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Abstract. In this paper, using Bottema’s inequality for two trian-
gles and other results, the generalization of an inequality involving
the medians and angle-bisectors of the triangle is proved. This settles
affirmatively a problem posed by J-Liu.

1. Introduction and Main Result

In [1], the author posed 100 unsolved triangle inequality problems. Among
his conjectures is an inequality for medians and angle-bisectors of a triangle
and so-called Shc53:

(mb +mc) sin
A

2
+(mc +ma) sin

B

2
+(mc +ma) sin

C

2
> wa +wb +wc, (1)

where ma, mb, mc and wa, wb, wc denote the medians and angle-bisector of
4ABC, A, B, C denote its angles.

Recently, we investigated inequality (1) again and found its generaliza-
tion.

Theorem 1. Let P be an arbitrary point in the plane of triangle ABC.
Then

(PB+PC) sin
A

2
+(PC+PA) sin

B

2
+(PA+PB) sin

C

2
>

2

3
(wa+wb+wc).

(2)
Equality holds if and only if the triangle ABC is equilateral and P is its
center.

Obviously, if P is the centroid of 4ABC, then we easily obtain inequality
(1) from (2).

2. Several Lemmas

In order to prove the theorem, we need some lemmas.
Besides the above notations, as usual, a, b, c denote the sides of triangle

ABC; s, R, r, ∆ denote its semi-perimeter, the radius of its circumcircle,
the radius of its incircle, and its area, respectively. In addition,

∑

and
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∏

denote cyclic sum and product respectively (e.g.,
∑

bc = bc + ca + ab,
∏

(b + c) = (b + c)(c + a)(a + b)).

Lemma 1. For any 4ABC, the following inequality holds.

1

wa

+
1

wb

+
1

wc

6
1

2R
+

3

4r
. (3)

Equality holds if and only if triangle ABC is equilateral.

Inequality (3) was proposed by the second author [2] of this paper and
first proved by Jian-Ping Li [3]. It can also be derived expediently from a
result of Xue-Zhi Yang [4]. Here, we give a convenient direct proof.

Proof. From the well known formula wa = 2
b+c

√

bcs(s − a) and Heron’s
formula

∆ =
√

s(s − a(s − b)(s − c), (4)

we have

1

wa

=
(b + c)

√

bc(s − b)(s − c)

2bc∆

6
b + c

4bc∆

[

abc

b + c
+

(b + c)(s − b)(s − c)

a

]

=
a

4∆
+

1

4abc∆
(s − b)(s − c)(b + c)2.

Hence,

∑ 1

wa

6
1

4∆

∑

a +
1

4abc∆

∑

(s − b)(s − c)(b + c)2. (5)

Observe that
∑

(s − b)(s − c)(b + c)2

=
1

4

∑

a2(b + c)2 − 1

4

∑

(b2 − c2)2

=
1

2

[

∑

b2c2 + abc
∑

a −
(

∑

a4 −
∑

b2c2
)]

=
1

2

(

abc
∑

a + 2
∑

b2c2 −
∑

a4
)

= 4(R + 2r)rs2.

The last step was obtained using
∑

a = 2s, abc = 4Rrs and the equivalent
form of Heron’s formula:

16∆2 = 2
∑

b2c2 −
∑

a4.
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Finally, we get

∑ 1

wa

6
1

2r
+

4(R + 2r)rs2

4abc∆
=

1

2R
+

3

4r
.

Inequality (3) is proved and it is easy to show that equality occurs if and
only if a = b = c. The proof of Lemma 1 is complete. �

Lemma 2. For any triangle ABC, the following inequality holds.

(wa + wb + wc)
2 6

9

4
(s2 + 9r2). (6)

Equality holds if and only if triangle ABC is equilateral.

Proof. From inequality (3) and the well-known identities

wawbwc =
16Rr2s2

s2 + 2Rr + r2
, (7)

and
∑

w2
a =

s6 + 3r2s4 + (32R2 + 40Rr + 3r2)r2s2 + r4(4R + r)2

(s2 + 2Rr + r2)2
,

we have
(

∑

wa

)2

=
∑

w2
a + 2

∑

wbwc =
∑

w2
a +

2

wawbwc

∑ 1

wa

6
s6 + 3r2s4 + (32R2 + 40Rr + 3r2)r2s2 + r4(4R + r)2

(s2 + 2Rr + r2)2

+
8r(3R + 2r)s2

s2 + 2Rr + r2
(8)

=
s6 + (24R + 19r)rs4 + (80R2 + 96Rr + 19r2)r2s2 + (4R + r)2r4

(s2 + 2Rr + r2)2
.

Now, we will prove that

s6 + (24R + 19r)rs4 + (80R2 + 96Rr + 19r2)r2s2 + (4R + r)2r4

(s2 + 2Rr + r2)2

6
9

4
(s2 + 9r2). (9)

It is equivalent to

5s6 − (60R − 23r)rs4 − (284R2 + 24Rr − 95r2)r2s2

+(260R2 + 292Rr + 77r2)r4 > 0. (10)

This can be written as

(s2 − 16Rr + 5r2)[5s4 + (20Rr − 2r2)s2 + (12R + 39r)r3]

+4r2(9s2 + 17r2)(R − 2r)2 > 0. (11)
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It follows from the well-known Gerretsen’s inequality s2 > 16Rr − 5r2 (see
[5] and also [6]) and Chapple-Euler’s inequality R > 2r.

From (8) and (9), we obtain (6). Clearly, the equality in (6) occurs if
and only if the triangle is equilateral. Lemma 2 is proved. �

Lemma 3. The identity

∑

a2 sin2 A

2
=

(2R − 3r)s2 + (4R + r)r2

2R
(12)

holds for all triangles ABC.

Proof. This identity follows from
∑

a2 sin2 A

2

=
1

2

[

∑

a2 − 4R2
∑

(1 − cos2 A) cosA
]

=
1

2

∑

a2 − 2R2
(

∑

cosA −
∑

cos3 A
)

,

and the following identities [6]:
∑

a2 = 2(s2 − 4Rr − r2), (13)
∑

cosA = 1 +
r

R
, (14)

∑

cos3 A =
(2R + r)3 − 3rs2

4R3
− 1. (15)

�

Lemma 4. For any triangle ABC, we have
√

∏

sin
A

2

∑

sin
A

2
>

r(4R + r)

2sR
. (16)

Equality holds if and only if triangle ABC is equilateral.

Proof. By the simple inequality cosB + cosC 6 2 sin A

2 , etc. It is deduced
∑

sin A

2 >
∑

cosA. Hence, using identity (14), we have

∑

sin
A

2
> 1 +

r

R
. (17)

According to the above inequality and the known relation
∏

sin
A

2
=

r

4R
, (18)

to prove (16) we need to show that
√

r

4R

(

1 +
r

R

)

>
r(4R + r)

2sR
.
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After squaring both of sides and simplifying, it becomes

(R + r)s2 − r(4R + r)2 > 0,

i.e.,

(R + r)(s2 − 16Rr + 5r2) + 3(R − 2r)r2
> 0.

This follows from s2 > 16Rr − 5r2 and R > 2r. Thus, inequality (16) is
true. �

Lemma 5. For any triangle ABC, the following inequality holds.

∑

(b2 + c2 − a2) sin
B

2
sin

C

2
>

s4 − 10Rrs2 − (8R2 + 6Rr + r2)r2

4R2
. (19)

Equality holds if and only if triangle ABC is equilateral.

Proof. If 4ABC is a non-obtuse triangle, using the simple well-known in-
equality sin A

2 6 a

b+c
, etc. we have

∑ b2 + c2 − a2

sin A

2

>
∑ b + c

a
(b2 + c2 − a2). (20)

Indeed, the above inequality holds for all triangles. Next, we shall prove
our result.

Since sin A

2 =
√

(s−b)(s−c)
bc

, inequality (20) is also

∑

(b2 + c2 − a2)

[ √
bc

√

(s − b)(s − c)
− b + c

a

]

> 0,

or equivalently

∑ (s − a)(b2 + c2 − a2)(b − c)2

a
[

a
√

bc(s − b)(s − c) + (b + c)(s − b)(s − c)
] > 0. (21)

Without loss of generality, we may assume that A is an obtuse angle and
a > b > c, then we easily know that

a
√

bc(s − b)(s − c) > b
√

ca(s − c)(s − a),

(b + c)(s − b)(s − c) > (c + a)(s − c)(s − a).

Putting

X = a
√

bc(s − b)(s − c) + (b + c)(s − b)(s − c),

Y = b
√

ca(s − c)(s − a) + (c + a)(s − c)(s − a),
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then X > Y . In addition, from

s − b

bY
− s − a

aX
=

(aX − bY )s − ab(X − Y )

abXY

>
(bX − bY )s − ab(X − Y )

abXY
=

(s − a)(X − Y )

aXY
> 0,

we find
s − b

bY
>

s − a

aX
.

According to this and a2 + b2 − c2 > 0, c2 + a2 − b2 > 0, s − b > s − a,
(a − c)2 > (b − c)2, we have that

∑ (s − a)(b2 + c2 − a2)(b − c)2

a
[

a
√

bc(s − b)(s − c) + (b + c)(s − b)(s − c)
]

>
s − a

aX
(b2 + c2 − a2)(b − c)2 +

s − b

bY
(c2 + a2 − b2)(a − c)2

>
s − a

aX
(b2 + c2 − a2)(b − c)2 +

s − a

aX
(c2 + a2 − b2)(b − c)2

=
2(s − a)

aX
(b − c)2c2 > 0.

Therefore, the inequality (20) holds for obtuse triangles. Furthermore, we
know that (20) is valid for all triangles.

Now, by (20) and (18), we obtain
∑

(b2 + c2 − a2) sin
B

2
sin

C

2

>
r

4R

∑ b + c

a
(b2 + c2 − a2).

=
r

4abcR

[

∑

bc(b + c)
∑

a2 − 2abc
∑

a(b + c)
]

=
r

4abcR

[(

∑

a
∑

bc − 3abc
)

∑

a2 − 4abc
∑

bc
]

=
s4 − 10Rrs2 − (8R2 + 6Rr + r2)r2

4R2
.

Lemma 5 is proved. �

Lemma 6. Let P is an arbitrary point in the plane of triangle ABC,
a′, b′, c′ denote the sides of 4A′B′C ′ and ∆′ denote its area. Then

(a′PA + b′PB + c′PC)2 > (22)

1

2

[

a2(b′2 + c′2 − a′2) + b2(c′2 + a′2 − b′2) + c2(a′2 + b′2 − c′2)
]

+ 844′.

Equality holds in one of the following cases: (i) 4ABC ∼ 4A′B′C ′, P lies
inside of 4ABC, and A′ + ∠BPC = B′ + ∠CPA = C ′ + ∠APB = π; (ii)
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P coincides with one of the vertices of 4ABC, the sum of the angle where
lies this vertices of triangle ABC and the relevant angle of triangle A′B′C ′

is π.

Inequality (25) is Bottema’s inequality for two triangles [6, 7].

3. Proof of Theorem

Proof. Inequality (2) is also

∑

(

sin
B

2
+ sin

C

2

)

PA >
2

3

∑

wa. (23)

By Heron’s formula (4), it is easily known that sin B

2 + sin C

2 , sin C

2 +

sin A

2 , sin A

2 +sin B

2 form a triangle with area
√

∏

sin A

2

∑

sin A

2 . Hence, by

using Lemma 6, we get
[

∑

(

sin
B

2
+ sin

C

2

)

PA

]2

>
1

2

∑

(b2 + c2 − a2)

(

sin
B

2
+ sin

C

2

)2

+ 8∆

√

∏

sin
A

2

∑

sin
A

2

=
1

2

∑

(b2 + c2 − a2)

(

sin2 B

2
+ sin2 C

2

)

+
∑

(b2 + c2 − a2) sin
B

2
sin

C

2
+ 8∆

√

∏

sin
A

2

∑

sin
A

2

=
∑

a2 sin2 A

2
+

∑

(b2 + c2 − a2) sin
B

2
sin

C

2

+8∆

√

∏

sin
A

2

∑

sin
A

2
.

In order to prove (23), we need to show that
∑

a2 sin2 A

2
+

∑

(b2 + c2 − a2) sin
B

2
sin

C

2

+8∆

√

∏

sin
A

2

∑

sin
A

2
>

4

9

(

∑

wa

)2

. (24)

According to Lemma 5, it suffices to prove that

(2R − 3r)s2 + (4R + r)r2

2R
+

s4 − 10Rrs2 − (8R2 + 6Rr + r2)r2

4R2

+
4(4R + r)r2

R
> s2 + 9r2.

One may simplify this to

s4 − 16Rrs2 + (28R2 + 12Rr − r2)r2 > 0, (25)
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which is equivalent to

(s2 − 5r2)(s2 − 16Rr + 5r2) + 4(R − 2r)(7R − 3r)r2 > 0.

This follows from Gerretsen’s inequality s2 > 16Rr − 5r2 and Chapple-
Euler’s inequality R > 2r. Hence, inequality (23), i.e., (2) is proved. It is
easy to obtain the condition when equality occurs in (2). This completes
the proof of Lemma 6. �
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