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SOME REMARKS ON THE SUM OF AN OLD SERIES
Rasul A. Khan

In this note we use some combinatorial identities to derive a formula for the
sum of the series

oo

S(p) = (m+n+1) (" ;’:m>x" ja| < 1,

n=0

in the form P(z)/(1 — 2)™™P+l where P(z) is a polynomial of degree p — 1 with
known coefficients a;, 0 < j < p —1. When specialized for m = 0, the resulting
sum gives a formula for

an:r" (lz| < 1).
n=1

The general formula also provides an alternative method for determining the mo-
ments of a negative binomial distribution. Conversely, the negative binomial dis-
tribution can be used to find a recursive formula for the sum of the above series

S(p)-

1. A Combinatorial Identity. In what follows we write
vy =z —1)(—-2)---(x—7r+1)

for any real = and positive integer 7, and in particular z(,) = x!/(z —r)! if z is also
a positive integer, and x5y = 1, etc. Also, for a function (), ¥(F) (a) denotes the
kth derivative evaluated at a. The identities in Lemma 1 can be found in disguised
forms in Feller [2]. These identities in turn imply the main identity in Lemma 2.
A generating function method is used for their proofs for the sake of completeness.
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Lemma 1. For any real number m and positive integers n and r we have
n , n 0, forallr <mn,
a E 1) (m —4)" =
(&) (=1 7 (]) {n!, for r = n.

(b) zn:(—l)j (?) (ntm— ) = { 0, forallr<mn,

n!, forr=n.
Proof. Let
ot = (1= e = 31y (%) xpltm — ).
Since ¢(")(0) = 0 for all » < n, and g™ (0) = n!, (a) follows. Now let

gi(t) =" (¢ — 1) = :O<—1>ﬂ‘ (’;) grn=i,

Since gy)(l) =0 for all r < n, and g(™ (1) = n!, (b) follows.

To state the second lemma we define the following sequence a, for positive
integers m and p. This sequence is needed to find the sum of the series S(p). The
sequence a,, is defined as:

(—1)i(m+n+1—i)p<m+?+1)<n+m_i>. (1)

2 m

Q

3

I
-
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Moreover, a,, = 0 for all n > p, where a,, is defined by (1).

Proof. Let g(t) = t™exp((m + 1)(t — 1))(te!=* — 1)". Clearly,

o) =31y (1) expl(m 40+ 1= )0 - 1) @)

J

Let fi(t) = t™™"=J and fo(t) = exp((m +n+ 1 —j)(t — 1)). Obviously,
D)= (m+n—j)y r=n—p—1, and f{P(1) = (m+n+1- .

It is easy to verify that ¢(*)(1) = 0 for all k < n. By repeated differentiation of (2)
and repeated use of Lemma 1 we obtain

Sy (A 0A W =0 as s =k < )

=0

In particular, (3) holds if « =n —p — 1 and 8 = p, and the identity is proved. To
prove the noted property of a,, we consider two separate cases. If n = p, we have

1 —1 1)!
(mapt1—ip(mTPEN(prm =iy _(mEp+ Dt (P,
i m m!p! i

and a, = 0 by Lemma 1(a). If n > p (i.e. n > p+ 1) we write

(m—i—f—i-l)(n—i—m—i) :w<r_‘>(n+m—i)(r), r=n—-p-1L

m m!n! 7

Then, “showing a,, = 0 for all n > p” is equivalent to the main identity in Lemma
2. Hence, a,, =0 for all n > p.

2. An Application. The mth derivative of the geometric series

St = (1-a)h, fal <1,
n=0
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gives the well-known sum [4]

> (") = e < 2

n=0

If 0 <x <1, then

fnym,z) = (n—i—m)(l —2)" 2" n=0,1,2,...

m

is the probability function of a negative binomial distribution, and (4) can be in-
terpreted as

Zf(n;m,:v) =1 (cf. [2]).
n=0

Motivated by this observation and the related moments problem we seek to derive
a formula for

o0

Somtn+ 1)?("+m)w”, o < 1,
m

n=0

where m (> 0) and p (> 0) are integers. It is claimed that

Z(m+n+1)”<n;m>f"—(1_];§7fz)+m’ 21 <1, (5)

n=0

where
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with known coefficients a; (0 < j <p—1), and P(z) =1 if p = 0. To see this, let

n

bnz(m—i—n—i—l)p(n—;m), cnz(—1)"(m+p+1>,

and consider the power series

m+p+1

A= Z bpaz™, and B = (1 — )™l = Z cna™.
n=0 n=0
Then
AB = Z anpx”
n=0
by the Cauchy product formula, and for n = 0,1, 2, ..., the coefficients a,, are given

by (1). Since a,, = 0 for all n > p by Lemma 2,
p—1
AB = Zanx" = P(z), and A= P(z)/B,
n=0

and (5) follows.

Special Case. Put m = 0 in (5), and the formula becomes

oo oo . Pz
;O(n + 1)p;17" — ;npxn* — (1 _(x));l)__’_l’ (6)

where

P(zx) = Zajxj,

Jj=0



VOLUME 17, NUMBER 2, SPRING 2005 93

and a, in (1) reduces to

an = Z(—Ui(n +1—0)P <p“; 1).

Clearly, ap = 1 and a,, = 0 for all n > p. In this special case there is one more
interesting observation, namely, a,—1 = 1 for all p > 1. This can be seen by noting
that

=S (M) =S (M) -y

=0

The last sum is clearly zero by Lemma 1(a), and hence, a,—1 = 1 for all p > 1.
Obviously, (6) gives a formula for

o0
E nPx"
n=1

as

xP(x)
(1 —z)ptl’

which was also noted by Clarke [1] and Stalley [4]. Another curious observation
is worth mentioning. Since P(z) is a polynomial of degree p — 1 and the a;’s are
integers,

P

Sp=Y ;‘— - 2”P(%>
n=1
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is always an even integer. It follows from (5) that

n=1

is also an even integer for any m > 0 and p > 0. Clearly, S, = 2P + 2P~ 1a; +
2P=2gy 4+ --- 4+ 2. In this special case one can easily check that S; = 2, p = 2,
a1:1, 5226,]?:3, a1=4, agzl, S3=26,p:4,a1:11,(12:11,(13:1,
Sy =150, and p = 5, a1 = 26, ay = 66, az = 26, a5 = 1, S5 = 1082, etc.

3. A Probabilistic Approach and a Recursive Formula for S(p). Let
0<z<1,and

n—+m

P(V—n)—f(n;m,x)—( >(1—x)m+1:17", n=20,1,2,...

m

be the probability function of a negative binomial distribution (cf. [2]). Let X =
v+m+ 1. Then the pth moment of X can be obtained from (5), which is given by

EXp:E(V—l—m—l—l)p:i(n—l—m—l—l)pp(z/:n):

n=0

P(z)

m- (7)

In particular, if p = 1, then aqg = m+ 1, and EX = (m+1)/(1 — z), and if p = 2,
then ap = (m +1)2, a; = m + 1, and

(m+1)2+ (m+ 1)90'

2 _
EX* = SSE

Moreover, it is obvious that the variance 02 = E(X — EX)? = EX? — (EX)?) =
(m+1)z/(1—2)2. These formulas are known in the literature where it is customary
to use g for x and p for 1 — z, and r = m + 1. Of course, any moment of X can be
calculated from (7).
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There is an alternative derivation of the sum

s0)= > (e m+vp(" "o

n=0

by calculus via the negative binomial distribution. This interesting interplay be-
tween S(p) and the negative binomial distribution is now discussed. This method
produces a recursive formula for S(p). For simplicity we write » = m + 1 (m being
a positive integer) in the above negative binomial distribution. Thus,

r+n-—1

f(n;r,x)z(l—:v)r< .1 )x”, n=20,1,2...,

and the associated moment generating function ¢*(0) = Fexp(0X) is given by

*(0) = 006"9 n;r,T) = (1—ao) = L —Inx
o0 = 3 ) = gy = Ty ST

where 8 = /(1 — ). Consequently,
$(0) = Eexp(0(X + 7)) = exp(rf) /(1 — B(e” —1))",
and ¢/(0) = r(1+ B)¢(0)/(1 — B¢’ —1)). Thus,
¢'(0)(1 = B(e” = 1)) = r(1+ B)d(0). (8)

Differentiating (8) p — 1 (p > 1) times, by Leibniz’s formula we have

p—1

<p; 1) ¢(j+1)(9)(1 — B(e? — 1))(%1*;') =r(l+ 5)¢(p71)(9),

=

<
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which evaluated at 8 = 0 gives
—BZ ( >¢<J+” 0) + ¢ (0) = r(1+ Ao~V (0).
This can be written as

—BZ( >¢<J> T 49 (0) = r(1+ 86 (0).

Since
(D10
j—1 p\j)’
we obtain
p—1 .
00532 (1) 90+ 11+ 5)67 (0
=p\J
p—1 ot
=53 PR (M50 ) + 11+ 8100 0)
j=1
p—1
=BZ(>¢<” BZP () )(0) + r(1 4+ B)e®=1(0).
=1
Since
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we have
p—1 p—1
®)(0) = P\ 4 (o) — P=1\ o)+ r (>-1)
6(0) B;(j)qﬁ (0) ﬁ;( j )qs ) +r(1+ 56" V0. (9)

This recursive formula can be used for computing moments E(X +r)P. Equivalently,
it can be used to find the sum

r—1

S(p) = immp (”*’" n 1)

n=0

and since r =m + 1,

S(p) = i(n +mA1)P (n ;m) g

n=0
It is clear from the definition of the generating function @(f) that S(p) =
#®(0)/(1 — x)" for each p > 0. Dividing equation (9) by (1 — )" we obtain

S(p) = ﬁif (f) S(j) - ﬁz (p ; 1) S(j) +r(1+B)S(p 1),

which can be written as

s =51 +Z (%)st) -1 +Z ("7 1)s)) +ra+ )56~ 1. (10)

This can be used to find S(p) in a recursive manner for any desired p. Con-
versely, (10) can also be used to determine the moments of the negative binomial
distribution. Suppose we want to determine

) =50) = St 1 (" )ar

n=0
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It is obvious from (10) that the same recursive equation holds for S;(p) also. An
interesting recursive equation arises if m = 0 (i.e., r = 1). In this case (10) becomes

10 = (1 +Z (")) - 5 +; (77 1)5:0)) + 1+ 95100 1.
This can be written as

S1(0) =5(1+§ (%)) —6(1+p§ ("7 1)s0) +si0-1, ay

=\ J
where
S1(p) = Y (n+1patt = 3 nran,
n=0 n=1

Note that (11) implies
S1(p) = ﬁ(l +; (f) 5 <j>) (12)

by induction. The recursive formula (12) was derived in [3] by the telescoping
method. If z = 1/2, then 5 = 1, and since S1(0) = 1, it is found that S1(1) = 2,
S1(2) =6, S1(3) = 26, S1(4) = 150, S1(5) = 1082, etc. which were obtained in the
preceding section by the combinatorial method.
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