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Abstract. Deriving a suitable heterogeneous distance measure that
mixes continuous and categorical attributes is a difficult problem with
a variety of applications. We developed the Scaled Heterogeneous Eu-
clidean Overlap Metric (SHEOM) and we adapted the Interpolated
Value Difference Metric (IVDM) from Wilson and Martinez [2, 3].
Our adaptation of the IVDM utilizes output classes given by a con-
tinuous response variable. We applied both distance measures in a
nearest-neighbor classification for an ecological assessment. Both of
the distance measures we applied were shown to be improvements on
the simpler Heterogeneous Euclidean Overlap Metric when used in
this ecological assessment setting.

1. Introduction

A distance measure gives a numerical description of the similarity be-
tween two objects using some number of attributes measured on those
objects. If all attributes are continuous then the well-known Euclidean
distance function can be used as a distance measure. Let

xi = (xi,1, xi,2, . . . , xi,R) and xj = (xj,1, xj,2, . . . , xj,R)

be vectors of continuous data whose components are the measured values of
R attributes or predictors on objects i and j, respectively. The Euclidean
distance function defines the similarity between xi and xj as

E(xi,xj) =

√

√

√

√

R
∑

r=1

(xi,r − xj,r)2.

A computationally simplified version of the Euclidean distance function is
the city-block or Manhattan distance function. This distance function is
defined as

M(xi,xj) =

R
∑

r=1

|xi,r − xj,r |.
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In applications a subset of the attributes can overpower the remaining
attributes in the distance measure. For example, in the ecological assess-
ment setting described by Bates Prins and Smith [1], the similarity between
stream i and stream j might be measured using the continuous attributes of
latitude and catchment area. In this setting, an attribute is a predictor so
we use that nomenclature when referring to this application. Suppose xi,1

is the value of latitude at the ith stream with plausible values xi,1 ∈ [0, 90]
and xj,2 is the value of catchment area at the jth stream with plausible
values xi,2 ∈ [1, 10]. Then the values of |xi,1 − xj,1| will likely be larger
than |xi,2 − xj,2| simply due to the greater range in latitude values. Thus,
latitude will dominate the Euclidean or Manhattan distance measures. To
deal with this problem in a general setting, distance functions are often
normalized by dividing the contribution of each attribute by the range of
possible or measured values of that predictor [2, 3]. This should force the
contribution of each attribute to the distance measure to be in the interval
[0, 1].

A much more difficult problem arises when distance is measured using
both continuous and categorical attributes. Finding a distance measure
that incorporates both types of attributes, known as a heterogeneous dis-
tance measure, is our focus. The Heterogeneous Euclidean Overlap Metric
(HEOM) from Wilson and Martinez [2, 3] is one example of a heterogeneous
distance measure. Suppose we wish to find distances between some subset
of n objects and that for each object we have measured the values of R

predictors. Let J = {1, 2, . . . , n} be an index set for each of the n objects.
For each i, j ∈ J , the HEOM defines the distance between the ith object
and the jth object as

HEOM(xi,xj) =

R
∑

r=1

dr(xi,r , xj,r),

where

dr(xi,r , xj,r) =

{

|xi,r−xj,r|
range

r

if r indexes a continuous attribute

δi,j if r indexes a categorical attribute
(1)

and δi,j = 1 if xi,r 6= xj,r and δi,j = 0 if xi,r = xj,r. Here dr(xi,r, xj,r) can
be thought of as the contribution of the rth attribute to the overall distance
and ranger = max

j∈J
{xj,r} − min

j∈J
{xj,r}. Notice that a continuous attribute’s

contribution to the HEOM distance is bounded above by 1.
Problems can arise when using the HEOM distance function with mixed-

type attributes. Referring to Equation (1), if the values of a continuous
attribute on objects i and j are equal, i.e., xi,r = xj,r , then dr(xi,r , xj,r) =
0. Importantly, the same distance value results if r indexes a categorical
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attribute. However, if objects i and j differ with respect to a continuous
attribute and a categorical attribute then these two attributes contribute
equal amounts to the HEOM distance only if the absolute difference in
the continuous attribute is the largest difference observed in the data. In
general, for a continuous attribute |xi,r − xj,r | = ranger occurs for only a
small number of pairs of objects. Thus, for a continuous attribute, non-
matching values will almost always contribute less to the distance measure
than non-matching values in a categorical attribute.

Both problems mentioned involve the issue of scaling; the first involves
the scale of the attributes themselves, the second involves the scale of the
attribute’s contributions to the HEOM distance, and both arose in the eco-
logical assessment setting described by Bates Prins and Smith [1]. In this
setting, there are observed values of continuous and categorical predictors
as well as six biological metrics, such as Ephemeroptera Richness, that are
considered the responses. Each of the predictors and metrics/responses
were observed at n reference streams located in the mid-Atlantic region.
These reference streams are known to be minimally impaired from environ-
mental stress. We let J = {1, 2, . . . , n} index the n reference streams. The
data also consists of measurements of the continuous and categorical pre-
dictors and metrics/responses at some number of test streams that we wish
to classify as either impaired from environmental stress or minimally im-
paired. In order to classify a particular test stream as impaired or minimally
impaired, Bates Prins and Smith [1] found the k nearest-neighbor reference
streams to a test stream using the HEOM distance measure and a subset
of the available predictors. The value used for ranger was the range of pre-
dictor r measured on the n reference streams only. The k nearest-neighbor
reference streams were then used to determine a scaled metric/response
value, ȳ∗

i , at the test stream using the average and the standard deviation
of the metric/response values observed at the k nearest-neighbor reference
streams in Equation (9) of Bates Prins and Smith [1]. ȳ∗

i was subsequently
used to classify the test stream as either impaired or not by comparison to
a t-distribution (see Bates Prins and Smith [1] for details).

For each metric/response, Bates Prins and Smith [1] chose the value of
k and the particular subset of predictors to use in the nearest-neighbor
method using a leave-one-out approach that minimized the mean squared
error (MSE) of prediction. First, an initial value of k and an initial subset
of the predictors are chosen. Then treating the first of the n reference
streams as a test stream, the HEOM distance based on the chosen subset
of predictors is calculated between stream 1 and each of the remaining
n − 1 reference streams and the k closest neighbors of stream 1 are used
to calculate the scaled metric value at stream 1. This process is repeated
for each of the reference streams and the MSE is calculated using the n

110 VOLUME 22, NUMBER 2



DISTANCE AND NEIGHBORS IN AN ECOLOGICAL SETTING

resulting ȳ∗
i values. This entire process is repeated for various values of k

and different combinations of predictors. The value of k and the subset of
predictors that result in the minimum value of MSE are then used to find
the scaled metric/response value at a true test stream.

The presence of the first scaling issue in this application has already been
illustrated using the predictors latitude and catchment area. The second
scaling issue is also present because although the leave-one-out approach
allows the dr(xi,r , xj,r) for a continuous predictor to no longer be bounded
above by 1, dr(xi,r , xj,r) > 1 only when the predictor value at the left-out
stream is equal to the minimum or maximum occurring in all n reference
streams. That is, non-matching values in a continuous predictor will still
almost always contribute less to the distance measure than non-matching
values in a categorical predictor. The relative high contribution of categor-
ical predictors to the HEOM distance resulted in these predictors seldom
being chosen amongst the subset of predictors that minimized MSE.

This paper will offer two improved approaches to the Bates Prins and
Smith [1] application of heterogeneous distance measures. First, we present
a simple modification to the HEOM, which we refer to as the Scaled Het-
erogeneous Euclidean Overlap Metric (SHEOM) that addresses the scaling
of the attributes directly. We then present an extension of the Interpolated
Value Difference Metric (IVDM) of Wilson and Martinez [2, 3] for use with
a continuous response. We conclude with a comparison of the benefits and
complications presented by each method.

2. The Scaled Heterogeneous Euclidean Overlap Metric

The first and computationally simpler distance function we present is the
Scaled Heterogeneous Euclidean Overlap Metric (SHEOM). The SHEOM
distance function addresses the first scaling issue by scaling the continuous
attribute values to have mean 0 and variance 1 prior to calculating the
Manhattan distance. With xi and xj defined as in the introduction, the
SHEOM first scales each continuous attribute using

x∗
p,r =

xp,r − x̄r

sr

, (2)

where p indexes the object and x̄r and sr are the mean and standard devi-
ation, respectively of predictor r measured on all but the pth object.

We then define the contribution of the rth predictor to the SHEOM
distance measure using

d∗r(xi,r, xj,r) =

{
∣

∣x∗
i,r − x∗

j,r

∣

∣ if r indexes a continuous predictor

δi,j if r indexes a categorical predictor,
(3)
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where again δi,j is as defined for the HEOM. Notice that
∣

∣x∗
i,r − x∗

j,r

∣

∣ =
|xi,r−xj,r|

sr
so that SHEOM is equivalent to the HEOM with scaling per-

formed by the standard deviation rather than the range. We then define
the SHEOM as

SHEOM(xi,xj) =
R

∑

r=1

d∗r(xi,r , xj,r).

3. The Interpolated Value Difference Metric (IVDM)

The Interpolated Value Difference Metric (IVDM) was originally devel-
oped by Wilson and Martinez [2, 3] for an instance based learning algorithm.
Central to the IVDM calculation are the use of input classes, the value of a
categorical or discretized attribute, and the use of output classes, the value
of a categorical response variable. The IVDM measures distance in terms
of differences in the relative frequency of each input class and output class.
We now extend the IVDM method to the setting in which the response
variable is continuous.

Let J = {1, 2, . . . , n} be an index set for each of the n objects. These
n objects take on the role of the training set referred to by Wilson and
Martinez [2, 3]. Let i indicate a test object that we wish to find the nearest-
neighbors of. p will either indicate the test object or a member of the set
of n training objects. Recall that xp = (xp,1, xp,2, . . . , xp,R) is a vector
of values of the R attributes observed on p. We will assume without loss
of generality that the first RG of these attributes are categorical and the
remaining R−RG are continuous. yp will indicate the value of the response
on the pth object. In the ecological assessment setting i indicates a test
stream that we wish to classify as impaired or not, p indicates either the test
stream or a reference stream (in the case of the leave-one-out approach), J

indexes the n reference streams (or n − 1 in the case of the leave-one-out
approach), and yp is the value of the metric at the pth stream.

We now give the steps involved in determining the IVDM distances.

(1) Discretize the response variable into C output classes. This is ac-
complished by dividing the range of measurements of the response
based on the training objects into C subintervals of equal width
w. These subintervals are labeled 1, 2, . . . , C with interval 1 rep-
resenting the lowest response values. The subinterval to which a
particular yp belongs becomes the discretized value of yp and its
output class. Thus, the output class associated with the response
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observed at test object p is defined as

discretize(yp) =











C if yp ≥ max
j∈J

{yj}

1 if yp < min
j∈J

{yj}

b(yp − minj∈J{yj}) �wc + 1 otherwise,

where

w =
1

C

∣

∣

∣

∣

max
j∈J

{yj} − min
j∈J

{yj}

∣

∣

∣

∣

.

We note that discretize(yp) ∈ {1, 2, . . . , C}, but some subset of the
output classes may not be observed in any particular collection of
objects. Also, the response on the pth object has output class C

if it is larger than the response over all training objects regardless
of how much larger it is. A similar idea follows when yp is smaller
than all other responses.

(2) For each xp,r where r ∈ {1, 2, . . . , RG} and for each c = 1, 2, . . . , C,
we define Nxp,r,c as the number of times attribute r has value equal
to xp,r on the training objects that have discretized response value
c. Define Nxp,r

to be the total number of times attribute r has value
equal to xp,r on all training objects. The conditional probability
that of output class c, given that the attribute value on object p is
xp,r is

Pxp,r ,c =
Nxp,r,c

Nxp,r

.

If xp,r never appears within the training objects we set Pxp,r,c = 0.
Pxp,r,c is the relative frequency that will be used in the IVDM
calculation.

(3) Continuous attributes are discretized using the same approach used
for discretizing the continuous response. For each r ∈ {RG +
1, . . . , R} divide the range of values for attribute r observed on the
training objects into Sr subintervals of equal width wr. The subin-
terval to which a particular xp,r belongs becomes the discretized
value of xp,r and its input class. Thus, the input class associated
with the value of the rth continuous attribute observed at test ob-
ject p is defined as

up,r = discretize(xp,r)

=











Sr if xp,r ≥ max
j∈J

{xj,r}

1 if xp,r < min
j∈J

{xj,r}

b(xp,r − minj∈J{xj,r})�wrc + 1 otherwise,
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where

wr =
1

Sr

∣

∣

∣

∣

max
j∈J

{yj} − min
j∈J

{yj}

∣

∣

∣

∣

.

As with the response, up,r ∈ {1, 2, . . . , Sr}, although for any par-
ticular collection of objects some subset of these values may not
occur.

(4) We now determine the relative frequencies that will be assigned
to the midpoints of each input class for each continuous attribute.
For each r ∈ {RG + 1, . . . , R}, up,r ∈ {1, . . . , Sr}, and each c =
1, 2, . . . , C, the conditional probability of output class c given that
the input class for the rth attribute on object p is up,r is given by

Pup,r ,c =
Nup,r,c

Nup,r

.

As with the categorical predictors, Nup,r,c is the number of times
training objects with output class c have an attribute r value equal
to up,r and Nup,r

is the total number of times up,r appears within
the training objects for the rth attribute.

(5) We now find the midpoint of each input class for continuous at-
tributes. For each r ∈ {RG + 1, . . . , R} and up,r ∈ {1, . . . , Sr},

mid(up,r) = min
j∈J

{xj,r} + wr × (up,r − 0.5).

(6) We now assume a linear relationship between the relative frequen-
cies determined in step (4) placed at each midpoint determined
in step (5) to obtain the interpolated probability associated with
each continuous attribute r ∈ {RG + 1, . . . , R}, output class c =
1, 2, . . . , C, and object p using

P (xp,r)c =






















































Pup,r,c+
(

xp,r−mid(up,r)

mid(up,r+1)−mid(up,r)

)

×(Pup,r+1,c − Pup,r ,c)

if xp,r ≥ mid(up,r)

Pup,r−1,c+
(

xp,r−mid(up,r−1)

mid(up,r)−mid(up,r−1)

)

×(Pup,r,c − Pup,r−1,c)

if xp,r < mid(up,r),

where if xp,r < min
j∈J

{mid(uj,r)} we set Pup,r−1,c = 0, and if xp,r ≥

max
j∈J

{mid(uj,r)} we set Puj,r+1,c = 0. If xp,r > max
j∈J

{mid(uj,r)}+wr
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or xp,r < min
j∈J

{mid(uj,r)} − wr, that is, if the test object is more

than 0.5wr units larger (or smaller) with respect to the rth attribute
than any object in the training set, we set P (xp,r)c = 0.

(7) Finally, the distance between test object p and training object j as
defined by the IVDM as

IV DM(xp,xj) =

R
∑

r=1

ivdm(xp,r, xj,r),

where ivdm(xp,r, xj,r) is defined using the relative frequencies in
step (2) and interpolated probabilities in step (6) as

ivdm(xp,r , xj,r) =






















C
∑

c=1

∣

∣Pxp,r,c − Pxj,r,c

∣

∣

2
if r indexes a categorical predictor

C
∑

c=1

|P (xp,r)c − P (xj,r)c|
2 if r indexes a continuous predictor.

Figure 1 shows an example of how the interpolated probability values
would be calculated for a particular continuous attribute and response, C =
4 output classes, Sr = 6 input classes, and a test object that has attribute
value 3.34 and response value of approximately 2. Discretization divides a
scatter plot of attribute versus response into Sr×C = 24 rectangular regions
(top figure). The test object lies in the 4th vertical strip of C = 4 regions
so it gets assigned input class, up,2 = 4. Horizontal strips (consisting of
Sr = 6 regions) indicate the output class so discretize(yp) = 1 for this test
object. The relative frequency, Pup,r ,c = P4,1, associated with the region
our test object lies in is calculated from step (4) using the number of objects
in that region divided by the total number of objects in input class 4. Step
(4) is repeated for all regions including those with the same output class
as our test object resulting in P1,1, . . . , P6,1. These 6 relative frequencies
are associated with the midpoints calculated in step (5) and are plotted in
the bottom figure. Because our test object lies above the midpoint of input
class 4, the line through the relative frequencies for input classes 4 and 5 is
used to find its interpolated probability, P (xp,2)1.

The bottom plot in Figure 1 more clearly shows the effect of step (6) in
that the interpolated probability is set to zero for attribute values that are
more than 0.5wr units larger (or smaller) than any object in the training
set.

As noted by Wilson and Martinez [2, 3], there is subjectivity in the
choice of Sr and C. We explain our choices in the results section.
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Figure 1. The interpolated probability of the object that
has xp,2 = 3.34 for output class c = 1 based on a contin-
uous attribute (‘Predictor 2’) and response (‘Response’).
The top figure illustrates the discretization of the attribute
and response using C = 4 and S2 = 6 resulting in output
class discretize(yp) = 1 and input class up,2 = 4 for the pth
object. The midpoint associated with this object’s input
class is mid(up,2) = 3.25. The bottom figure shows (with
points) the relative frequencies from step (4) placed at the
midpoints of each of the six input classes obtained in step
(5). The solid line indicates the interpolated probability,
P (xp,2)1 associated with the pth object.
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4. Data

The data used in Bates Prins and Smith [1] included n = 87 refer-
ence streams. Six different biological metrics (responses) were used in-
cluding the proportional abundance of tolerant taxa of aquatic macroin-
vertebrates (TOLRPIND), tolerant taxa richness (TOLRRICH), the pro-
portional abundance of the three most abundant taxa (DOM3PIND), Eph-
emeroptera richness (EPHERICH), Plecoptera richness (PLECRICH), and
total taxa richness (TOTLRICH). The continuous predictors included log-
transformed catchment area (AREA), latitude (LAT), longitude (LON),
and total rapid bioassessment protocol habitat score (RBP). The categor-
ical predictor used was the Level III Ecoregion (ECO) with six levels. See
Table 2 in Bates Prins and Smith [1] for numeric summaries of the data.

All analysis was done in R Version 2.4.1.

5. Results

We compared the performance of the HEOM, SHEOM, and IVDM dis-
tance functions in finding the k nearest-neighbor reference streams in the
leave-one-out approach of Bates Prins and Smith [1]. We used two eval-
uation criteria: the mean squared error of prediction (MSE) as described
briefly in the Introduction section and in detail in Bates Prins and Smith [1]
and the percentage of reference streams correctly classified as not impaired.
The latter was determined by treating each reference stream in turn as a
test stream of unknown classification, using the distance function to find
the stream’s neighbors and the scaled metric/response value at that stream.
Bates Prins and Smith [1] describe in detail how the scaled metric value is
used to classify the stream as impaired or not impaired.

Wilson and Martinez [2, 3] suggested a heuristic approach to deciding
Sr and C and we followed their convention. We initially set Sr and C to be
the same as the number of levels in the categorical predictor, ECO, namely
6. To determine how sensitive the results might be to this choice we also
used all combinations of Sr, C ∈ {6, 12, 18, 24}. The MSE of prediction was
used to determine the best combination for each metric/response. Table 1
gives the values of Sr and C chosen for each metric; notice that the MSE
chose values equal to or close to our initial choice.

Table 1 gives the optimal MSE values obtained by each distance function
using each of the six metrics/responses and Figure 2 gives graphs of MSE
as a function of k, the number of nearest neighbors for the chosen subset
of predictors. Notice that the SHEOM and IVDM methods performed
similarly in terms of MSE compared to the HEOM distance function for
TOLRPIND and TOLRRICH and they performed better than HEOM for

MAY 2010 117



MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

EPHERICH. The IVDM obtained a noticeably lower MSE than the other
two methods for PLECRICH, but obtained a noticeably higher MSE than
the other two methods with DOM3PIND and TOTLRICH. The SHEOM
method outperformed the HEOM for EPHERICH and TOTLRICH.

Table 1 also lists the percentage of reference streams correctly classified
as “not impaired” in the RATE column. RATE should be 100% since
all 87 reference steams are by design minimally impaired streams. The
classification rates were similar across all three distance functions.

Finally, notice from Table 1 that the categorical predictor ECO was
selected only by the IVDM and SHEOM distance functions and when ECO
was selected by IVDM and SHEOM, the resulting MSE was lower than
the MSE for the HEOM method in all but one case. This suggests that
the IVDM and SHEOM more readily mix both continuous and categorical
predictors.

6. Discussion

This paper offered two approaches to determining distances between
mixed attributes and applied these to an ecological application described in
Bates Prins and Smith [1]. First, we presented a simple modification to the
HEOM, which we refer to as the Scaled Heterogeneous Euclidean Overlap
Metric (SHEOM) that addresses the scaling of the attributes directly. We
then presented an extension of the Interpolated Value Difference Metric
(IVDM) of Wilson and Martinez [2, 3] for use with a continuous response.
Both methods were shown to more readily mix continuous and categorical
predictors in our chosen application than did the HEOM but had similar
MSE and classification rates as the HEOM.

The IVDM and SHEOM can be used to make predictions of similar or
better accuracy to the HEOM while more easily incorporating both contin-
uous and categorical attributes. We believe the improvement of SHEOM
over HEOM is due to the effect of scaling the continuous attributes to be
mean 0 and variance 1 prior to calculating the distances. Recall that the
contributions of attribute r to the total distance between objects i and
j are dr(xi,r, xj,r) and d∗r(xi,r , xj,r) for the HEOM and SHEOM, respec-
tively. The boxplots in Figure 3 represent the values of dr(xi,r , xj,r) and
d∗r(xi,r , xj,r) for each of the continuous predictors considered in our appli-
cation. The horizontal lines represent the contribution of a non-match in
a categorical predictor (namely 1) and a match in a categorical predictor
(namely 0) for both distance measures. With HEOM the contribution of
a categorical predictor was almost always greater than the contribution
of a continuous predictor. This meant that large distances were observed
whenever the categorical predictor was selected within the nearest-neighbor
algorithm. This was not the case with the SHEOM since the contributions
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Table 1. The minimum mean squared error (MSE) ob-
tained by each method together with the k, subset of pre-
dictors, Sr and C associated with that MSE value. Also
included is RATE, the percentage of times a reference
stream was correctly classified as unimpaired by a par-
ticular method. Higher values of RATE and lower values
of MSE indicate the better distance function. The lowest
values of MSE achieved for each metric are in bold. Predic-
tors included in the nearest-neighbor distance calculations
are listed in the fifth column.

EPHERICH

Method MSE RATE k Predictors Sr, C

IVDM 8.57 94 21 AREA,ECO 6 , 6
SHEOM 8.43 93 25 AREA,ECO - , -
HEOM 9.08 95 15 AREA,LAT - , -

PLECRICH

Method MSE RATE k Predictors Sr, C

IVDM 3.74 98 11 AREA,LAT 12 , 6
SHEOM 4.13 93 11 AREA,LAT - , -
HEOM 4.16 93 14 AREA - , -

TOTLRICH

Method MSE RATE k Predictors Sr, C

IVDM 134.03 92 20 AREA,LON 12 ,6
SHEOM 122.77 94 28 AREA,ECO - , -
HEOM 127.70 95 21 AREA,LAT - , -

TOLRRICH

Method MSE RATE k Predictors Sr, C

IVDM 2.49 97 25 AREA,LON 6 , 6
SHEOM 2.45 95 20 AREA - , -
HEOM 2.45 95 20 AREA - , -

TOLRPIND

Method MSE RATE k Predictors Sr, C

IVDM 0.00614 95 15 AREA 6 , 6
SHEOM 0.00607 96 21 AREA,ECO - , -
HEOM 0.00609 94 20 AREA - , -

DOM3PIND

Method MSE RATE k Predictors Sr, C

IVDM 0.0186 95 18 AREA,ECO 6 , 6
SHEOM 0.0163 96 18 AREA,LAT,LON,ECO - , -
HEOM 0.0161 93 15 AREA,LAT - , -
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Figure 2. MSE of the six metrics at the 87 reference sites
as a function of the number of nearest-neighbors for the
optimal set of predictors. The lower the MSE, the better
the prediction by a particular method. The solid line rep-
resents prediction with the IVDM method. The dashed
and dotted lines represent prediction by the SHEOM and
HEOM methods, respectively. The horizontal lines show
the minimum MSE obtained by each method.

of the continuous predictors are centered just above 1 (indeed at approxi-
mately 2√

π
as discussed below), allowing the contribution of a non-match in

the categorial predictor to be greater than the contribution of a continuous
predictor only about 50% of the time. This allows the SHEOM approach
to result in use of the categorical predictor.
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Figure 3. Boxplots of the individual contributions from
each continuous predictor to the distance measure calcu-
lation for the HEOM (left) and SHEOM (right) that re-
sult from using the leave-one-out simulation described by
Bates Prins and Smith [1]. Dotted horizontal lines indi-
cate the values of δi,j in Equation (3) corresponding to a
non-match and match in a categorical predictor. Circles
represent outliers (values lying more than 1.5 times the
interquartile range above the 75th percentile).

Assuming the scaled attribute values obtained in SHEOM using Equa-
tion (2) are independent and normally distributed, one expects

d∗r(xi,r , xj,r) =
∣

∣x∗
i,r − x∗

j,r

∣

∣
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in Equation (3) to have a mean of 2√
π
. As a result of this we investigated

letting the contribution of a non-match in a categorical attribute in Equa-
tion (3) to be δi,j = 2√

π
rather than 1. No changes were observed in the

relative performance of the SHEOM, HEOM, and IVDM methods in terms
of mean squared error. The percentage of reference sites classified correctly
by the SHEOM method either remained unchanged or improved to match
or more closely match the HEOM method; although the methods differed
by only a few percentage points to begin with. All in all, the changes were
minimal so the output was not included.

The major benefit of the SHEOM distance measure is its computational
simplicity relative to the IVDM. However, based on our investigation we
recommend the IVDM method be used due to three factors: (1) by de-
termining distances between relative frequencies, the contributions of all
attributes are placed on the same scale regardless of their type; (2) the
IVDM has been shown to be a good measure for a variety of data sets as
discussed Wilson and Martinez (1997,2000) and the ecological application
discussed by Bates Prins and Smith [1]; (3) multiple categorical attributes
can be incorporated easily. In additional to its computational complexity
relative to the HEOM or SHEOM methods, the IVDM has the disadvantage
that the choice of the number of input classes and in our case also output
classes is subjective. There appears to be little sensitivity to this based on
our investigation. Somewhat surprisingly, Table 1 indicates that a smaller
number of output classes was preferred for most metrics (we investigated
6–24 classes).

The Windowed Value Difference Metric (WVDM) of Wilson and Mar-
tinez [2] and the Density-Based Value Difference Metric (DBVDM) of Wo-
jna [4] represent two potential improvements over the IVDM. The WVDM
and DBVDM approaches calculate P (xp,r)c at every value of attribute r

that occurs in the training objects rather than only at the midpoint of
each input class; they represent a moving-window approach. The DBVDM
differs from both IVDM and WVDM in that the number of observations
within a window is fixed while the width of the window varies. The two
methodology changes represented by WVDM and DBVDM, namely a mov-
ing window and a variable width window, would presumably improve the
accuracy of the probability estimates in general and in particular for test
objects that lie outside the range of the training objects. Both the WVDM
and DBVDM are more computationally intensive than the IVDM.

Of particular interest to us was to find a distance measure which can
both mix continuous and categorical attributes and calculate distances in-
dependent of the scale of those attributes when the response of interest was
continuous. Although the IVDM distance measure we have discussed here
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is not without problems, we have shown it to be a step in the direction of a
heterogeneous distance measure suitable for a larger variety of applications.
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