ON γ -P-REGULAR SPACES

SABIR HUSSAIN AND BASHIR AHMAD

ABSTRACT. We define and explore γ -P-regularity which is a generalization of P-regularity [16] and γ -regularity [3]. We also define and discuss strongly γ -semi-continuous functions.

1. INTRODUCTION

Signal and Arya [21] defined a new separation axiom called almost regularity which is weaker than regularity. It has been shown [21] that for Hausdorff spaces, this axiom occupies a position between Urysohn's separation axiom and T_3 -axiom. Maheswari and Prasad [17] have defined another axiom called s-regularity which is weaker than regularity (without T_2). C. Dorsett [7] defined and investigated a new separation axiom called semi-regularity. It is shown that s-regularity is weaker than semi-regularity. Semi-regularity due to C. Dorsett [7] and almost regularity due to Signal and Arya [20] are both weaker than regularity, but both are independent of each other. M. Khan and B. Ahmad [16] defined another form of regularity called P-regularity which implies semi-regularity [7] as well as almost regularity [21]. S. Kasahara [12] defined an operation α on topological spaces. H. Ogata [13] introduced the concept of γ -open sets and investigated the related topological properties. B. Ahmad and F. U. Rehman [1, 20] introduced the notions of γ -exterior and γ -boundary points in topological spaces. They also continued studying the properties and characterizations of (γ, β) -continuous mappings introduced by H. Ogata [13]. B. Ahmad and S. Hussain further studied the properties of γ -operations in topological spaces [2, 3]. They introduced and explored the notion of γ -semi-open sets in topological spaces [5, 10]. The concept of γ -s-closed spaces and γ -sclosed subspaces have been studied [4, 8]. It is known [8] that the concept of γ -s-closed space is a generalization of s-closed space [14].

In this paper, we define and explore γ -P-regularity which is a generalization of P-regularity [16] and γ -regularity [3]. We also define and discuss strongly γ -semi-continuous functions in Section 4.

FEBRUARY 2011

First, we recall preliminaries used in the sequel. Hereafter, we shall write a space in place of a topological space.

2. Preliminaries

Definition 2.1. [12] Let X be a space. An operation $\gamma: \tau \to P(X)$ is a function from τ to the power set of X such that $V \subseteq V^{\gamma}$, for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The operations defined by $\gamma(G) = G$, $\gamma(G) = cl(G)$ and $\gamma(G) = intcl(G)$ are examples of operation γ .

Definition 2.2. [13] Let X be a space and $A \subseteq X$. A point $x \in A$ is said to be γ -interior point of A, if there exists an open nbd N of x such that $N^{\gamma} \subseteq A$ and we denote the set of all such points by $int_{\gamma}(A)$. Thus,

$$int_{\gamma}(A) = \{x \in A : x \in N \in \tau \text{ and } N^{\gamma} \subseteq A\}.$$

Note that A is γ -open [13] if and only if $A = int_{\gamma}(A)$. A set A is called γ -closed [20] if and only if X - A is γ -open.

Definition 2.3. [13] A point $x \in X$ is called a γ -closure point of $A \subseteq X$, if $U^{\gamma} \cap A \neq \phi$, for each open $nbd \ U$ of x. The set of all γ -closure points of A is called the γ -closure of A and is denoted by $cl_{\gamma}(A)$. A subset A of X is called γ -closed, if $cl_{\gamma}(A) \subseteq A$. Note that $cl_{\gamma}(A)$ is contained in every γ -closed superset of A.

Definition 2.4. [13] An operation γ on τ is said be regular, if for any open nbds U, V of $x \in X$, there exists an open nbd W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$.

Definition 2.5. [13] An operation γ on τ is said to be open, if for every $nbd \ U$ of each $x \in X$, there exists a γ -open set B such that $x \in B$ and $U^{\gamma} \subseteq B$.

Definition 2.6. [3] An operation γ on τ is said to be γ -open (resp. closed), if U^{γ} is γ -open (resp. closed) for every open (resp. closed) set U in X.

Definition 2.7. [3] A space X is said to be γ -regular space, if for any γ -closed set A and $x \notin A$, there exist γ -open sets U, V such that $x \in U$, $A \subseteq V$ and $U \cap V = \phi$.

Definition 2.8. [10] A subset A of a space X is said to be a γ -semi-open set, if there exists a γ -open set O such that $O \subseteq A \subseteq cl_{\gamma}(O)$. The set of all γ -semi-open sets is denoted by $SO_{\gamma}(X)$. A is γ -semi-closed if and only if X - A is γ -semi-open in X. Note that A is γ -semi-closed if and only if $int_{\gamma}cl_{\gamma}(A) \subseteq A$.

Definition 2.9. [5] Let A be a subset of a space X. The intersection of all γ -semi-closed sets containing A is called the γ -semi-closure of A and is denoted by $scl_{\gamma}(A)$. Note that A is γ -semi-closed if and only if $scl_{\gamma}(A) = A$.

VOLUME 23, NUMBER 1

Definition 2.10. [5] Let A be a subset of a space X. The union of γ -semi-open subsets of A is called the γ -semi-interior of A and is denoted by $sint_{\gamma}(A)$.

Definition 2.11. [5] A subset A of a space X is said to be γ -semi-regular, if it is both γ -semi-open and γ -semi-closed. The class of all γ -semi-regular sets of X is denoted by $SR_{\gamma}(A)$. Note that if γ is a regular operation, then the union of γ -semi-regular sets is γ -semi-regular.

Definition 2.12. [16] A space X is said to be P-regular, if for each semiclosed set F and $x \notin F$, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 2.13. [3] A space X is said to be γ_o -compact, if every cover $\{V_i : i \in I\}$ of X by γ -open sets of X, there exists a finite subset I_o of I such that $X = \bigcup_{i \in I_o} cl_{\gamma}(V_i)$.

Definition 2.14. [9] A space X is said to be almost γ -regular, if for any γ -semi-closed set A, and $x \notin A$, there exist disjoint γ -open sets V and W such that $x \in V$ and $A \subseteq W$.

3. γ -P-Regular Spaces

Definition 3.1. A space X is said to be γ -P-regular, if for each γ -semiclosed set F and $x \notin F$, there exist disjoint γ -open sets U, V such that $x \in U$ and $F \subseteq V$.

The following implications follow from [3, 7, 8, 16, 21].

 $P - regularity \Rightarrow regularity \Rightarrow \gamma - regularity$

 $P - regularity \Rightarrow regularity \Rightarrow almost - regularity$

 $P-regularity \Rightarrow semi-regularity \Rightarrow \gamma-semi-regularity$

We note that each regularity and P-regularity [16] implies γ -P-regularity, and γ -regularity [3], however, the converse is not true in general as shown in the following example.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $a \in X$, define the operation $\gamma \colon \tau \to P(X)$ by

$$\gamma(A) = A^{\gamma} = \begin{cases} cl(A), & \text{if } a \in A \\ int(cl(A)), & \text{if } a \notin A \end{cases}$$

Clearly $\{a, c\}, \{b\}, X, \phi$ are γ -open and γ -semi-open sets. Also, $\{a\}, \{b\}, \{a, c\}, X, \phi$ are semi-open sets in X. Here, X is γ -P-regular and γ -regular, but not P-regular and regular.

Theorem 3.3. Let X be a space. If γ is an open operation, then the following are equivalent.

(1) X is a γ -P-regular space.

FEBRUARY 2011

- (2) For every $x \in X$ and every γ -semi-open set V containing x, there exists a γ -open set U such that $x \in U \subseteq cl_{\gamma}(U) \subseteq V$.
- (3) For every γ-semi-closed set A, the intersection of all the γ-closed nbds of A is A.
- (4) For every set A and a γ-semi-open set B such that A ∩ B ≠ φ, there exists a γ-open set F such that A ∩ F ≠ φ and cl_γ(F) ⊆ B.
- (5) For every nonempty set A and γ -semi-closed B such that $A \cap B = \phi$, there exist disjoint γ -open sets L and M such that $A \cap L \neq \phi$ and $B \subseteq M$.

Proof. (1) \Rightarrow (2). Let V be a γ -semi-open set containing x. Then X - V is γ -semi-closed and $x \notin X - V$. Since X is γ -P-regular, there exist disjoint γ -open sets U_1, U_2 such that $x \in U_1$ and $X - V \subseteq U_2$. Thus, we obtain $x \in U_1 \subseteq cl_{\gamma}(U_1) \subseteq V$. This proves (2).

 $(2) \Rightarrow (3)$. Let A be a γ -semi-closed set and $x \notin A$. Then X - A is γ -semi-open and $x \in X - A$. By (2), there exists a γ -open set U such that $x \in U \subseteq cl_{\gamma}(U) \subseteq X - A$. Thus, $A \subseteq X - cl_{\gamma}(U) \subseteq X - U$. Consequently, X - U is a γ -closed nbd of A [20] and $x \notin X - U$. This proves (3).

 $(3) \Rightarrow (4)$. Let $A \cap B \neq \phi$ and B be a γ -semi-open set. Let $x \in A \cap B$. Then X - B is γ -semi-closed and $x \notin X - B$. Then by (3), there exists a γ -closed nbd V of X - B and $x \notin V$. Let $X - B \subseteq U \subseteq V$, where U is γ -open. Then F = X - V is γ -open such that $x \in F$ and $A \cap F \neq \phi$. Also, X - U is γ -closed and $cl_{\gamma}(F) = cl_{\gamma}(X - V) \subseteq X - U \subseteq B$. This shows that $cl_{\gamma}(F) \subseteq B$.

 $(4) \Rightarrow (5)$. Suppose $A \cap B = \phi$, where $A \neq \phi$ and B is γ -semi-closed. Then X - B is γ -semi-open and $A \cap (X - B) \neq \phi$. By (4), there exists a γ -open set L such that $A \cap L \neq \phi$ and $L \subseteq cl_{\gamma}(L) \subseteq X - B$. Let $M = X - cl_{\gamma}(L)$. Then $B \subseteq M$. L and M are γ -open sets such that $M = X - cl_{\gamma}(L) \subseteq (X - L)$. This proves (5).

 $(5) \Rightarrow (1)$. This is straightforward. This completes the proof.

Let $B \subseteq X$ and $\gamma: \tau \to P(X)$ be an operation. We define $\gamma_B: \tau_B \to P(X)$ by $\gamma_B(U \cap B) = \gamma(U) \cap B$. Then γ_B is an operation and satisfies $cl_{\gamma_B}(U \cap B) \subseteq cl_{\gamma}(U \cap B) \subseteq cl_{\gamma}(U) \cap cl_{\gamma}(B)$.

We know that a subset A of (B, τ_B) is γ_B -open, if for each $x \in A$ there exists a τ_B -open set U such that $x \in U$ and $\gamma_B(U) \subseteq A$.

Observe that if W is γ -open in X and $U = W \cap B$, then U is a γ_B -open in B. In the case that γ is open, we obtain that any γ_B -open set U in B can be written as $U = H \cap B$, where H is a γ -open set in X. And the proof is as follows.

Let U be a γ_B -open set in B. Then for each $x \in U$ there exists a τ_B -open set W_x in B such that $W_x \subseteq W_x^{\gamma} \subseteq U$. Since $W_x = H_x \cap B$ where H_x is an open sets in X, we obtain that $U = \bigcup_{x \in U} H_x \cap B = \bigcup_{x \in U} H_x^{\gamma} \cap B$.

VOLUME 23, NUMBER 1

Using the fact that γ is open, we obtain that for each $y \in H_x$ there exists a γ -open set D_y such that $H_x^{\gamma} \subseteq D_y$. If we take $D = \bigcup_{y \in U} D_y$, D is γ -open in X and $U = D \cap B$.

The complement of a γ -semi-open set is called γ -semi-closed set. Observe that A is a γ -semi-closed if there exists a γ -closed set U in X such that $int_{\gamma}(U) \subseteq A \subseteq U$. The collection of all γ -semi-closed sets in X is denoted by $SC_{\gamma}(X)$.

From this we obtain that if $A \subseteq B \subseteq X$ and A is γ_B -semi-open in B, then there exists a γ_B -open set O such that $O \subseteq A \subseteq cl_{\gamma_B}(O)$.

Now using this fact, we can prove the following theorem.

Theorem 3.4. Let X be a space, γ be an open operator, and B a γ -semiclosed set in X containing a subset A of X. If A is a γ_B -semi-closed in the subspace B, then A is a γ -semi-closed in X.

Proof. Let A be a γ_B -semi-closed in the subspace B. Then there exists a γ_B -closed set U in B such that $int_{\gamma_B}(U) \subseteq A \subseteq U$. U is a γ_B -closed set in B. Using the above argument, there exists a γ -closed set V in X such that $U = V \cap B$. Thus we have $int_{\gamma_B}(V \cap B) \subseteq V \cap B$. $V \cap B$ is γ -semi-closed set in X and $int_{\gamma_B}(U) \subseteq A \subseteq U$. We obtain that $int_{\gamma}(U) \subseteq int_{\gamma_B}(U) \subseteq A \subseteq U$. We conclude that A is γ -semi-closed in X.

Theorem 3.5. Every γ_Y -semi-closed subspace of a γ -P-regular space X is γ_Y -P-regular, where γ is open.

Proof. Let F be any γ_Y -semi-closed subset of Y and $x \in Y - F$. Then by Theorem 3.4, $F \in SC_{\gamma}(X)$. X is γ -P-regular. Therefore, there exist γ -open sets U_X and V_X such that $x \in U_X$, $F \subseteq V_X$ and $U_X \cap V_X = \phi$. Let $U = U_X \cap Y$ and $V = V_X \cap Y$. Then clearly U and V are disjoint γ_Y -open subsets of Y containing x and F, respectively. This proves that Yis γ_Y -P-regular.

Definition 3.6. A space X is said to be locally γ -indiscrete if every γ -open set is γ -closed.

Theorem 3.7. Every almost γ -regular (resp. γ -semi-regular) locally γ -indiscrete space X is γ -P-regular, where γ is open.

Proof. Let V be a γ -semi-closed subset of X and $x \notin V$. Since X is locally γ -indiscrete, V is γ -regularly-closed [4]. Since X is almost γ -regular [9], there exist disjoint γ -open sets U_1 and U_2 such that $x \in U_1$ and $V \subseteq U_2$. This proves that X is γ -P-regular. This completes the proof. \Box

Corollary 3.8. Every γ -regular, locally γ -indiscrete space is γ -P-regular, where γ is open.

FEBRUARY 2011

Definition 3.9. [9] Two sets A and B are γ -strongly separated if there exist disjoint γ -open (closed) sets U, V such that $A \subset U$ and $B \subset V$.

Theorem 3.10. In a γ -P-regular space X, every pair consisting of a γ_o compact set A and a disjoint γ -semi-closed set B can be γ -strongly separated, where γ is regular and open.

Proof. Since X is γ -P-regular, for each $x \in A$ there exist disjoint γ -open sets U_x and V_{B_x} such that $x \in U_x$ and $B \subseteq V_{B_X}$. Clearly $\{U_x \cap A : x \in A\}$ is relatively γ -open covering of the γ_o -compact set A. This gives that there exists a finite subfamily $\{U_{x_i} \cap A : i = 1, 2, \ldots, n\}$ such that $A \subseteq \bigcup_{i \in I_o} cl_\gamma(U_{x_i} \cap A) = U$. Let $V = \bigcap cl_\gamma\{V_{B_{x_i}} : i = 1, 2, \ldots, n\}$. Then U and V are the required disjoint γ -closed sets, since γ is open [13]. This completes the proof.

Corollary 3.11. If X is γ -P-regular, A is a γ_o -compact subset of X, and B is a γ -semi-open set containing A. Then there exists a γ -semi-regular set V such that $A \subseteq V \subseteq B$, where γ is regular and open.

Proof. Let B be γ -semi-open set. Then X - B is a γ -semi-closed set such that $(X - B) \cap A = \phi$. Since A is γ_o -compact, by Theorem 3.10, there exist γ -open sets U_1 and U_2 such that $A \subseteq U_1$, $X - B \subseteq U_2$ and $U_1 \cap U_2 = \phi$ [3]. Then clearly, $A \subseteq U_1 \subseteq scl_{\gamma}(U_1) \subseteq B$. Let $V = scl_{\gamma}(U_1)$. Then $A \subseteq V \subseteq B$, where V is a γ -semi-regular set. This completes the proof. \Box

Corollary 3.12. If X is a γ -P-regular space and A, B are subsets of X such that A is γ_o -compact and B is γ -semi-closed with $A \cap B = \phi$, then there exist γ -semi-regular sets U and V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \phi$, where γ is regular and open.

Proof. Since X - B is a γ -semi-open set containing A and X is γ -P-regular, by Corollary 3.11, there exists a γ -semi-regular set V_1 such that $A \subseteq V_1 \subseteq X - B$. Again since V_1 is a γ -semi-open set containing A, there exists a γ -semi-regular set U such that $A \subseteq U \subseteq V_1$. Let $V = X - V_1$. Then $A \subseteq U$, $B \subseteq V$, where U and V are disjoint γ -semi-regular sets. This completes the proof. \Box

4. Strongly γ -Semi-Continuous Functions

Definition 4.1. [6] A function $f: X \to Y$ is said to be γ -semi-continuous if for any γ -open set B of Y, $f^{-1}(B)$ is γ -semi-open in X.

Definition 4.2. [6] A function $f: X \to Y$ is said to be γ -semi-open (resp. closed) if for each γ -open (resp. closed) set U in X, f(U) is γ -semi-open (resp. closed) in Y.

VOLUME 23, NUMBER 1

Definition 4.3. [13] A function $f: X \to Y$ is said to be (γ, β) -continuous if for each $x \in X$ and each open set V containing f(x), there exists an open set U such that $x \in U$ and $f(U^{\gamma}) \subseteq V^{\beta}$, where $\gamma: \tau \to P(X)$ and $\beta: \delta \to P(Y)$ are operations on τ and δ , respectively.

Definition 4.4. [1] A function $f: X \to Y$ is said to be (γ, β) -closed (resp. open) if for any γ -closed (resp. open) set A of X, f(A) is β -closed (resp. open) in Y.

Next we give the following definition.

Definition 4.5. A function $f: X \to Y$ is said to be strongly (γ, β) -continuous if $f^{-1}(U)$ is γ -open in X, for every β -clopen set U in Y.

Definition 4.6. A function $f: X \to Y$ is said to be strongly γ -semicontinuous if $f^{-1}(U)$ is γ -open (resp. closed) in X, for every γ -semi-open (resp. closed) set U in Y.

Definition 4.7. [4] A subset A of X is called γ -regular-open if $A = int_{\gamma}(cl_{\gamma}(A))$.

Note that A is γ -regular closed if and only if X - A is γ -regular open.

Definition 4.8. A function $f: X \to Y$ is said to be γ -s-open (resp. closed) if f(U) is γ -open (resp. closed) in X, for every γ -semi-open (resp. closed) set U in Y.

Theorem 4.9. Let $f: X \to Y$ be a (γ, β) -clopen and γ -semi-continuous mapping with γ_o -compact point inverses. If X is γ -P-regular, then Y is γ -P-regular, where β is β -open and γ is a regular and γ -open operation.

Proof. Let C be a γ -semi-closed subset of Y and $y \notin C$. Then $f^{-1}(C)$ is γ -semi-closed in X [6]. Moreover $f^{-1}(y)$ and $f^{-1}(C)$ are disjoint in X. Then by Theorem 3.9, there exist disjoint γ -closed sets F and G such that $f^{-1}(y) \in F$ and $f^{-1}(C) \subseteq G$. Since f is (γ, β) -closed, there exist β -closed sets V and W in Y containing y and C, respectively, such that $f^{-1}(V) \subseteq F$ and $f^{-1}(W) \subseteq G$ [20]. Since $F \cap G = \phi$, it follows that $V \cap W = \phi$. This proves that Y is γ -P-regular. This completes the proof.

Theorem 4.10. If $f: X \to Y$ be a function and f is (γ, β) -continuous, then for each β -open set V of Y, $f^{-1}(V)$ is γ -open in X.

Proof. Let $x \in f^{-1}(V)$, then $f(x) \in V$. Since V is β -open, there exists an open set W in Y such that $f(x) \in W$ and $W^{\beta} \subseteq V$. Since f is (γ, β) continuous, there exists an open set U such that $x \in U$ and $f(U^{\gamma}) \subseteq W^{\beta} \subseteq$ V. Consequently, $x \in U$ and $U^{\gamma} \subseteq f^{-1}(V)$ which implies $f^{-1}(V)$ is γ -open in X. \Box

FEBRUARY 2011

Theorem 4.11. The inverse image of a β -P-regular space under a (γ, β) -continuous, γ -semi-closed preserving injection is γ -P-regular, where β is open.

Proof. Let C be a γ -semi-closed subset of X and $x \in X - C$. Since f is a γ -semi-closed preserving injection, f(C) is γ -semi-closed in Y and $f(x) \notin f(C)$. Since Y is β -P-regular, there exist disjoint β -open sets U and V in Y such that $f(x) \in U$ and $f(C) \subseteq V$. This gives that $x \in f^{-1}(U)$ and $C \subseteq f^{-1}(V)$. Since f is (γ, β) -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are γ -open subsets of X [20], such that $f^{-1}(U) \cap f^{-1}(V) = \phi$. This proves that X is γ -P-regular. This completes the proof.

Theorem 4.12. Let $f: X \to Y$ be strongly γ -semi-continuous and (γ, β) -clopen surjection. If X is γ -regular, then Y is γ -P-regular.

Proof. Let C be any γ -semi-closed set of Y and $y \in Y - C$. Let $x \in f^{-1}(y)$. Since f is strongly γ -semi-continuous, $f^{-1}(C)$ is γ -closed in X and $x \in f^{-1}(C)$. Since X is γ -regular [3], there exist disjoint γ -open sets U and V such that $x \in U$, $f^{-1}(C) \subseteq V$. Since f is (γ, β) -closed [1], there exists a β -open set W of Y such that $C \subseteq W$ and $f^{-1}(W) \subseteq V$. This gives that $U \cap f^{-1}(W) = \phi$ or $f(U) \cap W = \phi$. Since f is (γ, β) -open [1], f(U) is β -open in Y and $y \in f(U)$. This proves that Y is γ -P-regular. This completes the proof.

Theorem 4.13. Let $f: X \to Y$ be strongly γ -semi-continuous and (γ, β) closed surjection with γ_o -compact point inverses. If X is γ -regular, then Y is γ -P-regular.

Proof. Let C be a γ -semi-closed set of Y and $y \in Y - C$. Since f is strongly γ -semi-continuous, $f^{-1}(C)$ is γ -closed in X. Moreover, the γ_o -compact sets $f^{-1}(y)$ and $f^{-1}(C)$ are disjoint. Since X is γ -regular, there exist disjoint γ -open sets F and G such that $f^{-1}(y) \in F$ and $f^{-1}(C) \subseteq G$. Since f is (γ, β) -closed, there exist β -open sets V and W in Y containing y and C, respectively, such that $f^{-1}(V) \subseteq F$ and $f^{-1}(W) \subseteq G$. Clearly $V \cap W = \phi$. This proves that Y is γ -P-regular. This completes the proof. \Box

Theorem 4.14. The inverse image of a γ -semi-regular space Y under γ -semi-closed preserving and strong γ -semi-continuous injection is γ -P-regular.

Proof. Let C be any arbitrary γ -closed subset of X such that $x \in X - C$. Since f is γ -semi-closed preserving injection, f(C) is γ -semi-closed in Y and $f(x) \notin f(C)$. Since Y is γ -semi-regular [8], there exist disjoint γ -semi-open sets U and V such that $f(x) \in U$ and $f(C) \subseteq V$. Since f is strong γ -semi-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are γ -open subsets of X containing x and

VOLUME 23, NUMBER 1

C such that $f^{-1}(U) \cap f^{-1}(V) = \phi$. This proves that X is γ -P-regular. This completes the proof.

Theorem 4.15. The inverse image of a β -regular space under γ -s-closed and (γ, β) -continuous injection is γ -P-regular.

Proof. Let C be any γ -semi-closed subset of X and $x \in X - C$. Since f is γ -s-closed, f(C) is β -closed in Y and $f(x) \notin f(C)$. Since Y is β -regular, there exist disjoint β -open sets U and V of Y such that $f(x) \in U$ and $f(C) \subseteq V$. Since f is (γ, β) -continuous, using Theorem 4.10, $f^{-1}(U)$ and $f^{-1}(V)$ are γ -open subsets of X. Now $x \in f(f^{-1}(x)) \subseteq f^{-1}(U)$ and $C \subseteq f(f^{-1}(C)) \subseteq f^{-1}(V)$ or $x \in f^{-1}(U), C \subseteq f^{-1}(V)$ and clearly $f^{-1}(U) \cap f^{-1}(V) = \phi$. This proves that X is γ -P-regular. This completes the proof.

Theorem 4.16. The inverse image of a β -P-regular space Y under (γ, β) continuous and γ -semi-closed preserving injection is γ -P-regular.

Proof. Let C be any arbitrary γ -semi-closed subset of X and $x \in X - C$. Since f is γ -semi-closed preserving injection, f(C) is β -semi-closed in Y and $f(x) \notin f(C)$. Since Y is β -P-regular, there exist disjoint β -open sets U and V of Y such that $f(x) \in U$ and $f(C) \subseteq V$. Since f is (γ, β) -continuous, using Theorem 4.10, $f^{-1}(U)$ and $f^{-1}(V)$ are γ -open subsets of X. Now $x \in f(f^{-1}(x)) \subseteq f^{-1}(U)$ and $C \subseteq f(f^{-1}(C)) \subseteq f^{-1}(V)$ or $x \in f^{-1}(U)$, $C \subseteq f^{-1}(V)$ and clearly $f^{-1}(U) \cap f^{-1}(V) = \phi$. This proves that X is γ -P-regular. This completes the proof.

5. Acknowledgement

The authors are thankful to the referee for his valuable comments and suggestions towards the improvement of the paper.

References

- B. Ahmad and F. U. Rehman, Operations on topological spaces-II, Math. Today, 11 (1993), 13–20.
- B. Ahmad and S. Hussain, Properties of γ-operations in topological spaces, Aligarh Bull. Math., 22.1 (2003), 45–51.
- [3] B. Ahmad and S. Hussain, γ^{*}-regular and γ-normal spaces, Math. Today, 22.1 (2006), 37–44.
- [4] B. Ahmad and S. Hussain, On γ-s-closed subspaces, Far East Jr. Math. Sci., 31.2 (2008), 279–291.
- [5] B. Ahmad and S. Hussain, *γ*-semi-open sets in topological spaces II, Southeast Asian Bull. Math., **34.6** (2010), 997–1008.
- [6] B. Ahmad, S. Hussain, and T. Noiri, On some mappings in topological spaces, Eur. J. Pure Appl. Math., 1 (2008), 22–29.
- [7] C. Dorsett, Semi-regular spaces, Soochow Jr. Math, 8 (1982), 45–53.
- [8] S. Hussain and B. Ahmad, On *γ*-s-closed spaces, Sci. Magna Jr., **3.4** (2007), 89–93.

FEBRUARY 2011

- [9] S. Hussain and B. Ahmad, On γ -s^{*}-regular spaces and almost γ -scontinuous functions, Lobachevskii J. Math., **30.4** (2009), 263–268, DOI:10.1134/S1995080209040039.
- [10] S. Hussain, B. Ahmad, and T. Noiri, γ-semi-open sets in topological spaces, Asian Eur. J. Math., **3.3** (2010), 427–433, DOI: 10.1142/S1793557110000337.
- [11] D. S. Jankovic, On functions with closed graphs, Glasnik Mat., 18 (1983), 141-146.
- [12] S. Kasahara, Operation-compact spaces, Math. Japon., 24 (1979), 97–105.
- H. Ogata, Operations on topological spaces and associated topology, Math. Japon., 36.1 (1991), 175–184.
- [14] G. D. Maio and T. Noiri, On s-closed spaces, Indian Jr. Pure Appl. Math, 18.3 (1987), 226–233.
- [15] G. D. Maio and T. Noiri, Week and strong forms of irresolute functions, Third National Conference on Topology (Italian) (Trieste, 1986), Rend. Circ. Mat. palermo, (2) Suppl. No., 18 (1988), 255–273.
- [16] M. Khan and B. Ahmad, On p-regular spaces, Math. Today, 13 (1995), 51–56.
- [17] S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Mat., 10.30 (1975), 347–350.
- [18] T. Noiri, On semi-continuous mappings, Bull. Cal. Math. Soc., 65 (1973), 197–201.
- [19] T. Noiri, B. Ahmad, and M. Khan, Almost s-continuous functions, Kyungpook Math. Jr., 35 (1995), 311–322.
- [20] F. U. Rehman and B. Ahmad, Operations on topological spaces-I, Math. Today, 10 (1992), 29–36.
- [21] M. K. Singal and S. P. Arya, On almost-regular spaces, Glasnik Mat., 4.24 (1969), 89–99.

MSC2000: 54A05, 54A10, 54D10

DEPARTMENT OF MATHEMATICS, ISLAMIA UNIVERSITY, BAHAWALPUR, PAKISTAN *E-mail address*: sabiriub@yahoo.com

Department of Mathematics, King Abdul Aziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: drbashir9@gmail.com

Current address (S. HUSSAIN): DEPARTMENT OF MATHEMATICS, YANBU UNIVERSITY, P. O. BOX 31387, YANBU ALSINAIYAH, SAUDI ARABIA

VOLUME 23, NUMBER 1