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ONE STEP CLOSER TO AN OPTIMAL TWO-PARAMETER

SOR METHOD: A GEOMETRIC APPROACH

Saadat Moussavi

Abstract. The well-known SOR method is obtained from a one-part
splitting of the system matrix A, using one parameter ω for the diagonal.

A strong interest in using more than one parameter for the SOR
method to improve the convergence has been developed. Sisler, Nietham-
mer, and Hadiidimos worked on the two-parameter method in the seventies.
This author has generalized Sisler’s method and introduced a range for the
second parameter, providing a faster two-parameter method compared to
the SOR method.

In this paper, we go one step further by removing the hypothesis that
requires the eigenvalues of the Jacobi iteration matrix to be real. The result
is an optimal value for the second parameter when the eigenvalues of the
SOR method are in a certain well-defined region.

1. Introduction. We wish to find the solution vector x to the linear
system Ax = b, where A is a sparse n × n matrix and b is a given n-vector
of complex n-space. Usually A is not easy to invert. Therefore, we seek an
easy way to invert part of A, say A0, and we write

A = A0 − A1 (1.1.1)

or equivalently,
A = A0(I − A−1

0 A1) = A0(I − B), (1.1.2)

where B = A−1
0 A1 is called the iteration matrix.

Display (1.1.1) defines the sequence {xk} for an arbitrary vector x0 via

A0xk+1 − A1xk = b k = 0, 1, 2, . . .

or equivalently,

xk+1 = A−1
0 A1xk + A−1

0 b k = 0, 1, 2, . . . , and

xk+1 = Bxk + A−1
0 b k = 0, 1, 2, . . . .

By (1.1.1) it is clear that if {xk} converges at all, it must converge to
xsol = A−1b. Display (1.1.2) shows that {xk} converges to xsol = A−1b for
each x0 if and only if ρ(B) < 1, where ρ(B) is the spectral radius of B [9].

We use (1.1.2) to measure the asymptotic convergence R∞ of the se-
quence {xk}, where R∞ is defined by R∞=–log ρ(B), which carries infor-
mation about how fast the sequence {xk} converges. In fact, 1

R∞

asymp-
totically represents the number of iterations that suffice to produce one
additional decimal place of accuracy in the xk’s.
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The following well-known iteration methods are two examples of such
a splitting. For the given matrix A, let −L, −U , and D denote the strictly
lower triangular, upper triangular, and diagonal part of A, respectively.

JACOBI Method. Choose A0 = D and A1 = L + U , where D is the
diagonal part of A and −L, −U are the strictly lower and upper triangular
parts of A, respectively.

Successive Overrelaxation (SOR) Method. Choose A0 = 1
ω
D −

L and A1 = ( 1
ω
− 1)D + U .

The Successive Overrelaxation (SOR) method was developed indepen-
dently in the fifties by Frankel [2] and Young [13, 14]. Since then there has
been strong interest in using more than one parameter for the SOR method
to improve the convergence [3, 4, 6, 7, 8, 10, 11, 12].

The modified Successive Overrelaxation (MSOR) method was first con-
sidered by Devogelaere [1]. Consider the matrix A in the following form

A =

[

D1 M

N D2

]

,

where D1 and D2 are square, non-singular matrices. We use ω and ω′ to
create the easy to invert part of A given by

A0 =

[

1
ω
D1 0
N 1

ω′
D2

]

.

Young [15] has shown that if A is positive-definite, 0 < ω ≤ 1, and
0 < ω′ ≤ 1, then the Gauss-Seidel iteration method converges faster than
the MSOR method. In [5], Young’s Theorem has been generalized for
the case where the MSOR method converges faster than the Gauss-Seidel
method.

In the case where the eigenvalues of the SOR method are restricted to
a certain configuration in the complex plane, we attempt in Theorem 2.8 to
find the optimum value for α, the second parameter. Moreover, the result
will be a generalization of the dePillis result given in Corollary 2.9.

2. A Geometric Approach. In [6], it has been shown that λ, the
eigenvalue of the SOR iteration matrix, and ζ, the eigenvalue of B( δ

α
, δ

α
,α),

the two-parameter iteration matrix, are related by

ζ =
1

α
λ +

(

1 −
1

α

)

· 1.

Remark 2.1.1. If λ is a point in the complex plane and ζ = 1
α
λ+(1− 1

α
),

then

α =
(Im λ)2 + (1 − Reλ)2

1 − Re λ
, (2.1.3)
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where Re λ and Im λ represent the real and imaginary parts of λ, respec-
tively, and it produces ζ with the smallest magnitude.

Remark 2.1.2. If λ1 and λ2 are two points in the complex plane and ζk =
1
α
λk + (1 − 1

α
) · 1 for k = 1, 2, then

α = 1 +
|λ1|

2 − |λ2|
2

2 (Reλ1 − Re λ2)
, (2.1.4)

where Re λ1 and Re λ2 represent the real parts of λ1and λ2, respectively,
and it produces ζ1 and ζ2 such that |ζ1| = |ζ2|.

Theorem 2.2. Suppose that A0 =

[

D1 M

N D2

]

, where D1 and D2 are

non-singular matrices. If all the eigenvalues of the SOR method lie in
the shaded area in Figure 1, where λ and ρ belong to σ(Bω), the set of
eigenvalues of the SOR method, and

α1 = 1 +
|ρ|2 − |λ|2

2 (Re ρ − Re λ)
and α2 =

(Im λ)2 + (1 − Re λ)2

1 − Re λ
,

then α = max {α1, α2} is the optimal parameter for the two-parameter
method B( δ

α
, δ

α
,α).

Proof. By Remarks 2.1.1 and 2.1.2 we know that

(1) the parameter α2 shifts λ to the point H on the line Sλ that passes
through the two points S and λ, where S = (1, 0), λ = (Reλ, Imλ),
and OH is perpendicular to the line Sλ (Figure 2), and
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(2) the parameter α1 shifts λ to the point B on the line Sλ and moves ρ

to the point A on the line Sρ that passes through the two points S

and ρ, where S = (1, 0), ρ = (Reρ, Imρ), and OA = OB (Figure 2).

Case 1. Suppose α1 = max {α1, α2 } or α1 > α2. Then point B must
lie to the right of point H on the line Sλ, the line that passes through the
two points S:(1,0) and λ.

(i) Let α3 be any parameter that shifts λ to the point B′ which lies to the
right of B on the line Sλ. The parameter α3 shifts ρ to the point A′

to the right of A, on the line Sρ, the line that passes through the two
points S and ρ. This occurs because AB and A′B′ are parallel (Figure
3).
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Since OA′ < OB′ and OB′ > OB = OA, OB′ represents the spectral
radius of the two-parameter method using α3. In this case, ρ(B(ω,α3)) >

ρ(B(ω,α1)).
(ii) Let α3 be a parameter that shifts λ to the point B′′, lying to the left

of H on the line Sλ (Figure 3). This parameter, α3, slides ρ to the
point A′′ on the line Sρ. This shift occurs because AB and A′′B′′

are parallel. Since OA′′ > OA = OB, OA′′ represents the spectral
radius of the two-parameter method using α3. Again we conclude that
ρ(B(ω,α3)) > ρ(B(ω,α1)).
By (i) and (ii), we can conclude that α1 is optimal under the conditions

of Case 1 wherein α1 = max {α1, α2 }.

Case 2. Suppose α2 = max {α1, α2 } or α2 > α1. Then the point B

must lie to the left of the point H on the line Sλ, the line that passes
through the two points S and λ. The parameter α2 also moves ρ to the
point A on the line Sρ such that OA = OB (Figure 4).

For any α, say α3, preceding in the same manner as in parts (i) and
(ii), one can show that OH is the smallest spectral radius in Case 2, that
is

ρ(B(ω,α)) > ρ(B(ω,α2)) for any α.

Therefore, α2 is optimal under the conditions of Case 2 wherein α2 =
max {α1, α2 }.

Case 3. If the point H lies to the left of λ on the line Sλ that passes
through the two points S and λ, then α1 is the optimal parameter. This is
true because if α2 shifts λ to the left, it will also shift ρ to the left along
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the line Sρ, hence outside the circle. In this case, α1 = max {α1, α2} since
α1 < 1, but α1 is always greater than 1 in the given shaded region.

Cases 1, 2, and 3 show that α = max {α1, α2} is the optimal parameter
for the two-parameter method.

Remark 2.2.1. Suppose A0 =

[

D1 M

N D2

]

, where D1 and D2 are non-

singular matrices. If all the eigenvalues of the SOR method lie in the shaded
area of Figure 1, where λ and ρ belong to σ(Bω), the set of eigenvalues of
the SOR method, and

α1 = 1 +
|ρ|2 − |λ|2

2 (Re ρ − Re λ)
and α2 =

(Im λ)2 + (1 − Re λ)2

1 − Re λ
,

then α = max {α1, α2 } shifts the given shaded region bounded by λOλ′ρ′ρ

to the shaded area bounded by BOB′A′A (Figure 5).

Corollary 2.3 (dePillis). If the eigenvalues of the SOR method are

inside the shaded area TKT ′ in Figure 6, and ρ, an eigenvalue of the SOR
method, is on the arc TKT ′, where T and T ′ are the intersecton points of
the tangent lines to the circle from point S, then the parameter that shifts
ρ to point H is optimal, where OH is perpendicular to Sρ.
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Proof. In this case since λ and ρ coincide, by (2.7.16), α1 = 1 and
α2 > 1. Hence, α2 = max {α1, α2 }.

Examples.

(1) The eigenvalues of the SOR method are λ1, λ2 = 0.4± 0.4i and ρ, ρ′ =
−0.7± 0.3873i. By Remarks 2.1.1 and 2.1.2

α1 = 1.1454513 and α2 = 0.8666666.

Thus, by Theorem 2.2, α1 is optimal. The spectral radii of the SOR
method and the two-paramater methods are

ρ(Bω) = 0.8

ρ(B(ω,α1)) = 0.5905

ρ(B(ω,α2)) = 1.0603.

Thus, ρ(B(ω,α1)) < ρ(Bω).

(2) The eigenvalues of the SOR method are λ1, λ2 = 0.4±0.68i and ρ, ρ′ =
−0.7± 0.3873i. By Remarks 2.1.1 and 2.1.2,

α1 = 1.02933548 and α2 = 1.7302857.

Thus, by Theorem 2.2, α2 is optimal. The spectral radii of the SOR
method and the two-paramater methods are

ρ(Bω) = 0.8

ρ(B(ω,α1)) = 0.7524

ρ(B(ω,α2)) = 0.4369.
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Thus, ρ(B(ω,α2)) < ρ(B(ω,α1)) < ρ(Bω).
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