Now S is a permutation stable closed semigroup, and

$$
W(S)=\left\{a \in \mathcal{A}: m_{+}[\mathbf{1}, a] \leq 0\right\}
$$

since $\|\exp (t a)\| \leq 1(t \geq 0)$ if and only if $\|\exp (n t a)\| \leq 1(t \geq 0)$. For example $a-\mu \mathbf{1} \in W(S)$ if $\mu \geq\|a\|$.
Let $c_{1}, c_{2}:[0, T) \rightarrow \mathcal{A}$ be continuous, $c_{1}(t) \in W(S)(t \in[0, T))$ and let $f:[0, T) \times G(\mathcal{A}) \rightarrow \mathcal{A}$ be defined by

$$
f(t, x)=\left\|x^{-n}\right\| c_{1}(t)+c_{2}(t)
$$

Then, f is monotone increasing. According to Theorem 3 the solution of

$$
u^{\prime}(t)=\left(\left\|(u(t))^{-n}\right\| c_{1}(t)+c_{2}(t)\right) u(t) \quad u(0)=u_{0} \in G(\mathcal{A})
$$

depends monotone increasingly on u_{0}.
4. This time let \mathcal{B} be any unital normed commutative Banach algebra and let $\mathcal{A}=\mathcal{B}^{n \times n}$, the Banach algebra of all $n \times n$-matrices with entries from \mathcal{B}. For $A \in \mathcal{A}$ let $\operatorname{det}(A) \in \mathcal{B}$ and $\operatorname{trace}(A) \in \mathcal{B}$ be defined by the common algebraic formulas. It is well-known that $X \in \mathcal{A}$ is invertible in \mathcal{A} if and only if $\operatorname{det}(X)$ is invertible in \mathcal{B}, and that $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$ for all $X, Y \in \mathcal{A}$. Since the proof of Wronski's Theorem is purely algebraic too, we also obtain

$$
\begin{equation*}
\frac{d}{d t} \operatorname{det}(\exp (t A))=\operatorname{trace}(A) \operatorname{det}(\exp (t A)) \quad(t \in \mathbb{R}) \tag{6}
\end{equation*}
$$

for each $A \in \mathcal{A}$. Let

$$
S:=\{X \in \mathcal{A}:\|\operatorname{det}(X)\| \leq 1\}
$$

Since \mathcal{B} is commutative, S is a permutation stable semigroup, and from (6) we obtain

$$
W(S)=\left\{A \in \mathcal{A}: m_{+}[\mathbf{1}, \operatorname{trace}(A)] \leq 0\right\}
$$

Moreover $X \preceq Y$ implies $\|\operatorname{det}(Y)\| \leq\|\operatorname{det}(X)\|$, since $\left\|\operatorname{det}\left(X^{-1} Y\right)\right\|=$ $\left\|(\operatorname{det}(X))^{-1} \operatorname{det}(Y)\right\|$.
Now, the functions and conclusions from Example 1 can be reformulated in this setting.

References

1. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Mathematical Society Lecture Note Series, 2 Cambridge University Press, London-New York, 1971.
2. G. Herzog, "Quasimonotonicity," Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), Nonlinear Anal. 47 (2001), 2213-2224.
3. L. Markus, "Dynamical Systems on Group Manifolds," Differ. Equations Dynam. Systems, Proc. Int. Sympos., Puerto Rico 1965 (1967) 487-493.
4. R. H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Reprint of the 1976 original, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1987.
5. R. Redheffer, "Generalized Monotonicity, Integral Conditions and Partial Survival," J. Math. Biol., 40 (2000), 295-320.
6. H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, Providence, RI: American Mathematical Society (AMS), 1995.
7. P. Volkmann, "Über die positive Invarianz einer abgeschlossenen Teilmenge eines Banachschen Raumes bezüglich der Differentialgleichung $u^{\prime}=f(t, u), "$ J. Reine Angew. Math., 285, (1976), 59-65.

Mathematics Subject Classification (2000): 34C11, 34C12, 34G20
Gerd Herzog
Institut für Analysis
Universität Karlsruhe
D-76128 Karlsruhe
Germany
email: Gerd.Herzog@math.uni-karlsruhe.de
Roland Lemmert
Institut für Analysis
Universität Karlsruhe
D-76128 Karlsruhe
Germany
email: Roland.Lemmert@math.uni-karlsruhe.de

