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ON TD-SPACES

Othman Echi

Abstract. This paper deals with some new properties of TD-spaces.
These properties are used in order to give an intrinsic topological charac-
terization of the Goldman spectrum of a commutative ring.

1. Introduction. There are three famous separation axioms in topol-
ogy namely, T0, T1, and T2.

We denote by TOP the category of topological spaces with continu-
ous maps as morphisms, and by TOPi the full subcategory of TOP whose
object are Ti-spaces. It is well-known that TOPi+1 is a reflective sub-
category of TOPi, for i = −1, 0, 1, with TOP

−1 = TOP. Thus, TOPi

is reflective in TOP, for each i = 0, 1, 2 [10]. In other words, there is a
universal Ti-space for every topological space X ; we denote it by Ti(X).
The assignment X 7→ Ti(X) defines a functor Ti from TOP onto TOPi,
which is a left adjoint functor of the inclusion functor TOPi →֒ TOP.

The TD separation axiom was introduced by Aull and Thron [1]. Recall
that a topological space X is said to be a TD-space if for each x ∈ X , {x}
is locally closed.

For the separation axioms T0, T1, T2, TD, we have classically the fol-
lowing implications:

T2 =⇒ T1 =⇒ TD =⇒ T0.

We denote by TOPD the full subcategory of TOP whose objects are TD-
spaces.

Unfortunately, the TD property is not reflective in TOP. Indeed, in
[2], Brümer has proved that the countable product of the Sierpinski space
is not a TD-space. On the other hand, according to Herrlich and Strecker
[7], if a subcategory A is reflective in a category B, then for each category
I, A is closed under the formation of I-limits in B [7]. [Taking I, a discrete
category, one can see that in particular A is closed under products in B.]
Therefore the full subcategoryTOPD ofTOP whose objects are TD-spaces
is not reflective in TOP.

This paper deals with some new categorical properties of TD-spaces
(see Theorem 1.8).

Let R be a commutative ring with unit. We denote by Spec(R) the
set of all prime ideals of R.

A topology T on a set X is defined to be spectral [8] (and (X, T ) is
called a spectral space) if the following conditions hold:

(i) T is sober;
(ii) the compact open subsets of X form a basis of T ;
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(iii) the family of compact open subsets of X is closed under finite inter-
sections.

In a remarkable paper, M. Hochster proved that a topological space
is homeomorphic to the prime spectrum of some ring if and only if it is
a spectral space [8]. In the same paper, Hochster characterized the space
of maximal ideals of a ring. When a particular subset of the spectrum of
a ring is given, a classical question, of whether we can give a topological
characterization of that subspace, is asked.

A prime ideal p of R is said to be a Goldman ideal (G-ideal, for short)
if there exists a maximal ideal M of the polynomial ring R[X ] such that
p = M ∩ R. Goldman ideals are important objects of investigation in
algebra and algebraic geometry. Note, in particular, that G-ideals have
been used by Goldman [5] and Krull [11] for a short inductive proof of the
Nullstellensatz. It is a part of the folklore of algebra that p is a G-ideal of R
if and only if {p} is locally closed in Spec(R) (endowed with the hull-kernel
topology).

The subspace of Spec(R), whose elements are G-ideals is called the
Goldman spectrum of R and it is denoted by Gold(R).

As in [4], by a goldspectral space we mean a topological space X which
is homeomorphic to Gold(R) for some ring R.

A natural question is “give an intrinsic topological characterization of
goldspectral spaces”.

The goal of this paper is to re-prove our characterization of goldspec-
tral spaces [4] in a short elegant manner. More precisely, using our main
result Theorem 1.5, we give an intrinsic topological characterization of the
Goldman prime spectrum of a commutative ring (see Theorem 2.2). We
prove that a topological space X is goldspectral if and only if X satisfies
the following conditions:

(a) X is compact and has a basis of compact open subsets which is closed
under finite intersections.

(b) X is a TD-space.

2. TD-spaces and Quasihomeomorphisms. Let us first recall
some notions which were introduced by Grothendieck school, such as quasi-
homeomorphisms, strongly dense subsets and sober spaces.

If X is a topological space, we denote by O(X) the set of all open
subsets of X . Recall that a continuous map q:Y −→ Z is called a quasi-

homeomorphism if U 7−→ q−1(U) defines a bijection O(Z) −→ O(Y ). A
subset S of a topological space X is said to be strongly dense in X , if S
meets every nonempty locally closed subset of X . Thus, a subset S of X
is strongly dense if and only if the canonical embedding S →֒ X is a quasi-
homeomorphism. It is well-known that a continuous map q:X −→ Y is a
quasihomeomorphism if and only if the topology of X is the inverse image
by q of that of Y and the subset q(X) is strongly dense in Y [6].
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A subspace Y of X is called irreducible, if each nonempty open subset
of Y is dense in Y (equivalently, if C1 and C2 are two closed subsets of X
such that Y ⊆ C1 ∪C2, then Y ⊆ C1 or Y ⊆ C2). Let C be a closed subset
of a space X ; we say that C has a generic point if there exists x ∈ C such
that C = {x}. Recall that a topological space X is said to be sober if any
nonempty irreducible closed subset of X has a unique generic point.

The main result of this section is Theorem 1.5. Before stating it, we
need a sequence of lemmas.

Lemma 1.1 ([3]). Let X be a topological space. Then the following
properties hold:

(1) if X is a T0-space which has a basis of compact open subsets, then
Gold(X) is strongly dense in X ;

(2) if Gold(X) is strongly dense in X , then it is the smallest strongly dense
subset of X .

Lemma 1.2 (Never two without three). Let p:X −→ Y and q:Y −→
Z be two continuous maps. If two among the three maps (p, q, q ◦ p) are
quasihomeomorphisms, then so is the third one.

Lemma 1.3. Let X be a topological space and A a strongly dense
subset of X . Then A is strongly dense in each subspace of X containing A.

Proof. The proof is straightforward; but I would like to check it in
terms of quasihomeomorphisms. Clearly, B is strongly dense in X . Hence,
the canonical embeddings i:A →֒ X , j:B →֒ X are quasihomeomorphisms.
If we let t:A →֒ B be the canonical embedding, then i = j ◦ t. By Lemma
1.2, t:A →֒ B is a quasihomeomorphism; this means that A is strongly
dense in B.

Lemma 1.4 ([3]). Let q:X −→ Y be a quasihomeomorphism. Then
the following properties hold:

(1) if X is a T0-space, then q is injective;
(2) if X is sober and Y is a T0-space, then q is a homeomorphism.

Now, we are in a position to state our main result.

Theorem 1.5. Let X be a T0-space and Y be a topological space such
that Gold(X) is strongly dense in X and Gold(Y ) is strongly dense in Y .
Let q:X −→ Y be a quasihomeomorphism. Then the following properties
hold:

(a) q(Gold(X)) = Gold(q(X)) = Gold(Y );
(b) the induced map qG:Gold(X) −→ Gold(Y ) which carries x to q(x) is

a homeomorphism.
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Proof.

(a) Let us consider the map q1:X −→ q(X) induced by q. Let
j: q(X) −→ Y be the canonical embedding; then j is a quasihomeomor-
phism. Since q = j ◦ q1, we get q1 a quasihomeomorphism (by “Never two
without three”). Now, since X is a T0-space, q1 is injective, by Lemma 1.4.
Thus, q1 is a bijective quasihomeomorphism; so that it is a homeomorphism.

It follows that Gold(q(X)) = q1(Gold(X)) = q(Gold(X)). Since X is
homeomorphic to q(X), Gold(q(X)) is strongly dense in q(X). But q(X)
is strongly dense in Y ; this forces Gold(q(X)) to be strongly dense in Y .

On the other hand, Gold(Y ) is the smallest strongly dense subset of Y
(see Lemma 1.1); this yields

Gold(Y ) ⊆ Gold(q(X)) = q(Gold(X)) ⊆ q(X).

By Lemma 1.3, Gold(Y ) is strongly dense in q(X); but Lemma 1.1 says that
Gold(q(X)) is the smallest strongly dense subset of q(X); consequently,
Gold(q(X)) ⊆ Gold(Y ). We conclude that q(Gold(X)) = Gold(q(X)) =
Gold(Y ).

(b) Since the induced map q1:X −→ q(X) is a homeomorphism and
q1(Gold(X)) = Gold(Y ), the mapping qG:Gold(X) −→ Gold(Y ) defined
by x 7−→ q(x) is also a homeomorphism.

Proposition 1.6. Every quasihomeomorphism between two TD-spaces
is a homeomorphism.

Proof. It follows immediately from Theorem 1.5 (b).

Note also that one may give an easy direct proof. Indeed, let q:X −→
Y be a quasihomeomorphism between two TD-spaces. Hence, q is injective
by Lemma 1.4. On the other hand, q(X) is strongly dense in Y and every
point set of Y is locally closed; so that q(X) = Y . Thus, q is a bijective
quasihomeomorphism. Therefore, q is a homeomorphism.

The following concept, motivated by Proposition 1.6, proves to be use-
ful.

Definition 1.7. Let C be a category. By a categoroid of C we mean
a full subcategory of C closed under isomorphisms in which all arrows are
isomorphisms.

Theorem 1.4 and Definition 1.6 immediately give the following cate-
gorical properties of TD-spaces.

Theorem 1.8. Let C be the category where objects are topological
spaces X such that Gold(X) is strongly dense in X and arrows are quasi-
homeomorphisms. Let C1 be the full subcategory of C whose objects are
TD-spaces. Then C1 is a coreflective categoroide of C. The coreflector is
µX :Gold(X) →֒ X .
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Remark 1.9. C1 is strictly contained in C. Let Y be an infinite set
equipped with the cofinite topology and ω /∈ Y . Set X = Y ∪ {ω} and
equip it with the topology whose closed sets are X and the closed sets of
Y . Clearly, Gold(X) = Y is strongly dense in X . However, X is not a
TD-space, since {ω} is not locally closed.

3. The Goldman Spectrum of a Ring. Our next investigation of
Theorem 1.5 is a new proof of our main result of [4], which gives an intrinsic
topological characterization of the Goldman spectrum of a commutative
ring.

We need to recall the the notion of soberification of a topological space
which proved to play an important part in the next theorem.

Let X be a topological space and S(X) the set of all nonempty irre-
ducible closed subsets of X [6]. Let U be an open subset of X and set

Ũ = {C ∈ S(X) | U ∩ C 6= ∅}.

Then the collection (Ũ , U is an open subset of X) provides a topology on
S(X) and the following properties hold [6]:

(i) the map µX :X −→ S(X) which carries x to {x} is a quasihomeomor-
phism;

(ii) S(X) is a sober space.

The topological space S(X) is called the soberification of X .
Before stating the result which characterizes goldspectral spaces, let

us give a straightforward remark.

Remark 2.1. If q:X −→ Y is a quasihomeomorphism, then the follow-
ing properties hold:

(a) Let U be an open subset of Y , then U is compact if and only if q−1(U)
is compact.

(b) X has a basis of compact open subsets closed under finite intersections
if and only if so is Y .

Theorem 2.2. Let X be a topological space. Then X is goldspectral if
and only if X satisfies the following properties:

(a) X is compact;
(b) X has a basis of compact open subsets;
(c) the intersection of two compact open subsets is compact;
(d) X is a TD-space.
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Proof.

• For each ring R, Gold(R) = Gold(Spec(R)) is a TD−space. Since
the canonical embedding Gold(R) →֒ Spec(R) is a quasihomeomorphism
and Spec(R) satisfies properties (a), (b), and (c), then so is Gold(R), by
Remark 2.1.

• Conversely, let X be a space satisfying properties (a), (b), (c), and
(d). Let S(X) be the soberification of X and µX :X −→ S(X) defined by
µX(x) = {x} the canonical embedding of X into S(X).

According to Theorem 1.5, X is homeomorphic to Gold(S(X)). Thus,
Remark 2.1 implies immediately that S(X) is a spectral space, completing
the proof.
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2. G. Brümmer, “Initial Quasi-Uniformities,” Indag. Math., 31 (1969),
403–409.

3. E. Bouacida, O. Echi, G. Picavet, and E. Salhi, “An Exten-
sion Theorem for Sober Spaces and the Goldman Topology,”
Int. J. Math. Math. Sc., 51 (2003), 3217–3239.

4. O. Echi, “A Topological Characterization of the Goldman Prime Spec-
trum of a Commutative Ring,” Comm. Algebra, 28 (2000), 2329–2337.

5. O. Goldman, “Hilbert Rings and the Hilbert Nullstallensatz,”
Math. Z., 54 (1951), 136–140.

6. A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique,
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