
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions,
or new insights on old problems are always welcomed by the problem editor.

169. Proposed by Dorin Marghidanu, Colegiul National “A. I. Cuza”, Cora-
bia, Romania.

Let 0 < a, b, c < 1. Prove that

2a(b + c)1−a + 2b(c + a)1−b + 2c(a + b)1−c < 4(a + b + c).

Solution by Tuan Le (student), Fairmont High School, Anaheim, Califor-
nia. Since 0 < a < 1, applying Bernoulli’s inequality, we have
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Multiplying both sides of this inequality by b + c, we obtain

2a(b + c)1−a ≤ 2a + b + c − a(b + c).

Similarly, we also obtain

2b(a + c)1−b ≤ 2b + a + c − b(a + c)

2c(a + b)1−c ≤ 2c + a + b − c(a + b).

Adding these inequalities together and again using the fact that 0 < a, b, c <
1, we obtain

2a(b + c)1−a + 2b(a + c)1−b + 2c(a + b)1−c

≤ 4(a + b + c) − 2(ab + bc + ac) < 4(a + b + c).
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Also solved by Mihai Cipu, Institute of Mathematics of the Romanian
Academy, Bucharest, Romania; Fen Qin, Bloomsburg University of Penn-
sylvania, Bloomsburg, Pennsylvania; Paolo Perfetti, Universitá degli studi
di Tor Vergata Roma, Roma, Italy; Paul Deiermann, Southeast Missouri
State University, Cape Girardeau, Missouri; and the proposer.

Paul Deiermann and Mihai Cipu noted that if n ≥ 3 and a1, a2, . . . , an ∈
(0, 1), then the same proof shows that
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170. Proposed by Don Redmond, Southern Illinois University, Carbon-
dale, Illinois.

Let a, b, and n be integers with a and n positive. Suppose that

an + b = p1 · · · pr,

where r ≥ 1 and the p’s are primes. Let f = (p1 − 1) · · · (pj − 1)m, where

1 ≤ j ≤ r and m is a natural number. Show that an+fk + b is composite
for all natural numbers k.

Solution by Panagiotis T. Krasopoulos, Athens, Greece. First, let us observe
that the statement of the problem is not correct and an extra condition is
necessary in order to be true. Let a = 1, n be a positive integer, b = p− 1,
where p is a prime. Then an + b = p and an+fk + b = p is a prime number
and thus the statement is false. Observe also that it is possible to have
a = 1 and still the statement is true. Let b = pq − 1, where p and q are
primes. Then an+fk + b = pq is a composite number.

Next, we will prove the statement with the addition of an extra condition
in order to be always true. We have

an+fk + b = an+fk + p1 · · · pr − an = an(afk − 1) + p1 · · · pr. (1)

Here, it should be assured that the above quantity is not equal to a prime
from the list p1, . . ., pr and so we add the extra condition a ≥ 2 or r ≥ 2.
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Now we have

afk − 1 =
(

a(p1−1)···(pj−1−1)mk
)pj−1

− 1. (2)

It is now clear that we can use Fermat’s Little Theorem and distinguish
two cases.

1) If pj |a, then pj |an and from (1) the quantity an+fk +b is composite.

2) If pj does not divide a, then pj does not divide (a(p1−1)···(pj−1−1)mk).

Thus, from Fermat’s Little Theorem and (2), pj divides afk−1 and

so from (1) the quantity an+fk + b is again composite.

The proof is now complete.

Also solved by Joe Flowers, St. Mary’s University, San Antonio, Texas; Mi-
hai Cipu, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania; Dmitri Skjorshammer (student), Harvey Mudd College, Clare-
mont, California; and the proposer.

171. Proposed by José Luis Dı́az-Barrero, Universidad Politècnica de
Cataluña, Barcelona, Spain.

Let P be a point in the plane of triangle ABC with sides a, b, and c,
respectively. Prove that

(

PA4 + PB4 + PC4
)3 ≥ a4b4c4

27
.

When does equality occur?

Solution by the proposer. Let R = {O,−→e1 ,
−→e2} be a system of reference

in the plane of the triangle ABC. Let A(x1, y1), B(x2, y2), C(x3, y3), and
P (x, y), respectively. Then,
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PA2 + PB2 + PC2 =
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∑
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3
(a2 + b2 + c2).

Equality holds when x = (x1 + x2 + x3)/3, y = (y1 + y2 + y3)/3. That is,
when P ≡ G (center of gravity of 4ABC).

Since PA2 + PB2 + PC2 ≥ (a2 + b2 + c2)/3, then

√

PA4 + PB4 + PC4

3
≥ PA2 + PB2 + PC2

3
≥ a2 + b2 + c2

9
≥ 1

3

3
√

a2b2c2.

Equality holds when a = b = c. From the preceding we obtain

(

PA4 + PB4 + PC4

3

)3

≥ a4b4c4

36

from which the statement immediately follows. Equality holds when P ≡ G
and 4ABC is equilateral.

Also solved by Tuan Le (student) Fairmont High School, Anaheim, Cali-
fornia; and Fen Qin, Bloomsburg University of Pennsylvania, Bloomsburg,
Pennsylvania.
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172. Proposed by Ovidiu Furdui, Cluj, Romania. Find all integer solu-

tions to the Diophantine equation

x4 − x3 + 1 = y2.

Solution by Mihai Cipu, Institute of Mathematics of the Romanian Acad-
emy, Bucharest, Romania. The Diophantine equation has only the eight
solutions (x, y) = (0,±1), (1,±1), (2,±3), (−2,±5).

It is easy to check that the first four pairs in the above list are indeed
solutions, as well as the fact that there are no solutions with x = −1. To
find the others, we try to place y2 between the squares of two consecutive
integers.

Let (x, y) be a solution of this Diophantine equation with |x| ≥ 2. We
claim that for x even one has
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2
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< y2 <
(

x2 − x

2

)2

.

Indeed, the left inequality is equivalent to 7x2 > 4x, which is true for
x negative or x > 4/7. The right inequality is readily brought to the
equivalent form 4 ≤ x2. Here, the equality holds for x = ±2, which yields
four solutions to our Diophantine equation (x, y) = (2,±3), (−2,±5).

For solutions with x odd we show that one has
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2
− 1

)2
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)2

.

The left inequality, being equivalent to 3x2 − 2x + 3 > 0, is true for all real
x. The right inequality is equivalent to 5x2 − 2x − 3 > 0, which holds for
all real x with x < −3/5 or x > 1. Hence, we conclude that there are no
solutions (x, y) to the given Diophantine equation with x odd and |x| > 2.

Also solved by Tuan Le (student) Fairmont High School, Anaheim, Cali-
fornia; Dmitri Skjorshammer (student), Harvey Mudd College, Claremont,
California; Dr. Louis Scheinman, Toronto, Ontario, Canada; and the pro-
poser.
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