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ON Tp-SPACES
Othman Echi

Abstract. This paper deals with some new properties of Tp-spaces.
These properties are used in order to give an intrinsic topological charac-
terization of the Goldman spectrum of a commutative ring.

1. Introduction. There are three famous separation axioms in topol-
ogy namely, Ty, T1, and T5.

We denote by TOP the category of topological spaces with continu-
ous maps as morphisms, and by TOP; the full subcategory of TOP whose
object are Tj-spaces. It is well-known that TOP,;; is a reflective sub-
category of TOP;, for i = —1,0,1, with TOP_; = TOP. Thus, TOP;
is reflective in TOP, for each ¢ = 0,1,2 [10]. In other words, there is a
universal T;-space for every topological space X; we denote it by T;(X).
The assignment X +— T;(X) defines a functor T; from TOP onto TOP;,
which is a left adjoint functor of the inclusion functor TOP; — TOP.

The T separation axiom was introduced by Aull and Thron [1]. Recall
that a topological space X is said to be a Tp-space if for each z € X, {z}
is locally closed.

For the separation axioms Ty, T1, To, Tp, we have classically the fol-
lowing implications:

T, =T, = Tp = 1Tp.

We denote by TOPp the full subcategory of TOP whose objects are Tp-
spaces.

Unfortunately, the Tp property is not reflective in TOP. Indeed, in
[2], Briimer has proved that the countable product of the Sierpinski space
is not a Tp-space. On the other hand, according to Herrlich and Strecker
[7], if a subcategory A is reflective in a category B, then for each category
I, A is closed under the formation of I-limits in B [7]. [Taking I, a discrete
category, one can see that in particular A is closed under products in B.]
Therefore the full subcategory TOP p of TOP whose objects are Tp-spaces
is not reflective in TOP.

This paper deals with some new categorical properties of Tp-spaces
(see Theorem 1.8).

Let R be a commutative ring with unit. We denote by Spec(R) the
set of all prime ideals of R.

A topology T on a set X is defined to be spectral [8] (and (X,T) is
called a spectral space) if the following conditions hold:

(i) T is sober;
(ii) the compact open subsets of X form a basis of T;
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iii e family of compact open subsets o is closed under finite inter-
iii) the family of t bsets of X is closed under finite int
sections.

In a remarkable paper, M. Hochster proved that a topological space
is homeomorphic to the prime spectrum of some ring if and only if it is
a spectral space [8]. In the same paper, Hochster characterized the space
of maximal ideals of a ring. When a particular subset of the spectrum of
a ring is given, a classical question, of whether we can give a topological
characterization of that subspace, is asked.

A prime ideal p of R is said to be a Goldman ideal (G-ideal, for short)
if there exists a maximal ideal 9 of the polynomial ring R[X] such that
p = M N R. Goldman ideals are important objects of investigation in
algebra and algebraic geometry. Note, in particular, that G-ideals have
been used by Goldman [5] and Krull [11] for a short inductive proof of the
Nullstellensatz. It is a part of the folklore of algebra that p is a G-ideal of R
if and only if {p} is locally closed in Spec(R) (endowed with the hull-kernel
topology).

The subspace of Spec(R), whose elements are G-ideals is called the
Goldman spectrum of R and it is denoted by Gold(R).

As in [4], by a goldspectral space we mean a topological space X which
is homeomorphic to Gold(R) for some ring R.

A natural question is “give an intrinsic topological characterization of
goldspectral spaces”.

The goal of this paper is to re-prove our characterization of goldspec-
tral spaces [4] in a short elegant manner. More precisely, using our main
result Theorem 1.5, we give an intrinsic topological characterization of the
Goldman prime spectrum of a commutative ring (see Theorem 2.2). We
prove that a topological space X is goldspectral if and only if X satisfies
the following conditions:

(a) X is compact and has a basis of compact open subsets which is closed
under finite intersections.

(b) X is a Tp-space.

2. Tp-spaces and Quasihomeomorphisms. Let us first recall
some notions which were introduced by Grothendieck school, such as quasi-
homeomorphisms, strongly dense subsets and sober spaces.

If X is a topological space, we denote by O(X) the set of all open
subsets of X. Recall that a continuous map ¢:Y — Z is called a quasi-
homeomorphism if U — ¢~ '(U) defines a bijection O(Z) — O(Y). A
subset S of a topological space X is said to be strongly dense in X, if S
meets every nonempty locally closed subset of X. Thus, a subset S of X
is strongly dense if and only if the canonical embedding S < X is a quasi-
homeomorphism. It is well-known that a continuous map ¢: X — Y is a
quasihomeomorphism if and only if the topology of X is the inverse image
by ¢ of that of Y and the subset ¢(X) is strongly dense in Y [6].
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A subspace Y of X is called irreducible, if each nonempty open subset
of Y is dense in Y (equivalently, if C; and Cy are two closed subsets of X
such that Y C C;UCs, then Y C Cy or Y C C5). Let C be a closed subset
of a space X; we say that C has a generic point if there exists x € C such
that C = {z}. Recall that a topological space X is said to be sober if any
nonempty irreducible closed subset of X has a unique generic point.

The main result of this section is Theorem 1.5. Before stating it, we
need a sequence of lemmas.

Lemma 1.1 ([3]). Let X be a topological space. Then the following
properties hold:

(1) if X is a Tp-space which has a basis of compact open subsets, then
Gold(X) is strongly dense in X;

(2) if Gold(X) is strongly dense in X, then it is the smallest strongly dense
subset of X.

Lemma 1.2 (Never two without three). Let p: X — Y and ¢:Y —
Z be two continuous maps. If two among the three maps (p,gq,q o p) are
quasihomeomorphisms, then so is the third one.

Lemma 1.3. Let X be a topological space and A a strongly dense
subset of X. Then A is strongly dense in each subspace of X containing A.

Proof. The proof is straightforward; but I would like to check it in
terms of quasihomeomorphisms. Clearly, B is strongly dense in X. Hence,
the canonical embeddings i: A — X, j: B < X are quasihomeomorphisms.
If we let ¢: A <— B be the canonical embedding, then i = j o t. By Lemma
1.2, t: A — B is a quasihomeomorphism; this means that A is strongly
dense in B.

Lemma 1.4 ([3]). Let ¢: X — Y be a quasihomeomorphism. Then
the following properties hold:

(1) if X is a Tp-space, then g is injective;
(2) if X is sober and Y is a Ty-space, then ¢ is a homeomorphism.

Now, we are in a position to state our main result.

Theorem 1.5. Let X be a Ty-space and Y be a topological space such
that Gold(X) is strongly dense in X and Gold(Y") is strongly dense in Y.
Let ¢: X — Y be a quasihomeomorphism. Then the following properties
hold:

(a) ¢(Gold(X)) = Gold(q(X)) = Gold(Y);
(b) the induced map qg: Gold(X) — Gold(Y') which carries = to g(z) is
a homeomorphism.
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Proof.

(a) Let us consider the map ¢;: X — ¢(X) induced by ¢. Let
j:q(X) — Y be the canonical embedding; then j is a quasihomeomor-
phism. Since ¢ = j o ¢1, we get g1 a quasihomeomorphism (by “Never two
without three”). Now, since X is a Tp-space, ¢ is injective, by Lemma 1.4.
Thus, ¢; is a bijective quasihomeomorphism; so that it is a homeomorphism.

It follows that Gold(q(X)) = ¢1(Gold(X)) = q(Gold(X)). Since X is
homeomorphic to ¢(X), Gold(¢(X)) is strongly dense in ¢(X). But ¢(X)
is strongly dense in Y'; this forces Gold(q(X)) to be strongly dense in Y.

On the other hand, Gold(Y) is the smallest strongly dense subset of Y’
(see Lemma 1.1); this yields

Gold(Y) C Gold(q(X)) = q(Gold(X)) C q(X).

By Lemma 1.3, Gold(Y) is strongly dense in ¢(X); but Lemma 1.1 says that
Gold(q(X)) is the smallest strongly dense subset of ¢(X); consequently,
Gold(q(X)) C Gold(Y). We conclude that ¢(Gold(X)) = Gold(q(X)) =
Gold(Y).

(b) Since the induced map ¢;: X — ¢(X) is a homeomorphism and
¢1(Gold(X)) = Gold(Y), the mapping gg: Gold(X) — Gold(Y") defined
by & — ¢(z) is also a homeomorphism.

Proposition 1.6. Every quasihomeomorphism between two Tp-spaces
is a homeomorphism.

Proof. Tt follows immediately from Theorem 1.5 (b).

Note also that one may give an easy direct proof. Indeed, let ¢: X —
Y be a quasihomeomorphism between two Tp-spaces. Hence, ¢ is injective
by Lemma 1.4. On the other hand, ¢(X) is strongly dense in Y and every
point set of Y is locally closed; so that ¢(X) = Y. Thus, ¢ is a bijective
quasihomeomorphism. Therefore, ¢ is a homeomorphism.

The following concept, motivated by Proposition 1.6, proves to be use-
ful.

Definition 1.7. Let C be a category. By a categoroid of C we mean
a full subcategory of C closed under isomorphisms in which all arrows are
isomorphisms.

Theorem 1.4 and Definition 1.6 immediately give the following cate-
gorical properties of Tp-spaces.

Theorem 1.8. Let C be the category where objects are topological
spaces X such that Gold(X) is strongly dense in X and arrows are quasi-
homeomorphisms. Let C; be the full subcategory of C whose objects are
Tp-spaces. Then C; is a coreflective categoroide of C. The coreflector is
px:Gold(X) — X.
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Remark 1.9. C; is strictly contained in C. Let Y be an infinite set
equipped with the cofinite topology and w ¢ Y. Set X = Y U {w} and
equip it with the topology whose closed sets are X and the closed sets of
Y. Clearly, Gold(X) = Y is strongly dense in X. However, X is not a
Tp-space, since {w} is not locally closed.

3. The Goldman Spectrum of a Ring. Our next investigation of
Theorem 1.5 is a new proof of our main result of [4], which gives an intrinsic
topological characterization of the Goldman spectrum of a commutative
ring.

We need to recall the the notion of soberification of a topological space
which proved to play an important part in the next theorem.

Let X be a topological space and S(X) the set of all nonempty irre-
ducible closed subsets of X [6]. Let U be an open subset of X and set

U={CeSX)|UNC #0}.

Then the collection ([7 , U is an open subset of X) provides a topology on
S(X) and the following properties hold [6]:

(i) the map px: X — S(X) which carries z to {x} is a quasihomeomor-
phism;
(ii) S(X) is a sober space.

The topological space S(X) is called the soberification of X.
Before stating the result which characterizes goldspectral spaces, let
us give a straightforward remark.

Remark 2.1. If ¢: X — Y is a quasihomeomorphism, then the follow-
ing properties hold:

(a) Let U be an open subset of Y, then U is compact if and only if ¢~ (U)
is compact.

(b) X has a basis of compact open subsets closed under finite intersections
if and only if so is Y.

Theorem 2.2. Let X be a topological space. Then X is goldspectral if
and only if X satisfies the following properties:

(a) X is compact;

(b) X has a basis of compact open subsets;

(¢c) the intersection of two compact open subsets is compact;
(d) X is a Tp-space.
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Proof.

e For each ring R, Gold(R) = Gold(Spec(R)) is a Tp—space. Since
the canonical embedding Gold(R) — Spec(R) is a quasihomeomorphism
and Spec(R) satisfies properties (a), (b), and (c), then so is Gold(R), by
Remark 2.1.

e Conversely, let X be a space satisfying properties (a), (b), (¢), and
(d). Let S(X) be the soberification of X and px: X — S(X) defined by
px (x) = {z} the canonical embedding of X into S(X).

According to Theorem 1.5, X is homeomorphic to Gold(S(X)). Thus,
Remark 2.1 implies immediately that S(X) is a spectral space, completing
the proof.
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