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Abstract. We present a new proof, using Residue Calculus, of the
transformation law of a general eta product under I'g(n) where n is any
integer, then we deduce the invariance of a special case of this product
under this group and we prove the transformation law of another special
case. Our proof is inspired by Siegel’s proof [7] of the transformation law
of the Dedekind eta function and by Rademacher’s generalization [5].

1. Introduction. Let 7 be in the upper half plane and n € Z. The
Dedekind eta function is defined by

oo

n(r) = [ - e2imn).

n=1

Siegel [7] proved the transformation law of the Dedekind eta function un-
der inversion using residue calculus. Rademacher [5] generalized Siegel’s
method by determining the transformation law of the Dedekind eta func-
tion under any element in the full modular group. In this paper, we gener-
alize Rademacher’s proof by determining the transformation law of a more
general product of eta functions. To define our product, consider

I‘o(n):{< Z Z) ta,bye,d € Z, c=0 (mod n), ad—bc:l},

a subgroup of the full modular group.

Suppose n > 1, and let {rs} and {r5} be two sequences of integers indexed
by the positive divisors § of n and suppose that n has g divisors.
Consider the function

a=a)=]] ()"

=1 (1)
We prove the transformation law of this function, which is given by

’

g1 (V7)) = e ™ {—i(cr + d)}% DD DY 91(7),



c=cdand V = ( c d) € Do(n).

A special case of the above product is given by

o) =11 (o)™

()

by setting rs = rj for every ¢ dividing n in g(7).
Imposing certain conditions on rs’s and r5’s will make f(7) a function on
To(n). Another interesting special case of this product is given by

fi(r) =TI (@)

=1

by setting > 5, 75 = 0 in g(7).
By imposing different conditions this time on 75’s and rj’s, we will deduce
a transformation law of f1(7).

1.1 The Transformation Law of g;(7) Under I'g(n). We give a
new, detailed proof using residue calculus of the transformation law under

FQ (TL)

g (Vr) =™ {ifer + d)}E i L (), (1)
where
o)
g1(1) = H (o)
=1 n(r)
Consider

Let a = ', ¢ = k and d = —h, hence, k = k;6;, where (h,k) =1, k > 0,
1=1,2,...,gand hh' = —1 (mod k). We will write 7 = (h+i2)/k and as
aresult Vr = (b +iz71)/k.



We have to prove
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The logarithm here is everywhere taken with its principal branch.
Now, from the definition of n(7),
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We substitute the expansion above in (2) and we obtain

9 e —2mvr/k 2
E E E Tél 27mh’l/r/kl Ik
_ —27T7’/Z
I=1v=1r=1 r 1 €
9 & —2mwzur/k
_ § § § T(SL 27mhp,r/kl ur /i
_ p—2mzr
=1 p=1r=1 r 1 €
g
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+ E —z | +m E rs, s(h, k;
12kl z l ( Y )
=1 =1
g k oo —27vr/kz
_ E E E rlsz eQTrzh vr/k € /
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g k o —2mzur/k
+ E E E 51 27mhp,r/k € ur/
r 1—e— 2mzr
=1 p=1r=1
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=1
1/ g
=3 <Z T, — er;l> log 2. (3)

To prove (3), we will define a function and calculate the residues of
the function at the poles and prove that the sum of the residues is equal to
the left side of the above equation. A sort of symmetry is needed between
w and hyu. Therefore, we introduce

p* = hp (mod k), (4)
where 1 < p* <k — 1.
Consider the function
TNz &
F,(z) = — —cothr Nzcot Z(rgl —r5,)

=1

2nuNz [k —2mip* Nz /k z

Mm I\Mm g"

O e
Z ? 1— e27rNac 1 — e—27miNz/2
1 p=1
k-1 ! 2ruNz/k —2mip* Nz /kz
_ To  © . © (5)
T 1— e27er 1— e—ZﬂiNx/z’
=1 p=1

where N = n + % We will integrate F,(z) along the parallelogram with
the vertices z, i, —z, —i and then calculate the residues of this function at
its poles and then compare the two answers using the Residue Theorem.

4



The function F,,(x) has poles at © = 0, = ir/N and © = —zr/N for
r=41,42,43,... ,4n.
The residue at = 0 of the first summand in F, (x)

1 TNz &
/
s coth Nz cot . lg 1 (rs, —75,)

is _M (z—l)-

127

The residue at x = 0 of

e27ruNz/kl 6727”';1,*]\71/191,2

— T 1— eQﬂ'Nx 1— e—Qﬂ'iNm/z

is

S S @
12 2% 2k )

The second summand of F,,(z) has to be summed over g from 1 to
k; — 1. Observe also that p* runs from 1 to k; — 1 for all [ =1,2,... /g in
view of (4). Also, the first and the third summation of (7) are not difficult
to calculate. For the middle term, observe from (4) that

BT fhp
R

forl=1,2,3,...,9,

so that -
— (4 1\ (gt 1\
Z <k'l 2) <kl 2) - S(h, kl)'

p=1

As a result, the residue of the second summand of F;,(z) at x = 0 is
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> (E T 2k_> razi+ ) s(hikors,

=1

ey (Lo ey ®)
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The residue of the third summand of the function F),(x)

ki—1 T':; e?ﬂ'p,Nw/k 6727riu*Nw/kz
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E o, .
T 1— e27er 1— e—ZﬂiNx/z

is

) /
1w 1p "o
23 (- i) 2

Thus, using (6), (8) and (9), we get that the residue at x = 0 of F},(z)

is

g9

g g
Zshkl rs, + ZZT& <Z——>—Shk27’5l
=1 —

The residue of F,(z) at x = % is

g / g k—1
21:1(7‘51 - Tél) mr z : 2 : 75 271'@;”/1@1

4dmr z 27rz
g k-1 7l 2rp*r/kz
+ 1 E 51 271'%;“‘/1@ e /
; _ p2nr/z”
271, iy T 1—e

It is easy to see that

Wu=hhp=-p (mod k),
forl=1,2,3,...,9, and

hu=hhp=—-p (mod k).

As a result, (10) becomes
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The parallelogram contains the poles x = % for n<r<-landl<r<
n. Then, we sum over the poles and obtain
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In the third and fifth summands of the above sum, we replace k; — u* and
k — p* by p* and combine it with the other sum. As a result, the residue
of F,,(z) at x = & is given by

_ n g —2nvr/kiz
Zl 1 T‘SL z :_ _2 :z :z : T(SL 27mh'l/r/kz € [k
_ —27T7’/Z
I=1v=1r=1 1 €
g —2nvr/kz
_ i § § § 51 27mh'1/r/k e /
_ p—27r/z’
e =1 v=1r=1 €
Similarly, we find the sum of the residues of F,(z) at x = =5, r =
41,42, 43,... ,+n is
9 n -2 k
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_ p—27rz
& I=1v=1r=1 r €
. 9k n U —2nvrz/k
_iyyy "y itk €270
I
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Thus, the sum of all the residues of F,,(z) within the parallelogram is
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1=1

=1
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What remains to prove is that

lim [ F,( <Z rs, — ’l> log 2,
n—oo C

where C is the parallelogram of vertices z, 7, —z, —i.

Now on the four sides of C, except at the vertices, the second and the third
summands in F),(x) goes to zero as n goes to infinity. Regarding the first
part of the function, it is easy to see that

wNx

lim coth 7Nz cot =1

n—oo
on the sides 7 to —z and —i to z and that

Nx

Il
[
o~

lim cothnwNzx cot T

n—oo

on the sides ¢ to z and —¢ to —z. Therefore,

lim F,(z) = 7Zl L7

n—oo 4

on the sides i to z and on —¢ to —z, and

9_ r _,r,/
lim F,(z) = —72171 il %



on the sides ¢ to —z and on —i to z. The convergence of F,(z) is not
uniform but it is bounded, since the denominators of the three summands
are bounded away from zero and this is because N = n+% is not an integer.
We then have

_ Xt _/Zd_m/id_w_/zd_m/id_w}
4 T . T i T L, T
- x " dx

g /
- Zl:l o — T,
2

g
= - (Z Ts, — rfgl> log 2.
1=1

1.2 A Special Case of g1(7). Let

Also, suppose that

is an integer and

51 D06 s, (12)

is an integer, where n = §;0;. Also, assume that

g
JIRE (13)
=1

is a rational square and that r; = 0.
It is easy to see that f(7) is the special case of g1(7), in which rs = rj
for all 6 dividing n. We then have

fFVr) =™ f(7),



where

N (R B CEI o

=1

Suppose now that (a,6) = 1 and ¢ > 0. M. Newman [2] using (11), (12)
and (13) showed that

zg: {{al—gcd +s(—d, C)} - {alg—czd tela, CZ)}} -

=1

is an even integer. Hence,

fVr) = f(r),

where V € I'y(n).
In [2], M. Newman mentioned that since S = 741 is in T'g(n) for every
n, To(n) can be generated by the elements

a b

ne d)’
where (a,6) = 1. Thus, it is necessary to show the invariance of a function
only with respect to these transformations in order to show its invariance

for Tg(n). Also, it suffices to consider only these substitutions for which
both a and nc are positive.

1.3 Another Special Case of g1(7). Let

where g
Zém;l =0 (mod 24) (14)
=1
and
I n
Z 50 = 0 (mod 24). (15)
!

Let k = 137 ,rs, € Z. 1t is easy to see that fi(7) is a special case of
91(7), where Y7, 75 = 0. We then have

A(VT) =™ iler + )} fu(r),
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where

9
oxx a+d
) = E { 12¢, S( d, Cl)}’l"gl.

1=1
We have to prove now that the transformation law above is the same as

F(VT) = x(d)(er + d)* fr(7),

where V' € T'y(n) and
-1 k g 76
x(d) = <—( ) i i ) :

Since k is an integer, we get
AVT) = e ™ (=) (er + d)F fi (7).
What remains to prove is that
x(d) = (—iyFe ™0™,
Notice that —ad = —1 (mod ¢). Thus, s(—d, c) = —s(a, ).

We have that
a b a 0b
5MT—5< ney d)T—( §e, d>5T—M15T,

where M € T'y(n).
Thus, n(dMT) = n(M1d7) and so

9 9
= Hn 5lM7' "= Hn Ml(sﬂ' "o,
=1 =1

~

Assume now that (a,6) = 1, ¢ > 0 and n = 6;6;. In [3], Newman proved
that

s(a,c) — (a+d)/12¢c = 11—2a(c—b—3) - % {1 — (2)} (mod 2),

where (g) is the generalized Legendre-Jacobi symbol of the quadratic reci-

procity. Write ¢ = ¢in. Thus,

g
KoKk a+ d
=2 {S(a’ er) = (12(5’01) } o

=1

ac
= 1 E 5l715l 12 g 5lrél
3a 1< djc1
— E T'(SL — 5 E {1 — (7) } s, (mod 2)

=1
2a01 g 5l
Zéz rs, + 24 Zémﬁ +- Z 1— (2 Lry, (mod 2).
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But we are given that Y7 d/rs, = 0 (mod 24) and >.7_, drs, = 0

(mod 24). Thus,
g
acy ,
T2 20

and .
ab
13 20
=1
are even integers. Therefore, we get
677”‘6*** = eﬂ—i%keﬂ-i% Zf:l{li(%[) }T5l
e O ()

Now,

Thus,

(_i)kefﬂ'ié***

Il
7N
T
—
S—
>
s [
Te
o
>,
=5
g
~

But ad — bc = 1, as a result we get

(_i)ke—ﬂ-ié*** _ <(_1)k Hdlgzl 5;5l ) ,

and hence,
A(VT) = x(d)(er + D) fi(7),

B (_1)k g:1 5”1
PN(ET)
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