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Abstract. We present a class of “nice” n×n Markov probability tran-
sition matrices and infinitesimal generators whose limiting (steady state)
probabilities are proportional to the first n Fibonacci numbers. We ex-
tend this model to other sequences and discover some curious matrix and
sequence relationships.

1. Introduction. We begin with a particular example of a probability
transition matrix P for a Markov chain {Xk} with finitely many states
{0, 1, 2, 3, 4, 5, 6, 7}. [1]. Let

P =























2/3 1/3 0 0 0 0 0 0
2/3 0 1/3 0 0 0 0 0
1/3 1/3 0 1/3 0 0 0 0
1/3 0 1/3 0 1/3 0 0 0
1/3 0 0 1/3 0 1/3 0 0
1/3 0 0 0 1/3 0 1/3 0
1/3 0 0 0 0 1/3 0 1/3
1/3 0 0 0 0 0 1/3 1/3























, (1)

where pij = P (Xk = j|Xk−1 = i) for all states i, j and for k = 1, 2, . . . .
This represents a fairly natural Markov chain. It looks like a finite one
dimensional random walk with equal probabilities of one step to the right
or one step to the left except near the endpoints. There is also a probability
of a movement directly to zero. So this Markov Chain could represent a
population with limited capacity which increases with a birth, decreases
with a death, and allows a mass migration of everyone out of the present
location, which would lower the population to zero. In studying models,
we begin with simple cases so we take all three probabilities to be equal.
We stop with a maximum of 7 individuals just to illustrate the results.

The Fibonacci connection to the above matrix, discussed in Section 2,
was discovered by chance. We find the limiting probability (steady state)
vector for this Markov chain and show that it has Fibonacci type entries.
We explain why this happens and find a whole class of transition matrices
with similar properties. In Section 3, we extend the state space to the
entire set of positive integers. We find the limiting probability vector in
two different ways leading to further results. We also consider other types
of sequences. In Section 4, we present a few additional comments.

The usual problem in Markov chains is to find the limiting probability
vector for a given transition matrix. In some sense, we are solving a reverse
problem here of finding a transition matrix which will give a particular
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limiting vector. The Metropolis-Hastings algorithm and the Gibbs sampler
[2] have the same goal but with different purpose and a different type of
result.

2. Limiting Probabilities for a Finite State Space. To find the
limiting vector corresponding to the matrix (1), we define the row vector
π = (π0, π1, π2, π2, π3, π4, π5, π6, π7). Then we solve the system π = πP

with the additional normalizing condition that
∑7

i=0
πi = 1. We get the

results π6 = 2π7, π5 = 5π7, π4 = 13π7, π3 = 34π7, π2 = 89π7, π1 = 233π7,
and π0 = 610π7.

The first few Fibonacci numbers are

F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8

F7 = 13 F8 = 21 F9 = 34 F10 = 55 F11 = 89 F12 = 144

F13 = 233 F14 = 377 F15 = 610 F16 = 987 F17 = 1597 F18 = 2584.

From 1 = π0 + · · ·+ π7 we obtain π7 = 1/987. Thus, the limiting vector is

π =

(

610

987
,
233

987
,
89

987
,
34

987
,
13

987
,

5

987
,

2

987
,

1

987

)

=

(

F15

F16

,
F13

F16

,
F11

F16

,
F9

F16

,
F7

F16

,
F5

F16

,
F3

F16

,
F1

F16

)

.

We are surprised to obtain every odd indexed Fibonacci number from
F15 to F1, each divided by the sum of those Fibonacci numbers, as the
limiting probability of a very natural Markov process.

We can find a whole class of probability transition matrices with the
same limiting probability vector. We use uniformization methods which
convert probability transition matrices for discrete time Markov chains
into infinitesimal generators (rate matrices) for continuous time Markov
processes and vice-versa. Although some authors (e.g. Medhi [3]) discuss
the conversion in both directions, we were unable to find a reference to the
result given in Theorem 2.1. (A geometric interpretation for the 2× 2 case
appears in Brill and Hlynka [4].)

Theorem 2.1. Let P be an n × n probability transition matrix for a
discrete time Markov chain (DTMC) with limiting vector π. Then the class
of matrices of the form (P − I)/q + I has the same limiting vector, where
q is a number such that q ≥ maxi,j{qij}, P − I = [qij ], and I is the n× n
identity matrix.

Proof. Since π = πP , it follows that 0 = π(P − I). Also, P − I sat-
isfies the conditions of a rate matrix of a continuous time Markov process
(CTMP), namely that the rows sum to 0, the off diagonal entries are non-
negative, and the diagonal entries are negative. We can divide the entries
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of P − I by a real number q > 0 and still have a rate matrix with the same
limiting probability vector. However, we want to convert our rate matrix
back to a transition matrix so we need q at least as large as the largest
absolute entry in P − I. Select any such q. Then 0 = π(P − I)/q. Add
π = Iπ to both sides to get π = π((P − I)/q + I). Because of the way
we chose q, we know (P − I)/q + I satisfies the conditions of a (DTMC)
probability transition matrix, namely that the rows sum to 1 and all the
entries lie between 0 and 1. We still have the same limiting vector.

Using Theorem 2.1, we derived a class of probability transition matrices
of Fibonacci type. We now present the general result.

Theorem 2.2. Assume 0 < b ≤ 1/3. Let

P =



























1− b b 0 0 . . . 0 0

2b 1− 3b b 0
. . . 0 0

b b 1− 3b b
. . . 0 0

b 0 b 1− 3b
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
...

b 0 0
. . .

. . . 1− 3b b
b 0 0 0 . . . b 1− 2b



























(2)

be an n× n transition matrix for a discrete time Markov chain. Then the

limiting probability vector is π =
(

F2n−1

F2n
, F2n−3

F2n
, . . . , F1

F2n

)

.

Proof. The states of the Markov chain are labeled {0, 1, 2, . . . , n− 1}.
The balance equation for state n − 1 comes from the last column. Thus,
πn−1 = bπn−2 + (1− 2b)πn−1 so πn−2 = 2πn−1. The balance equations for
states i = 1, . . . , n− 2 from columns 2, . . . , n− 1 are of type

πi = bπi−1 + (1− 3b)πi + bπi+1.

This reduces to
πi+1 = 3πi − πi−1. (3)

The theorem claims that the limiting vector is proportional to every other
Fibonacci number ordered from largest to smallest. To confirm that our
matrix will give Fibonacci type ratios, we need to check the Fibonacci
number relationship in reverse of the above order for every second Fibonacci
number. Corresponding to (3), we must show Fi−2 = 3Fi − Fi+2 for all i.
We note that

Fi−2 = Fi − Fi−1 = Fi − (Fi+1 − Fi)

= 2Fi − Fi+1 = 2Fi − (Fi+2 − Fi) = 3Fi − Fi+2,
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as needed. The last column information that πn−2 = 2πn−1 corresponds
to F3 = 2F1 for the Fibonacci numbers, and plays the role of the initial
condition. Thus, we get the limiting probabilities proportional to the odd
indexed Fibonacci numbers. Since F1+F3+· · ·+F2n−1 = F2n and since the
limiting probabilities must sum to 1, i.e., π0 + · · ·+ πn−1 = 1, the limiting
probability vector follows.

Note that the first column of the transition matrix in the above result
does not enter into the calculation of the limiting probability vector. Its
information is already accounted for because the rows sum to 1.

In the following corollary, we slightly modify the transition matrix to
give a limiting probability vector proportional to even indexed Fibonacci
numbers.

Corollary 2.3. Assume 0 < b ≤ 1/3. Let

P =



























1− b b 0 0 . . . 0 0

2b 1− 3b b 0
. . . 0 0

b b 1− 3b b
. . . 0 0

b 0 b 1− 3b
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
...

b 0 0
. . .

. . . 1− 3b b
2b 0 0 0 . . . b 1− 3b



























(4)

be an n× n transition matrix for a discrete time Markov chain. Then the

limiting probability vector is π =
(

F2n

F2n+1−1
, F2n−2

F2n+1−1
, . . . , F2

F2n+1−1

)

.

Proof. We note that columns 2, . . . , n− 1 are the same as in Theorem
2.1. The last column is changed to reflect the change in the initial condition
and the first column is changed so that the rows sum to 1. The last column
implies that πn−2 = 3πn−1 and this corresponds to the initial condition of
Fibonacci numbers that F2 = 1 and F4 = 3. The result follows.

Our next objective is to find a transition matrix which will give ALL
of the first n Fibonacci numbers, rather than every other one. Determining
such a matrix causes some difficulty. It turns out that we cannot find a
matrix of the same type used to generate alternating Fibonacci numbers,
but there is a solution with a similar type of transition matrix. The new
matrix has a subdiagonal with almost all zeros. Our result is as follows.
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Theorem 2.4 Assume 0 < b ≤ 1/2. Let

P =

































1− b b 0 0 . . . 0 0 0

b 1− 2b b 0
. . . 0 0 0

b 0 1− 2b b
. . .

. . . 0 0

0 b 0 1− 2b
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . .
. . . 1− 2b b 0

0 0 0
. . .

. . . 0 1− 2b b
0 0 0 0 . . . b 0 1− b

































(5)

be an n× n transition matrix for a discrete time Markov chain. Then the

limiting probability is π =
(

Fn

Fn+2−1
, Fn−1

Fn+2−1
, . . . , F1

Fn+2−1

)

.

Proof. The states of the Markov chain are labeled {0, 1, 2, . . . , n −
1}. The balance equation for state n − 1 comes from the last column
and represents the initial condition for Fibonacci recursion. Thus, πn−1 =
bπn−2 + (1− b)πn−1 so πn−2 = πn−1. The balance equation for state n− 2
comes from the second last column and implies that πn−3 = 2πn−2 =
2πn−1. The balance equations for states 1, . . . , n − 3 come from columns
2, . . . , n− 2 and are of type

πi = bπi−1 + (1− 2b)πi + bπi+2.

This reduces to
πi+2 = 2πi − πi−1. (6)

Since the πi’s are giving the Fibonacci ratios in reverse order, we must show
that Fi−1 = 2Fi+1 −Fi+2 for all i. If we can show that Fibonacci numbers
satisfy this property, then we can conclude that the limiting probabilities
must be proportional to Fibonacci numbers. In fact

2Fi+1−Fi+2 = 2Fi+1−Fi+1−Fi = Fi+1−Fi = Fi+1−Fi+1+Fi−1 = Fi−1

as required. The initial conditions are implied by the final two columns.
But F1+F2+ · · ·+Fn = Fn+2−1 and since the limiting probabilities must
sum to 1, the desired limiting probability form follows.

We consider the special case of b = 1/2 in the Fibonacci matrix in
Theorem 2.4. Then the matrix has 0 entries on most of the diagonal, and
the form is quite simple. For example, if n = 5, our n× n matrix becomes

P =











1/2 1/2 0 0 0
1/2 0 1/2 0 0
1/2 0 0 1/2 0
0 1/2 0 0 1/2
0 0 1/2 0 1/2











.
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The limiting vector in this case is (5/12, 3/12, 2/12, 1/12, 1/12).
In the above example, and in our earlier results, the limiting proba-

bility vector has entries in descending order of magnitude. The states are
currently named {0, 1, 2, . . . , n− 2, n− 1}. If we simply reverse the names
of the states by i → n − 1 − i, the new transition matrix in the previous
example would be

P =











1/2 0 1/2 0 0
1/2 0 0 1/2 0
0 1/2 0 0 1/2
0 0 1/2 0 1/2
0 0 0 1/2 1/2











and the limiting vector is in ascending order (1/12, 1/12, 2/12, 3/12, 5/12).
This new matrix is obtainable by reflecting the original entries over the
center of the matrix.

If we consider the Fibonacci transition matrix P given by (5), there is
a rate matrix for a continuous time Markov process with the same limiting
probability. That matrix is

P − I =

































−b b 0 0 . . . 0 0 0

b −2b b 0
. . . 0 0 0

b 0 −2b b
. . .

. . . 0 0

0 b 0 −2b . . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0
. . .

. . .
. . . −2b b 0

0 0 0
. . .

. . . 0 −2b b
0 0 0 0 . . . b 0 −b

































. (7)

This looks very close to the rate matrix for an E2/M/1 queueing system,
[3] for ρ = 1, except for the second row. It also looks like a rate matrix for
a queueing system with individual arrivals and bulk service (of size 2). One
possible description of the model allows a server to serve a single customer if
only one customer is in the system, but must serve two customers at a time
(at the same rate as for one customer) if there are at least two customers
available for service. So we have the remarkable result that for a very
natural queueing system (with a finite buffer), the limiting probabilities
have Fibonacci ratios.

In Mandelbaum, Hlynka, and Brill [6], it was observed that any prob-
ability distribution has a birth and death representation. Let Fi be the
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Fibonacci numbers. Consider a transition diagram of a birth and death
process of type:

Fn−1 Fn−2 Fn−3 . . . F1

→ → → →
0 1 2 . . . n− 1

← ← ← ←
Fn Fn−1 Fn−2 . . . F2

This system has a rate matrix























−Fn−1 Fn−1 0 0 . . . 0

Fn An Fn−2 0
. . . 0

0 Fn−1 An−1 Fn−3

. . . 0
...

. . .
. . .

. . .
. . .

...

0 0
. . .

. . . A3 F1

0 0 0 . . . F2 −F2























, (8)

where Ai = −Fi − Fi−2.
The limiting vector for this rate matrix is exactly the same as for the

rate matrix (7) and for the transition matrix (5). However, there are major
differences in the form of the matrices (7) and (8). First (8) is the rate
matrix of a birth and death process and is a tridiagonal matrix. Also,
the components are already Fibonacci numbers so it is not surprising that
the limiting vector yields Fibonacci numbers. By contrast, in the much
more interesting rate matrix (7), there are no Fibonacci entries, and the
matrix corresponds to a fairly natural queueing system, yet the limiting
vector is the same as that of (8). Thus, we can have more than one class of
rate matrix (or transition matrix) that generates Fibonacci type limiting
vectors, but some matrix classes are “nicer” than others.

We found one further interesting transition matrix which gives the
first n Fibonacci numbers in the limiting vector, but in a strange order.
We present a specific example when n = 7. Let

P =



















.7 .3 0 0 0 0 0
0 .7 .3 0 0 0 0
0 0 .7 .3 0 0 0
0 0 0 .7 .3 0 0
0 0 .3 .3 .1 .3 0
0 .3 0 0 .3 .1 .3
.6 0 0 0 0 .3 1



















.

The limiting probability vector in this case is (1/53)(2, 5, 13, 21, 8, 3, 1).
Note the alternating Fibonacci numbers in the vector. This particular class
of threshold matrices has some potential applications in medicine.
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Since the recursion relationship for the Lucas numbers is the same as
that of the Fibonacci numbers, we should be able to get a corresponding
probability transition matrix by modifying the last two columns of (5). We
find that the following matrix gives the Lucas numbers.

































1− b b 0 0 . . . 0 0 0

b 1− 2b b 0
. . . 0 0 0

b 0 1− 2b b
. . .

. . . 0 0

0 b 0 1− 2b
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . .
. . . 1− 2b b 0

0 0 0
. . .

. . . 0 1− 3b 2b
0 0 0 0 . . . b 0 1− b

































. (9)

The tribonacci numbers are defined by T1 = 1, T2 = 1, T3 = 2, and
Tn = Tn−1 + Tn−2 + Tn−3 for n = 4, . . . . We notice in (5) that there
is a subdiagonal of (almost all) zeros. If we modify the lower triangular
part by inserting an extra subdiagonal of zeros, we get yet another Markov
transition matrix. This new matrix is

































1− b b 0 0 . . . 0 0 0

b 1− 2b b 0
. . . 0 0 0

b 0 1− 2b b
. . . 0 0 0

b 0 0 1− 2b
. . .

. . . 0 0

0 b 0 0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0
. . . . . . 0 1− 2b b

0 0 0 0 . . . 0 0 1− b

































(10)

and has limiting vector

(

Tn

S
,
Tn−1

S
, . . . ,

T1

S

)

, where S =
∑n

i=1
Tn. In a

similar manner we can define and generate tetranacci numbers, pentanacci
numbers, and so on. The corresponding rate matrices P − I model finite
buffer queueing systems with bulk service where the bulk size for tribonacci
numbers is 3, for the tetranacci numbers is 4, and so on.

3. The Infinite State Space We next consider the infinite state
space {0, 1, 2, . . .} with the same matrix structure as in (2). First note that

G = lim
n→∞

Fn+1

Fn
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is the famous “golden ratio.” G satisfies G2−G−1 = 0 and G = (
√
5+1)/2.

We obtain the following pretty theorem.

Theorem 3.1. Assume 0 < b ≤ 1/3. Let

P =



















1− b b 0 0 0 . . .

2b 1− 3b b 0 0
. . .

b b 1− 3b b 0
. . .

b 0 b 1− 3b b
. . .

...
...

. . .
. . .

. . .
. . .



















(11)

be a transition matrix for a discrete time Markov chain. Then the limiting
probability vector is π = (L,L3, L5, . . . ), where

L = lim
n→∞

Fn

Fn+1

,

L satisfies L2 + L − 1 = 0, and L = (
√
5 − 1)/2 is the reciprocal of the

golden ratio.

Proof. First we note that the Markov chain defined by the transition
matrix is positive recurrent for 0 < b < 1/3. Next, we look at the first
coordinate F2n−1/F2n from the result in Theorem 2.2. Thus, the first
coordinate in the limiting vector in the infinite state space case is

lim
n→∞

F2n−1

F2n

= lim
n→∞

Fn

Fn+1

= L.

The second coordinate is

lim
n→∞

F2n−3

F2n

= lim
n→∞

F2n−3

F2n−2

F2n−2

F2n−1

F2n−1

F2n

= L3.

Continuing in this way, we get our result in terms of L. The fact that the
sum of the probabilities must equal 1 gives a quadratic in L from which L
is determined.

We also attempted to find the limiting vector using conventional tech-
niques. This created a difficulty but also revealed a known result about
Fibonacci numbers.

Theorem 3.2. Let L = (
√
5−1)/2 be the reciprocal of the golden ratio.

Then L2n+1 = F2n+1L− F2n for n = 1, 2, . . . .

Proof. This result can be proved directly in a fairly simple manner
by using the fact that L2 = 1 − L to lower the powers. However, we wish
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to indicate how we rediscovered the result using probability methods. The
balance equations from (11) are

π0 = (1 − b)π0 + 2bπ1 + bπ2 + bπ3 + · · · (12)

π1 = bπ0 + (1− 3b)π1 + bπ2 (13)

π2 = bπ1 + (1− 3b)π2 + bπ3 (14)

· · ·.

From (12) and the fact that
∑

∞

i=0
πi = 1, we obtain π1 = 2π0 − 1. From

(13), we obtain π2 = 3π1 − π0 = 5π0 − 3. An induction argument gives
πn = F2n+1π0 − F2n. From Theorem 3.1, πn = L2n+1 for n = 0, 1, . . . .
Equating the two expressions for πn gives the result.

Note.

(1) The limiting case of the transition matrix from the even indexed Fi-
bonacci numbers is exactly the same as for the odd indexed case. The
limiting vector in both cases has components which are just powers of
L.

(2) One standard method of finding the limiting probabilities is to use
generating functions. If we define φ(z) =

∑

∞

i=0
πiz

i, then we can
obtain an expression for φ(z) by multiplying (12) by z0, (13) by z1,
(14) by z2, and so on. Summing both sides and solving for φ(z) yields

φ(z) =
z − π0(1− z)

z − (1 − z)2
.

This still leaves the difficulty of finding π0, so it is fortunate that we
already used the limit of the finite case to give us π0 = L. Kleinrock
uses the roots of the denominator of the generating function to obtain
the value of π0. Our method is equivalent but perhaps more accessible.

In a similar manner to the previous results, we can find the limiting
vector for the infinite state transition matrix (corresponding to (5)).

Theorem 3.3. Assume 0 < b ≤ 1/2. Let

P =























1− b b 0 0 0 . . .

b 1− 2b b 0 0
. . .

b 0 1− 2b b 0
. . .

0 b 0 1− 2b b
. . .

0 0 b 0 1− 2b
. . .

...
. . .

. . .
. . .

. . .
. . .























(15)
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be a transition matrix for a discrete time Markov chain. Then the limiting
probability vector is π = (L2, L3, L4, . . . ), where

L = lim
n→∞

Fn

Fn+1

=

√
5− 1

2

is the reciprocal of the golden ratio.

Proof. The proof follows in the same manner as in Theorem 3.1.

For the Tribonacci number matrix extended to the space of all non-
negative integers, we have the following result.

Theorem 3.4. The limiting vector corresponding to the Markov tran-
sition matrix























1− b b 0 0 0 . . .

b 1− 2b b 0 0
. . .

b 0 1− 2b b 0
. . .

b 0 0 1− 2b b
. . .

0 b 0 0 1− 2b
. . .

...
. . .

. . .
. . .

. . .
. . .























(16)

is (1−M, (1−M)M, (1−M)M2, . . . ), whereM ≥ 0 satisfies 1 = x+x2+x3.

Proof. In the finite case, the matrix (10) yields

(

Tn

S
,
Tn−1

S
, . . . ,

T1

S

)

,

where S =
∑n

i=1
Ti. We know

lim
n→∞

Tn

S
= α

exists. Let

M = lim
n→∞

Tn−1

Tn

.

Now Tn+1 = Tn +Tn−1 + Tn−2. Divide by Tn+1 to get 1 = M +M2 +M3.
Then

lim
n→∞

Tn−1

S
= αM

and so on. Thus, the limiting vector is (α, αM,αM2, . . . ). But the limiting

probabilities sum to 1 so 1 =
α

1−M
. Thus, α = 1 −M and the result

follows.

4. Conclusion and Acknowledgment. In this paper we have illus-
trated that the Fibonacci numbers (and variants) make their appearance
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in the limiting vector of a class of natural Markov transition matrices and
infinitesimal generators. We showed that a fixed Fibonacci type limiting
vector can arise from more than one type of transition matrix. Our meth-
ods allow us to obtain limiting vectors for certain infinite state processes
in a relatively easy manner, by working with properties of the finite state
version. Traditionally, rate matrices for birth and death processes have
been a major focus of probability models and will continue to have that
role. Hopefully, our presentation will encourage other models to be exam-
ined more carefully. Beyond the work of this paper, we have found other
matrices giving various forms of Fibonacci type sequences, but this paper
has presented the most interesting relationships that we have discovered.
Generalizations of some of the material appear in Sajobi [7].

Unanswered questions include the following. Can we obtain a “nice”
transition matrix such that the limiting vector gives every third Fibonacci
number, every fourth Fibonacci number, and so on? Given an infinite state
space transition matrix, under what circumstances can we finitely truncate
(with adjustments) to get a sufficiently “nice” finite state limiting vector,
which can be used to obtain the infinite state limiting vector in an easy
manner? Are there other nice queueing models that give surprisingly nice
limiting probability vectors?

Special cases of the matrices discussed in this paper can be examined
easily with computational packages, such as MAPLE and MATLAB. A
large power of the matrix will make all the rows equal to the limiting
probability vector. Dividing the limiting probability vector by the minimal
entry will give a vector of Fibonacci or other types of numbers, as indicated
by the theorems.

This research was partially funded through a grant from NSERC –
Natural Sciences and Engineering Research Council (of Canada).
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