THE NULLITY AND RANK OF COMBINATIONS OF TWO OUTER INVERSES OF A GIVEN MATRIX

KEZHENG ZUO AND TAO XIE

Abstract

This paper shows that the nullity and rank of $a P+b Q-$ $c Q A P$ is a constant, where P and Q are outer inverses of a given matrix $A, c=a+b(a, b \neq 0)$ or $c \neq a+b, a, b, c \in \mathbb{C}$. In addition, the rank of $a P+b Q-c Q A P$ is equal to the rank of $P-Q$ if $c=a+b$ and to $P+Q$ if $c \neq a+b$.

1. Introduction

Let A be an $m \times n$ matrix over the field \mathbb{C} of all complex numbers. A matrix X is said to be an outer inverse of A if $X A X=X$, and is often denoted by $X=A^{(2)}$. The collection of all outer inverses of A is denoted by $A\{2\}$. The outer inverses and their applications have been extensively investigated by many authors in the literature [1, 2, 3]. The rank of $P_{1} \pm P_{2}$ and combinations of P_{1} and P_{2} have been studied by the authors in [4], [5], and [6], where P_{1} and P_{2} are idempotent matrices. Furthermore, Tian has studied the rank of $P \pm Q$ and linear combinations of P and Q, where P and Q are outer inverses of a given matrix $A[7,8]$. In this paper, we study the nullity and rank of combinations $a P+b Q-c Q A P$, where P and Q are outer inverses of a given matrix $A, a, b \neq 0$. We prove that the nullity and rank of $a P+b Q-c Q A P$ is a constant, where P and Q are outer inverses of a given matrix $A, c=a+b(a, b \neq 0)$ or $c \neq a+b$. In addition, we get the rank equality as follows:

$$
r(a P+b Q-c Q A P)= \begin{cases}r(P-Q), & \text { when } c=a+b \\ r(P+Q), & \text { when } c \neq a+b\end{cases}
$$

(where P and Q are outer inverses of a given matrix $A, a, b, c \in \mathbb{C}, a, b \neq 0$). Our result generalizes the results given by J.J. Koliha and V. Rakočević [4] and Kezheng Zuo [9].

Throughout this paper, we use $\mathbb{C}, \mathbb{C}^{n}, \mathbb{C}^{m \times n}$ to denote the set of complex numbers, the n-column vector space over \mathbb{C}, and the set of $m \times n$ complex matrices, respectively. If $A \in \mathbb{C}^{m \times n}$, we write $\mathcal{N}(A)$ and $\mathcal{R}(A)$ for the null-

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

space and the range of A. The rank of $A, r(A)$, is the dimension of $\mathcal{R}(A)$, and the nullity of $A, \operatorname{nul}(A)$, is the dimension of $\mathcal{N}(A)$. The symbol I_{n} is used to denote the $n \times n$ identity matrix.

The following result is obvious and we omit the proof.
Lemma 1.1. If $A \in \mathbb{C}^{m \times n}$ be given, $P, Q \in A\{2\}$, we define T as the restriction of $\left(I_{n}-P A\right) Q$ to $\mathcal{N}(P)$, that is,

$$
T: \mathcal{N}(P) \longrightarrow\left[\left(I_{n}-P A\right) Q\right] \mathcal{N}(P), \quad x \longmapsto T x=\left(I_{n}-P A\right) Q x .
$$

Then

$$
\mathcal{N}(T)=\mathcal{N}\left[\left(I_{n}-P A\right) Q\right] \cap \mathcal{N}(P), \mathcal{R}(T)=\mathcal{R}\left[\left(I_{n}-P A\right) Q\left(I_{m}-A P\right)\right]
$$

2. Main Results and Proofs

Now we start our observation with the following result.
Theorem 2.1. Let $A \in \mathbb{C}^{m \times n}$ be given, $P, Q \in A\{2\}, a, b \in \mathbb{C} \backslash\{0\}, c \in \mathbb{C}$ and $c \neq a+b$. If T is defined as in the Lemma 1.1, then $\mathcal{N}(a P+b Q-c Q A P)$ is isomorphic to $\mathcal{N}(T)$.
Proof. Let $\mathcal{N}=\mathcal{N}(a P+b Q-c Q A P)$ and $k \neq 0$. First we show that

$$
\begin{equation*}
\mathcal{N} \cong\left(I_{m}-A P\right) \mathcal{N} \text { and } \mathcal{N}(T) \cong\left(k I_{m}-A Q\right) \mathcal{N}(T) \tag{2.1}
\end{equation*}
$$

Let $x \in \mathcal{N}$ and $\left(I_{m}-A P\right) x=0$, then $x=A P x, Q x=Q A P x$ and $(a P+b Q-c Q A P) x=0$. Therefore, $Q x=(a+b-c)^{-1} Q A(a P+b Q-$ $c Q A P) x=0, P x=a^{-1}(a P+b Q-c Q A P) x=0$, and then $x=A P x=0$. Hence, $\mathcal{N} \cong\left(I_{m}-A P\right) \mathcal{N}$. If $x \in \mathcal{N}(T)$ and $\left(k I_{m}-A Q\right) x=0$, then $P x=0, Q x=P A Q x$, and $A Q x=k x$. Thus, $Q x=P(k x)=0, k x=$ $A Q x=0$, that is $x=0$. Hence, $k I_{m}-A Q$ restricted to acting from $\mathcal{N}(T)$ to $\left(k I_{m}-A Q\right) \mathcal{N}(T)$ is an isomorphism. Next we prove that
$\left(I_{m}-A P\right) \mathcal{N} \subset \mathcal{N}(T)$ and $\left(k I_{m}-A Q\right) \mathcal{N}(T) \subset \mathcal{N}$ for some $k \neq 0$. (2.2)
If $x \in \mathcal{N}$, then $(a P+b Q-c Q A P) x=0$. After the multiplication by $Q A$ from left side and using the fact that $Q A Q=Q(\{2\}$-inverse $)$, we obtain that $Q x=b^{-1}(c-a) Q A P x, P x=Q A P x$, and $\left(I_{n}-P A\right) Q\left(I_{m}-A P\right) x=$ $\left(I_{n}-P A\right)\left[b^{-1}(c-a) P x-P x\right]=0$, that is $\left(I_{m}-A P\right) x \in \mathcal{N}(T)$. This proves the first inclusion in (2.2).

If $x \in \mathcal{N}(T)$ and $k=b^{-1}(a+b-c) \neq 0$, then $P x=0, Q x=P A Q x$. Thus, $(a P+b Q-c Q A P)\left(k I_{m}-A Q\right) x=(b k-a-b+c) Q x=0$. That is, $\left(k I_{m}-A Q\right) x \in \mathcal{N}$. This proves the second inclusion in (2.2). The proof is completed by combining (2.1) and (2.2).
Theorem 2.2. Let $A \in \mathbb{C}^{m \times n}$ be given, $P, Q \in A\{2\}$, $a, b \in \mathbb{C} \backslash\{0\}, c \in \mathbb{C}$, and $c \neq a+b$. If T is defined as in the Lemma 1.1, then the rank of $a P+b Q-c Q A P$ is a constant. Moreover, $r(a P+b Q-c Q A P)=r(P+Q)=$ $r(P)+r(T)=m-\operatorname{dim}\left[\mathcal{N}\left(\left(I_{n}-P A\right) Q \cap \mathcal{N}(P)\right]\right.$.

Proof. By Theorem 2.1 and Lemma 1.1,

$$
\begin{aligned}
r(a P+b Q-c Q A P) & =m-\operatorname{nul}(a P+b Q-c Q A P) \\
& =m-\operatorname{nul}(T) \\
& =m-\operatorname{dim}\left[\mathcal{N}\left(\left(I_{n}-P A\right) Q\right) \cap \mathcal{N}(P)\right]
\end{aligned}
$$

hence, $r(a P+b Q-c Q A P)$ is constant. We set $a=b=1, c=0$, then this constant is $r(P+Q)$. According to Lemma 1.1 and Theorem 2.1, $r(T)=\operatorname{nul}(P)-\operatorname{nul}(T)=m-r(P)-\operatorname{nul}(T)=r(a P+b Q-c Q A P)-r(P)$, which implies $r(a P+b Q-c Q A P)=r(P)+r(T)$.

Corollary 2.3. Let $A \in \mathbb{C}^{m \times n}$ be given, $P, Q \in A\{2\}$, $a, b \in \mathbb{C} \backslash\{0\}, c \in \mathbb{C}$, and $c \neq a+b$, then the rank of $a P+b Q-c P A Q$ is a constant and equals to $r(P+Q)$.
Proof. By Theorem 2.2, we obtain $r(a P+b Q-c P A Q)=r(Q+P)=$ $r(P+Q)$.

Corollary 2.4. Let $A \in \mathbb{C}^{m \times n}$ be given, $P, Q \in A\{2\}$, $a, b \in \mathbb{C} \backslash\{0\}$, $a+b \neq 0$. Then
(a) $r(P+Q-Q A P)=r(P+Q-P A Q)=r(P+Q)$.
(b) $r(a P+b Q)=r(P+Q)$.

Proof.
(a) In Theorem 2.2 and Corollary 2.3, we set $a=b=c=1$, then

$$
r(P+Q-Q A P)=r(P+Q-P A Q)=r(P+Q)
$$

(b) In Theorem 2.2, we set $c=0$, then $r(a P+b Q)=r(P+Q)$.

It is obvious that if $A=I_{n}$ in (b) of Corollary 2.4, then $P, Q \in I_{n}\{2\}$ are idempotent matrices. Thus, we get the result in the Theorem 2.4 in [4].
Theorem 2.5. Let $A \in \mathbb{C}^{m \times n}$ be given, $P, Q \in A\{2\}$, $a, b \in \mathbb{C} \backslash\{0\}, c \in \mathbb{C}$, and $c=a+b$, then

$$
\mathcal{N}(a P+b Q-c Q A P)=\mathcal{N}(a P+b Q-c P A Q)=\mathcal{N}(P-Q)
$$

Proof. If $x \in \mathcal{N}(P-Q)$, then $P x=Q x$ and $(a P+b Q-c Q A P) x=$ $(a+b-c) x=0$. That is to say $\mathcal{N}(P-Q) \subset \mathcal{N}(a P+b Q-c Q A P)$. On the other hand, if $x \in \mathcal{N}(a P+b Q-c Q A P)$, then $(a P+b Q-c Q A P) x=0$, i.e., $Q x=Q A P x=P x$ and $(P-Q) x=0$. Therefore, $\mathcal{N}(a P+b Q-c Q A P) \subset$ $\mathcal{N}(P-Q)$. Hence, we obtain the equality $\mathcal{N}(a P+b Q-c Q A P)=\mathcal{N}(P-Q)$. Since $\mathcal{N}(P-Q)=\mathcal{N}(Q-P)$, we have finally proved the desired result.

Remark 2.6. It is obvious that if $A=I_{n}$ in Theorem 2.1, Corollary 2.3, and Theorem 2.5, then $P, Q \in I_{n}\{2\}$ are idempotent matrices which yield the results of [9].

References

1] A. Ben-Isrel and T. N. G. Greville, Generalized inverses: theory and applications, Springer, 2003, second edition.
[2] Y. Chen and X. Chen, Representation and approximation of the outer inverse $A_{T, S}^{(2)}$ of a matrix A, Linear Algebra Appl., 308 (2000), 85-107.
[3] E. P. Liski and S. Wang, On the \{2\}-inverse and some ordering properties of nonnegative definite matrices, Acta Math. Appl. Sinica (English Series), 12 (1996), 22-27.
[4] J. J. Koliha and V. Rakočević, The nullity and rank of linear combinations of idempotent matrices, Linear Algebra Appl., 418 (2006), 11-14.
[5] J. Gro β and G. Trenkler, Nonsingularity of the difference of two oblique projectors, SIAM J. Matrix Anal. Appl., 21 (1999), 390-395.
[6] Y. Tian and G. P. H. Styan, Rank equalities for idempotent and involutary matrices, Linear Algebra Appl., 335 (2001), 101-117.
[7] Y. Tian, Rank equalities related to outer inverses of matrices and applications, Linear Algebra Appl., 388 (2004), 279-288.
[8] Y. Tian, More on rank equalities for outer inverses of matrices with applications, International Journal of Mathematics, Game Theory and Algebra, 12 (2002), 137151.
[9] Zuo Kezhing, The nullity and rank of combinations of idempotent matrices, Journal of Math., 28 (2008), 619-622.
AMS Classification Numbers: 15A03, 15A24
Math Department, Hubei Normal University, Hubei, Huangshi, 435002, China E-mail address: xiangzuo28@yahoo.cn

Math Department, Hubei Normal University, Hubei, Huangshi, 435002, China

