GENERALIZATION OF A GEOMETRIC INEQUALITY

XIAO-GUANG CHU AND JIAN LIU

ABSTRACT. In this paper, using Bottema’s inequality for two trian-
gles and other results, the generalization of an inequality involving
the medians and angle-bisectors of the triangle is proved. This settles
affirmatively a problem posed by J-Liu.

1. INTRODUCTION AND MAIN RESULT

In [1], the author posed 100 unsolved triangle inequality problems. Among
his conjectures is an inequality for medians and angle-bisectors of a triangle
and so-called Shc53:

A . B e
(mp +me) smE—i—(mc—i—ma) smE—i—(mc—i—mQ) sin > wq +wp +we, (1)

where mg, my, m. and wg, wy, w. denote the medians and angle-bisector of
NABC, A, B,C denote its angles.

Recently, we investigated inequality ([0l) again and found its generaliza-
tion.

Theorem 1. Let P be an arbitrary point in the plane of triangle ABC.
Then

A B
(PB+ PC)sin E—I—(PC—FPA) sin 5+(PA+PB) sin% > - (we+wp+we).

(2)
Equality holds if and only if the triangle ABC' is equilateral and P is its
center.

Wl

Obviously, if P is the centroid of AABC, then we easily obtain inequality

@ from @).
2. SEVERAL LEMMAS

In order to prove the theorem, we need some lemmas.

Besides the above notations, as usual, a, b, ¢ denote the sides of triangle
ABC; s, R,r, A denote its semi-perimeter, the radius of its circumcircle,
the radius of its incircle, and its area, respectively. In addition, ) and
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1 denote cyclic sum and product respectively (e.g., Y be = bc + ca + ab,
[T+ c¢) = (b+c)(c+ a)(a+Db)).
Lemma 1. For any NABC, the following inequality holds.
St @
Equality holds if and only if triangle ABC' is equilateral.
Inequality ) was proposed by the second author [2] of this paper and

first proved by Jian-Ping Li [3]. It can also be derived expediently from a
result of Xue-Zhi Yang []. Here, we give a convenient direct proof.

Proof. From the well known formula w, = ﬁ\/bCS(S —a) and Heron’s
formula

A =/s(s —a(s —b)(s — ¢), (4)
we have
1 (b+ ¢)\/bc(s —b)(s —¢)
Weq 2bcA
b+c [ abe b+c)(s=b)(s—¢)
S 4bcA [b-i—c * a
- o ﬁ(s —B)(s — &)(b+ )%
Hence,
ZL<LZGJFLZ(s—b)(s—c)(bJrc)? (5)
we - 4A 4abcA '

Observe that
D (s=b)(s—o)(b+0)
= iZcﬂ(b +¢)? - %Z(zﬁ —?)?
S ey a- (Yot - Y]
- % (acha+QZb2c2 - Z&)

= 4(R + 2r)rs>.

The last step was obtained using > a = 2s, abc = 4Rrs and the equivalent
form of Heron’s formula:

16A2 = 221)%2 — Za4.
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Finally, we get

1 1 4(R+2r)rs? 1 3
L L B2yt 13
we 2T 4abecA 2R 4r
Inequality (@) is proved and it is easy to show that equality occurs if and
only if a = b = ¢. The proof of Lemma 1 is complete. ]

Lemma 2. For any triangle ABC, the following inequality holds.

(w0 + s+ )2 < 5(52 +972). (6)
Equality holds if and only if triangle ABC' is equilateral.
Proof. From inequality [B]) and the well-known identities

16Rr?s?
WalltWe = 3 9Rr + 127 (™)
and
Z w? s5 4+ 3r2s* + (32R? + 40Rr + 3r?)r2s? + r4 (4R + r)?
. (s2 4+ 2Rr + r2)? ’
we have
(Cw) =Sz 4o Y wwe =Y ui+ 23" L
WqWpHWe Wq
o 804 3r%s" + (32R% + 40Rr + 3r)r?s® + 11 (4R + 1)?
= (s2 + 2Rr 4 1r2)2
8r(3R + 2r)s? ()
s2 4 2Rr + 12

s5 + (24R + 197)rs* + (80R? + 96 Rr + 19r?)r?s? + (4R + r)%rt
(s2 + 2Rr + r2)? '

Now, we will prove that
$5 + (24R + 197)rs* + (80R? + 96 Rr + 19r%)r?s? + (4R + r)?r?
(s2 + 2Rr + r2)?

9
< 1(82 +9r?). (9)

It is equivalent to
55% — (60R — 23r)rs® — (284R? + 24Rr — 951%)r%s?
+(260R? + 292Rr + T7r2)r* > 0. (10)
This can be written as
(s* = 16Rr + 5r2)[5s* + (20Rr — 2r?)s* + (12R + 397)r°]
+4r%(9s* + 17r%)(R — 27r)* > 0. (11)
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It follows from the well-known Gerretsen’s inequality s? > 16 Rr — 5r2 (see
] and also [6]) and Chapple-Euler’s inequality R > 2r.

From (8 and (@), we obtain (@). Clearly, the equality in (@) occurs if
and only if the triangle is equilateral. Lemma 2 is proved. ]

Lemma 3. The identity

.2 A (2R —3r)s® + (4R + r)r?
22
Za sin” - R (12)
holds for all triangles ABC.
Proof. This identity follows from
A
Z a® sin2 —
[Z a® — 4R? Z — cos® A) cos A}
=3 Z(f —2R? (ZCOSA — ZCOS3A) ,
and the following identities [6]:
Za2 =2(s%> —4Rr — r?), (13)
r
A=1+ —= 14
SeosA=1+4 L (14)
2R+ 1)3 — 3rs?
3= —1. 1
Zcos 150 (15)
O

Lemma 4. For any triangle ABC', we have

\/Hsm—Zsm—/L;_) (16)

Equality holds if and only if triangle ABC' is equilateral.

Proof. By the simple inequality cos B + cos C' < 2sin %, etc. It is deduced
> sin é > > cos A. Hence, using identity ([]E) we have

Z sm >1 —|— — (17)
According to the above inequality and the known relation
A r
H sin 5 = 7 (18)
to prove ([[@) we need to show that
r(4R+r)
A Cad)
4R ( + R 2sR
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After squaring both of sides and simplifying, it becomes
(R+7)s*> —r(4R+1)? >0,
ie.
(R+7)(s* — 16Rr 4 5r) + 3(R — 2r)r? > 0.

This follows from s? > 16Rr — 57?2 and R > 2r. Thus, inequality (IH) is

true. 0

Lemma 5. For any triangle ABC, the following inequality holds.
C _ s* —10Rrs®> — (8R%? +6Rr +r?)r?

B
Z(b2+c2 —a2)sin§sin5 > 1R

Equality holds if and only if triangle ABC' is equilateral.

. (19)

Proof. If AABC' is a non-obtuse triangle, using the simple well-known in-

equality sin 4 < 7o etc. we have

2
b2 + 2 — q? b+ec
> — > — (" + —a?). (20)

S 5

Indeed, the above inequality holds for all triangles. Next, we shall prove
our result.

Since sin 4 = %, inequality 20) is also
Z(b2+c2—a2) Vbe _ b >0,
G-0e-0 o
or equivalently
_ 22 2y _ )2
(s—a)(b* +c* —a*)(b—c) > 0. (21)

a {a be(s —b)(s—c)+ (b+c)(s—b)(s— c)}

Without loss of generality, we may assume that A is an obtuse angle and
a > b > c, then we easily know that

ay/be(s —b)(s — ¢) > by/ca(s — ¢)(s — a),
b+c)(s=b)(s—c) > (c+a)(s—c)(s—a).

Putting

X =av/be(s —b)(s—c)+ (b+c)(s—b)(s —¢),
Y =by/ca(s —c)(s —a) + (c+a)(s — ¢)(s — a),
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then X > Y. In addition, from
s=b s—a _(aX-bY)s—ab(X-Y)

bY aX abXY
S (bX —bY)s —ab(X =Y) (s—a)(X-Y) >0
abXY - aXY -
we find

s—b < s—a
by aX
According to this and a? + > — 2 > 0, 2 +a®> - 0> > 0,5 —b > s —a,
(a—¢)? > (b— ¢)?, we have that
(s —a)(b? 4+ c? —a?)(b—c)?

a [a be(s —b)(s—¢)+ (b+c)(s—b)(s— c)}

s—a s—0b
S 2., 2 2y N2 2., 2 32y, 32
> — b 4+c*—a”)(b—c)" + v (c®+a*—b")(a—c)
s—a s—a
S 2,2 2y a2 20 2 32y(p _ )2
> — b*4+c*—a”)(b—c)" + - (c®+a®—=b%)(b—c)
_ 2(s—a)

X (b—c)*c* > 0.

Therefore, the inequality (20 holds for obtuse triangles. Furthermore, we
know that (20 is valid for all triangles.
Now, by @0) and (), we obtain

B C

E (b? + 2 —a2)sin5sin5
r b+c

= E T(b2 +C2 — a2).

= 4a£cR {Z be(b + c¢) Z a® — 2abc Z a(b+ c)}
= 4agcR KZ a Z be — 3abc) Z a? — 4abe Z bc}

_ s*—10Rrs® — (8R? + 6Rr + 1%)r?
N 4R? '
Lemma 5 is proved. O

Lemma 6. Let P is an arbitrary point in the plane of triangle ABC,
a',b',c denote the sides of NA'B'C’ and A’ denote its area. Then

(a/PA+ bV PB+PC)? > (22)
1
5 [Q2(b/2 4 012 _ al2) 4 b2(cl2 4 a/2 _ b/2) 4 C2(CZ,I2 4 bl2 _ C/Q):I 4 SAAI
FEquality holds in one of the following cases: (i) NABC ~ NA'B'C’, P lies
inside of NABC, and A’ + ZBPC = B' + ZCPA =C'+ LAPB = n; (ii)
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P coincides with one of the vertices of AABC, the sum of the angle where
lies this vertices of triangle ABC and the relevant angle of triangle A’ B'C’
8 .
Inequality ([EH) is Bottema’s inequality for two triangles [6 [7].

3. PROOF OF THEOREM
Proof. Inequality @) is also

. B . C 2

Z (sm; + sin 5) PA > §Zwa. (23)

By Heron’s formula (), it is easily known that sm— + sin %,smg +

sin é ,sin & + sin £ form a triangle with area /] sin é > sin 5. Hence, by

using Lemma 6, we get
B 2
{Z <sin5+sin %) PA}
1 s 5 o f. B . CY A A
>§Z(b +c —a)(sm;—i—smi +8A HSIH§ZSIH§
B C
:—Z b2+ % —a? (sm E—i—sm25)
—|—Z (b + ¢* — a? s1n—sm—+8A\/Hsm—Zs1n—
—Za sin ——I—Z b2+c —a? smgsm%

+8A\/Hsin 3 Zsin 3

In order to prove ([Z3)), we need to show that

B C
Za sin —+Zb2—|—c smgsmi

+8A\/H sinE ZsinE > g (Z wa)z. (24)

According to Lemma 5, it suffices to prove that
(2R — 3r)s® + (4R + r)r? n s* —10Rrs® — (8R% + 6Rr + r2)r?

2R 4R?
2
+4(4R—|— r)r S 2 4o,
R
One may simplify this to
s* —16Rrs®> 4+ (28R? + 12Rr — )12 > 0, (25)
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which is equivalent to
(s> = 5r%)(s* — 16Rr + 5r%) + 4(R — 2r)(7TR — 3r)r® > 0.

This follows from Gerretsen’s inequality s> > 16Rr — 572 and Chapple-
Euler’s inequality R > 2r. Hence, inequality [23)), i.e., @) is proved. It is
easy to obtain the condition when equality occurs in (). This completes
the proof of Lemma 6. O
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